On Certain Rings of Highest Weight Vectors

HELMER ASLAKSEN, ENG-CHYE TAN, AND CHEN-BO ZHU*

Department of Mathematics, National University of Singapore, Singapore 0511, Republic of Singapore
Communicated by Walter Feit
Received October 18, 1993

Let \(R_{m,n} \) be the ring of highest weight vectors of the action of \(O_m \times GL_n \) on the polynomial algebra of \(m \times n \) matrices. We determine \(R_{m,2} \) and find generators for \(R_{m,n} \). In particular, the results about \(R_{m,2} \) give branching rules and information about the structure of holomorphic representations of \(Sp_{4} \).

1. Introduction

Let \(\mathbb{C}^{m,n} \) be the vector space of \(m \times n \) complex matrices and let \(\mathcal{A}(\mathbb{C}^{m,n}) \) be the algebra of complex-valued polynomials on \(\mathbb{C}^{m,n} \). Let \(GL_m \times GL_n \) act on \(\mathcal{A}(\mathbb{C}^{m,n}) \) by pre- and post-multiplication as

\[
(g_1, g_2) f(x) = f(g_1^{-1} x g_2),
\]

where \(x \in \mathbb{C}^{m,n}, (g_1, g_2) \in GL_m \times GL_n, f \in \mathcal{A}(\mathbb{C}^{m,n}) \). We choose a system of coordinates on \(\mathbb{C}^{m,n} \) as follows

\[
\begin{pmatrix}
x_{11} & x_{12} & \cdots & x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{mn}
\end{pmatrix}
\]

*E-mail addresses: aslaksen (mattanec, matzhueb)@nusunix.nus.sg.

159

(0021-8693/95 6.00
Copyright \(\copyright \) 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.
It is easy to describe the infinitesimal action of the Lie algebra $\mathfrak{gl}_m \oplus \mathfrak{gl}_n$ of $GL_m \times GL_n$ on $\mathcal{P}(\mathbb{C}^{m,n})$. Let

$$L_{jk} = \sum_{s=1}^{n} x_{js} \frac{\partial}{\partial x_{ks}}, \quad 1 \leq j, k \leq m,$$

$$R_{jk} = \sum_{s=1}^{m} x_{sj} \frac{\partial}{\partial x_{sk}}, \quad 1 \leq j, k \leq n. \quad (1.1)$$

Then

$$\mathfrak{gl}_m = \text{span}\{L_{jk}, 1 \leq j, k \leq m\},$$

$$\mathfrak{gl}_n = \text{span}\{R_{jk}, 1 \leq j, k \leq n\}.$$

We have the Cartan decomposition

$$\mathfrak{gl}_m = \mathfrak{o}_m \oplus \mathfrak{p},$$

where \mathfrak{o}_m is the Lie algebra of O_m sitting in GL_m and

$$\mathfrak{o}_m = \text{span}\{L_{jk} - L_{kj}, 1 \leq j < k \leq m\},$$

$$\mathfrak{p} = \text{span}\{L_{jk} + L_{kj}, 1 \leq j \leq k \leq m\}. \quad (1.2)$$

Let π be a rational representation of a complex reductive algebraic group G on V. Let $B = TU$ be a Borel subgroup of G, where T is a maximal torus and U is the unipotent radical of B. Let $\mathcal{P}(V)^U$ be the U-invariants in $\mathcal{P}(V)$, the polynomial algebra over V. Now T acts semisimply on $\mathcal{P}(V)^U$, and we have a T-weight space decomposition

$$\mathcal{P}(V)^U = \sum_{\psi \in T^*} \mathcal{P}(V)^U_\psi,$$

where

$$\mathcal{P}(V)^U_\psi = \{f \in \mathcal{P}(V) | f(b^{-1}x) = \psi(b)f(x), b \in B\}$$

and ψ is a character of B that is trivial on U and satisfies

$$\psi(tu) = \psi(t), \quad t \in T, u \in U.$$

The vectors in $\mathcal{P}(V)^U_\psi$ are the highest weight vectors (with respect to the positive system determined by the choice of B) of the representations of G appearing in $\mathcal{P}(V)$. By abuse of terminology, we shall call $\mathcal{P}(V)^U$ the ring of G highest weight vectors in $\mathcal{P}(V)$.

Our problem can be stated as follows:

Problem. Describe the ring $R_{m,n}$ of $O_m \times GL_n$ highest weight vectors in $\mathcal{P}(\mathbb{C}^{m,n})$.

Let

$$\Delta_{jk} = \sum_{s=1}^{m} \frac{\partial^2}{\partial x_{sj} \partial x_{sk}}, \quad 1 \leq j \leq k \leq n$$

and

$$r_{jk}^2 = \sum_{s=1}^{m} x_{sj} x_{sk}, \quad 1 \leq j \leq k \leq n. \tag{1.3}$$

Define the space of harmonics to be

$$\mathcal{H} = \{ f \in \mathcal{P}(\mathbb{C}^{m,n}) \mid \Delta_{jk} f = 0, 1 \leq j \leq k \leq n \}, \quad \tag{1.4}$$

and let

$$\mathcal{J} = \mathcal{P}(\mathbb{C}^{m,n})^{O_m}$$

be the ring of O_m invariants. It is known ([8]) that

$$\mathcal{P}(\mathbb{C}^{m,n}) = \mathcal{J} \cdot \mathcal{H}. \tag{1.5}$$

The description of $R_{m,1}$ for $m \geq 3$ follows easily from the theory of spherical harmonics. It says that \mathcal{H} is O_m stable and the O_m highest weight vectors in \mathcal{H} (with respect to an appropriate choice of a positive system of roots, which we will elaborate on in Section 3) are z_1^k for $k = 0, 1, \ldots$, where

$$z_1 = x_{11} - i x_{21}.$$

Furthermore, \mathcal{J} is generated by r_{11}^2 as an algebra. The ring of O_m highest weight vectors in $\mathcal{H}(\mathbb{C}^{m,1})$ is thus

$$\mathbb{C}[z_1, r_{11}].$$

For $n > 1$, the GL_n-structure of \mathcal{J}, and in particular its $O_m \times GL_n$ highest weight vectors, are well known from classical invariant theory (see Theorem 3.1 in Section 3). In [8], Kashiwara and Vergne generalised the theory of spherical harmonics to give the set of $O_m \times GL_n$ highest weight vectors in the space \mathcal{H}. These give partial information about $R_{m,n}$, and to get a complete picture, one has to understand how the highest weight vectors multiply as in (1.5) above. This will be the main theme of this
paper. It is also known that $R_{m,n}$ is Cohen–Macaulay ([4]), but besides these facts, very little is known about the explicit structure of the ring.

In this article, we determine the ring $R_{m,2}$. Several applications are given. In particular, we describe the GL_2 structure of all holomorphic representations of Sp_4 and compute the Poincaré series, Gelfand–Kirillov dimension ([17]) and Berenstein degree ([17]) for these representations. We also find a set of generators for $R_{m,3}$. Beyond $n = 3$, the situation gets too complicated. This is understandable because $R_{m,n}$ contains, in particular, information about the restriction of GL_m representations (with depth at most $\min(m, n)$) to its subgroup O_m, which is known to be a difficult problem. Finally, we consider the subring of $R_{m,n}$ consisting of elements that are right-SL_n-invariant (see Section 6), and give a set of explicitly given generators. The latter is connected with the work of Sato ([12]).

We would like to remark that Howe ([7]) has investigated related rings of highest weight vectors from certain models of representations of GL_n for $n = 2, 3$ and 4. In fact, our work was motivated by a talk given by him, where he stated the result of Theorem 4.2(d). We also want to thank him for helpful discussions.

2. ORBIT STRUCTURE AND THE KRULL DIMENSION

Let N_R be the maximal unipotent subgroup of GL_n consisting of upper triangular matrices with ones on the diagonal. We shall choose a maximal unipotent subgroup N_ℓ of O_m. First, we discuss the case when $m = 2\ell + 1$. Choose a Borel subalgebra for o_m as follows

$$\begin{pmatrix}
A & B & \delta \\
0 & -A' & 0 \\
0 & -\delta' & 0
\end{pmatrix},$$

where A is an upper triangular $\ell \times \ell$ matrix, B is an $\ell \times \ell$ skew-symmetric matrix and δ is an $\ell \times 1$ matrix. The maximal unipotent subgroup N_ℓ will then be generated by

(i)$\begin{pmatrix}
A & 0 & 0 \\
0 & (A')^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix}$

where A sits in the unipotent subgroup of upper triangular matrices with
ones along the diagonal in GL_l,

$$
\begin{bmatrix}
I_l & B & 0 \\
0 & I_l & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

(ii)

where B is an $l \times l$ skew-symmetric matrix, and I_l is the $l \times l$ identity matrix,

$$
\begin{bmatrix}
I_l & -\frac{\delta \delta'}{2} & \delta \\
0 & I_l & 0 \\
0 & -\delta' & 1
\end{bmatrix}
$$

(iii)

where δ is an $l \times 1$ matrix.

If m is even, N_L is generated by elements of type (i) and (ii) with the last row and column removed. It is possible to determine the $N_L \times N_R$ orbit structure using matrix reduction by elementary matrices. We will omit this. Instead, we will describe a Zariski open set, and then deduce the following result.

Theorem 2.1. The Krull dimension of the ring of $O_m \times GL_n$ highest weight vectors in $\mathcal{A}(C^{m \times n})$ is given

If $m = 1$,

$$1$$

if $m = 2$ and $n \geq 2$,

$$\frac{n(n+3)}{2}$$

if $\left\lceil \frac{m}{2} \right\rceil \geq n$,

$$\frac{\lfloor m/2 \rfloor (\lfloor m/2 \rfloor + 3)}{2} + \left(\left\lceil \frac{m}{2} \right\rceil + 1 \right) \left(n - \left\lceil \frac{m}{2} \right\rceil \right)$$

if $n \geq \left\lceil \frac{m}{2} \right\rceil \geq 1$ and m is odd,

$$\frac{\lfloor m/2 \rfloor (\lfloor m/2 \rfloor + 3)}{2} + \left\lceil \frac{m}{2} \right\rceil \left(n - \left\lfloor \frac{m}{2} \right\rfloor \right)$$

if $n \geq \left\lceil \frac{m}{2} \right\rceil \geq 2$ and m is even.

Proof. If $m = 2l + 1$ and $1 \leq l \leq n$, consider the $N_L \times N_R$ orbit Θ_E through

$$E = \begin{bmatrix}
U & M_1 \\
D & 0 \\
0 & M_2
\end{bmatrix},$$

(2.1)

where U is an $l \times l$ upper triangular matrix, D is an $l \times l$ diagonal matrix and M_1 and M_2 are arbitrary $l \times (n - l)$ and $1 \times (n - l)$ matrices. The
set of E’s forms an affine variety \mathcal{E}. The Θ_{E}’s are distinct except for a
Zariski closed subset of \mathcal{E}, and the collection of Θ_{E}’s is Zariski open in
$\mathbb{C}^{m,n}$. Therefore, the Krull dimension of $\mathcal{P}(\mathbb{C}^{m,n})^{N_{1} \times N_{2}}$ is equal to the
dimension of \mathcal{E} as an affine variety. This dimension is equal to

$$\frac{l(l + 3)}{2} + (l + 1)(n - l).$$

If $m = 2l$ and $2 \leq l \leq n$, we simply remove the entries in the last row in
(2.1) to get a Zariski open set with parameter space of dimension

$$\frac{l(l + 3)}{2} + l(n - l).$$

If $\lceil m/2 \rceil > n$, the collection of orbits through

$$\begin{bmatrix}
U \\
0 \\
D \\
0
\end{bmatrix},$$

where U is $n \times n$ upper triangular and D is $n \times n$ diagonal with nonzero
diagonal entries, will be Zariski open. This parameter space is of dimension

$$\frac{n(n + 3)}{2}.$$

The remaining cases are treated similarly.

We will first present an elementary result. Recall that we can parameterize polynomial representations of GL_{n} by Young diagrams
$(a_{1}, a_{2}, \ldots, a_{n})$ with depth at most n.

Proposition 2.2. (a) $R_{1,n}$ is the polynomial ring in x_{11}.
(b) $R_{2,1}$ is the polynomial ring in x_{11} and x_{21}.
(c) If $n \geq 2$, $R_{2,n}$ is freely generated by x_{11}, x_{21} and

$$\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{bmatrix}.$$

Proof. Parts (a) and (b) are easy. We will prove (c). In fact,

$$R_{2,n} = \mathcal{P}(\mathbb{C}^{2,n})^{N_{1} \times N_{2}}.$$
since N_L is trivial. From the $GL_2 \times GL_n$ duality ([6]),

$$\mathcal{A}(\mathbb{C}^{2,n})|_{GL_2 \times GL_n} = \sum_{\sigma} V_\sigma \otimes \tilde{V}_\sigma,$$

where $\sigma = (a, b)$ is a Young diagram with depth at most 2 and V_σ (respectively \tilde{V}_σ) is the GL_2 (respectively GL_n) representation determined by the Young diagram σ. If $v \in \mathcal{A}(\mathbb{C}^{2,n})$ is a GL_n highest weight vector of type determined by the Young diagram σ, it must generate a $GL_2 \times GL_n$ module sitting in $V_\sigma \otimes \tilde{V}_\sigma$. Since the latter is irreducible, it is the whole space. If the Young diagram is $\sigma = (a, b)$, the $GL_2 \times GL_n$ highest weight vector in $V_\sigma \otimes \tilde{V}_\sigma$ is, up to a constant,

$$w = x_{11}^a x_{22}^b \begin{vmatrix} x_{11}^{12} & x_{12}^b \\ x_{21} & x_{22} \end{vmatrix}.$$

Thus,

$$(GL_2 \times GL_n) \cdot v = (GL_2 \times GL_n) \cdot w.$$ \hspace{1cm} (2.2)

Now, all the GL_n highest weight vectors in $(GL_2 \times GL_n) \cdot w$ lie in the space $GL_2 \cdot w$, and so v must lie in it, too. Thus any GL_n highest weight vector lies in the GL_2 module generated by some polynomial (2.2). It is then not difficult to see that $R_{2,n}$ is freely generated by the 3 polynomials as stated above. □

Actually, it is quite interesting to describe the ring $\mathcal{A}(\mathbb{C}^{m,n})^{N\mathbb{H}}$, and we hope to take it up elsewhere.

3. Harmonic Polynomials

We recall some results from Kashiwara and Vergne ([8]). We choose O_m so that its Lie algebra \mathfrak{o}_m is described by (1.2). Now choose a Cartan subalgebra (different from the one in Section 2) for \mathfrak{o}_m as follows

$$\mathfrak{h}_L = \left\{ H = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \end{bmatrix} , \quad A_j = \begin{bmatrix} 0 & i\hbar_j \\ -i\hbar_j & 0 \end{bmatrix}, \quad h_j \in \mathbb{C}, 1 \leq j \leq \left[\frac{m}{2} \right] \right\}$$

\hspace{1cm} (3.1)
and also a Cartan subalgebra for \mathfrak{gl}_n

$$\mathfrak{h}_R = \left\{ \begin{bmatrix} d_1 & & \\ 0 & \ddots & 0 \\ & & d_n \end{bmatrix} \mid d_j \in \mathbb{C} \right\}.$$

(3.2)

Define the following linear functionals on \mathfrak{h}_L

$$e_j(\text{above } H) = h_j, \quad 1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor.$$

(3.3)

The roots of ϑ_m are

$$\Delta = \begin{cases} \{ \pm e_j \pm e_k, j \neq k \} \cup \{ \pm e_k \} & \text{if } m \text{ is odd}, \\ \{ \pm e_j \pm e_k, j \neq k \} & \text{if } m \text{ is even}. \end{cases}$$

(3.4)

We choose a positive system as follows

$$\Delta^+ = \begin{cases} \{ e_j \pm e_k, j \neq k, j < k \} \cup \{ e_k \} & \text{if } m \text{ is odd}, \\ \{ e_j \pm e_k, j \neq k, j < k \} & \text{if } m \text{ is even}. \end{cases}$$

(3.5)

For GL_n, we choose the Borel subalgebra of upper triangular matrices to fix a positive root system for \mathfrak{gl}_n.

We will parameterize the irreducible finite-dimensional representations of SO_m by tuples of integers $(\alpha_1, \alpha_2, \ldots, \alpha_{\lfloor m/2 \rfloor})$ satisfying

$$\begin{cases} \alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_{\lfloor m/2 \rfloor} \geq 0 & \text{if } m \text{ is odd}, \\ \alpha_1 \geq \alpha_2 \geq \cdots \geq |\alpha_{\lfloor m/2 \rfloor}| & \text{if } m \text{ is even}. \end{cases}$$

and parameterize the irreducible finite-dimensional representation of GL_n by an n-tuple of integers $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ with $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n$.

If $m = 2l + 1$, then O_{2l+1} is the direct product $SO_{2l+1} \times \mathbb{Z}_2$ where $\mathbb{Z}_2 = \{ \pm 1 \}$. A representation of O_{2l+1} can be parameterized by

$$(\alpha_1, \ldots, \alpha_l, \varepsilon) = (\alpha_1, \ldots, \alpha_l) \otimes \varepsilon,$$

where $(\alpha_1, \ldots, \alpha_l) \in SO_{2l+1}$ and ε is a one-dimensional representation of \mathbb{Z}_2, trivial or nontrivial according to $\varepsilon = 1$ or -1.

If \(m = 2l \), then \(O_{2l} \) is the semi-direct product \(SO_{2l} \rtimes \mathbb{Z}_2 \), where \(\mathbb{Z}_2 = \langle J_{2l}, I_{2l} \rangle \) with

\[
J_{2l} = \begin{bmatrix}
I_{2(l-1)} & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}.
\]

If \((\alpha_1, \ldots, \alpha_l) \in SO_{2l} \) and \(\alpha_l \neq 0 \), then \(\text{Ind}_{SO_{2l}}^{O_{2l}}(\alpha_1, \ldots, \alpha_l) \) is irreducible and we denote this by \((\alpha_1, \ldots, \alpha_l; 1) \). If \(\alpha_l = 0 \), then there are two ways to extend \((\alpha_1, \ldots, \alpha_l) \) to a representation of \(O_{2l} \), namely

\[
(\alpha_1, \ldots, \alpha_l; \epsilon) = (\alpha_1, \ldots, \alpha_l) \otimes \epsilon,
\]

where \(\epsilon = \pm 1 \). A representation of \(O_{2l} \) can then be parameterized by

\[
(\alpha_1, \ldots, \alpha_l; 1) \quad \text{if} \quad \alpha_l \neq 0,
\]

or

\[
(\alpha_1, \ldots, \alpha_l; \pm 1) \quad \text{if} \quad \alpha_l = 0.
\]

We will denote the two representations of \(O(1) \) by \((\pm 1) \).

Now set

\[
z_{jk} = x_{2j-1,k} - ix_{2j,k} \tag{3.6}
\]

for \(1 \leq j \leq \lfloor m/2 \rfloor \), \(1 \leq k \leq n \), and define the following \(t \times t \) determinants for \(1 \leq t \leq \min(m/2, n) \)

\[
\alpha_t = \begin{vmatrix}
z_{11} & z_{12} & \cdots & z_{1t} \\
\vdots & \vdots & \ddots & \vdots \\
z_{t1} & z_{t2} & \cdots & z_{tt}
\end{vmatrix}, \tag{3.7}
\]

\[
\gamma_t = \begin{vmatrix}
r_{11}^2 & r_{12}^2 & \cdots & r_{1t}^2 \\
\vdots & \vdots & \ddots & \vdots \\
r_{t1}^2 & r_{t2}^2 & \cdots & r_{tt}^2
\end{vmatrix}. \tag{3.8}
\]

It is not difficult to check that with respect to the positive systems for \(\mathfrak{o}_m \) and \(\mathfrak{gl}_n \), each \(\alpha_t \) is an \(O_m \times GL_n \) highest weight vector of weight

\[
\left(1, \ldots, 1, 0, \ldots, 0; (-1)^t\right) \otimes \left(1, \ldots, 1, 0, \ldots, 0\right)
\]

\(t \) copies \hspace{1cm} \(t \) copies
when \(m \) is odd, and an \(O_m \times GL_n \) highest weight vector of weight
\[
\left(\underbrace{1, \ldots, 1}_{t \text{ copies}}, 0, \ldots, 0, 1 \right) \otimes \left(\underbrace{1, \ldots, 1}_{t \text{ copies}}, 0, \ldots, 0 \right)
\]
when \(m \) is even. Similarly, \(\gamma_1 \) is an \(O_m \times GL_n \) highest weight vector of weight
\[
\left(0, \ldots, 0; 1 \right) \otimes \left(\underbrace{2, \ldots, 2}_{t \text{ copies}}, 0, \ldots, 0 \right).
\]
For \(m = 3 \) and \(n = 2 \), we will also need
\[
\delta = \begin{bmatrix}
 z_{11} & z_{12} \\
 x_{31} & x_{32}
\end{bmatrix},
\]
which is an \(O_3 \times GL_2 \) highest weight vector of weight
\[
(1; 1) \otimes (1, 1).
\]
For \(m = 2 \) and \(n = 2 \), we will also need
\[
\zeta = \begin{bmatrix}
 z_{11} & z_{12} \\
 x_{21} & x_{22}
\end{bmatrix} = 2i \begin{bmatrix}
 x_{11} & x_{12} \\
 x_{21} & x_{22}
\end{bmatrix},
\]
which is an \(O_2 \times GL_2 \) highest weight vector of weight
\[
(0; -1) \otimes (1, 1).
\]
For \(m = 1 \) and \(n = 2 \), we will also need
\[
\omega = x_{11}
\]
which is an \(O_1 \times GL_2 \) highest weight vector of weight
\[
(-1) \otimes (1, 0).
\]
The following results are well known, and can be found in [8, 15, 2, 18].

Theorem 3.1. (a) The space of \(O_m \)-invariant polynomials in \(\mathcal{P}(C^{m,n}) \) is generated by \(r^i_j \), \(1 \leq j \leq k \leq n \). The subring of \(O_m \times GL_n \) highest weight vectors in \(\mathcal{P} \) is generated freely by
\[
\gamma_1, \ldots, \gamma_{\min(m/2,n)}.
\]
(b) When \(m \geq 2n \), the ring of \(O_m \times GL_n \) highest weight vectors in \(\mathcal{P} \) is generated freely by
\[
\alpha_1, \ldots, \alpha_n.
\]
(c) When \(m = 3 \) and \(n = 2 \), the ring of \(\mathfrak{O}_m \times GL_n \) highest weight vectors in \(\mathcal{H} \) is spanned by \(\alpha_i^p \) and \(\alpha_i^p \delta \) for \(p \geq 0 \).

(d) \(\mathcal{H}(C^{m,n}) = \mathcal{H} \cdot \mathcal{I} \), and in particular, for \(m \geq 2n \), we have \(\mathcal{H}(C^{m,n}) = \mathcal{H} \oplus \mathcal{I} \).

Remarks. The results of [8] give generators for \(\mathfrak{O}_m \times GL_n \) highest weights in \(\mathcal{H} \) for all \(m \) and \(n \). When \(m < 2n \), we get additional generators (as in the case \(m = 3 \) and \(n = 2 \)).

4. Structure of \(R_{m,2} \) and Applications

4.1. Structure of \(R_{m,2} \)

We have already described \(R_{1,2} \) and \(R_{2,2} \). We will now treat the case when \(n = 2 \) and \(m \geq 4 \). First, we have a simple result about tensor products of \(GL_2 \) representations. Let

\[gI_2 = \text{span}\{ R_{11}, R_{22}, R_{12}, R_{21} \}, \]

with the usual commutation relations

\[[R_{ij}, R_{st}] = \delta_{is} R_{ti} - \delta_{it} R_{sj}. \]

We will select \(R_{12} \) to be the positive root vector in \(gI_2 \). As usual, if \(V \) is a representation of \(GL_2 \), we say that \(v \in V \) is a \(GL_2 \) highest weight vector if \(R_{12}v = 0 \) and \(v \) is an eigenvector for \(R_{11} \) and \(R_{22} \).

Lemma 4.1. Let \(V_{(\lambda_1, \lambda_2)} \) be an irreducible finite-dimensional representation of \(GL_2 \) with highest weight \((\lambda_1, \lambda_2)\). Then

\[V_{(\lambda_1, \lambda_2)} \otimes V_{(1,0)} = \begin{cases} V_{(\lambda_1 + 1, \lambda_2)} \oplus V_{(\lambda_1, \lambda_2 + 1)} & \text{if } \lambda_1 \neq \lambda_2, \\ V_{(\lambda_1 + 1, \lambda_2)} & \text{if } \lambda_1 = \lambda_2, \end{cases} \]

and if \(\lambda_1 \neq \lambda_2 \), the highest weight vector of \(V_{(\lambda_1, \lambda_2 + 1)} \) is given (up to a scalar) by

\[v = R_{21}v_{(\lambda_1, \lambda_2)} \otimes v_{(1,0)} - (\lambda_1 - \lambda_2)v_{(\lambda_1, \lambda_2)} \otimes R_{21}v_{(1,0)}, \]

where \(v_{(\lambda_1, \lambda_2)} \) and \(v_{(1,0)} \) are the highest weight vectors in \(V_{(\lambda_1, \lambda_2)} \) and \(V_{(1,0)} \), respectively.

Proof. That there are at most 2 components in the tensor product follows from the Clebsch–Gordan Formula. To find the highest weight
vector for $V_{(\lambda_1, \lambda_2 + 1)}$, set
\[v = R_{21} v_{(\lambda_1, \lambda_2)} \otimes v_{(1, 0)} + a v_{(\lambda_1, \lambda_2)} \otimes R_{21} v_{(1, 0)}. \]

We only have to set $R_{12} v = 0$, which gives $a = -(\lambda_1 - \lambda_2)$. \[\]

From now on, we restrict our discussion to vectors in $\mathcal{P}(\mathbb{C}^{m,n})$. Consider the map
\[\Phi: \mathcal{F} \otimes \mathcal{S} \rightarrow \mathcal{P}(\mathbb{C}^{m,n}) \]
by polynomial multiplication. Theorem 3.1(d) says that the map is onto. To find the $O_n \times GL_n$ representations appearing in $\mathcal{P}(\mathbb{C}^{m,n})$, consider $1 \otimes \sigma_1$ appearing in \mathcal{F} and $\rho \otimes \sigma_2$ appearing in \mathcal{S}. Since
\[(1 \otimes \sigma_1) \otimes (\rho \otimes \sigma_2) = \rho \otimes (\sigma_1 \otimes \sigma_2) \]
as $O_n \times GL_n$ representations, it suffices to understand the projection of $\rho \otimes \sigma$ under Φ, where σ is a GL_n subrepresentation of $\sigma_1 \otimes \sigma_2$. More precisely, to find the $O_n \times GL_n$ highest weights in $\mathcal{P}(\mathbb{C}^{m,n})$, it suffices to find the GL_n highest weights in $\rho \otimes (\sigma_1 \otimes \sigma_2)$.

Let us work in $\mathcal{P}(\mathbb{C}^{m,n})$. Let $\langle f \rangle$ denote the GL_2 module in $\mathcal{P}(\mathbb{C}^{m,n})$ generated by the polynomial f. From the discussion above, it follows that we must find the GL_2 highest weight vectors in the tensor product
\[\langle \alpha_1^x \alpha_2^y \rangle \otimes \langle \gamma_1^x \gamma_2^y \rangle. \]
Since γ_2 and α_2 each generate a one-dimensional representation of GL_2, it suffices to consider
\[\langle \alpha_1^x \rangle \otimes \langle \gamma_1^x \rangle. \]

Observe from Lemma 4.1, that if v_1 and v_2 are two GL_2 highest weight vectors of weights (λ_1, λ_2) and (λ_1', λ_2'), then the highest weight vectors of
\[\langle \alpha_1 \rangle \otimes \langle v_1 v_2 \rangle \]
are $\alpha_1 v_1 v_2$ and
\[(R_{21}(v_1 v_2)) \alpha_1 - (\lambda_1 + \lambda_1' - \lambda_2 - \lambda_2') v_1 v_2 (R_{21} \alpha_1) \]
\[= \left[(R_{21} v_1) \alpha_1 - (\lambda_1 - \lambda_2) v_1 (R_{21} \alpha_1) \right] v_2 \]
\[+ \left[(R_{21} v_2) \alpha_1 - (\lambda_1' - \lambda_2') v_2 (R_{21} \alpha_1) \right] v_1. \]
(4.1)
By applying Lemma 4.1 to \(\langle \alpha_1 \rangle \otimes \langle \gamma_1 \rangle \), we get

\[
\beta_1 = \begin{vmatrix}
z_{11} & z_{12} \\
r^2_{11} & r^2_{12}
\end{vmatrix}
\]

which has \(SO_m \times GL_2 \) weight \((1,0,\ldots,0) \otimes (2,1)\). Another application of Lemma 4.1 to \(\langle \alpha_1 \rangle \otimes \langle \beta_1 \rangle \) gives

\[
\beta_2 = \begin{vmatrix}
0 & z_{11} \\
z_{11} & r^2_{11} \\
z_{12} & r^2_{21}
\end{vmatrix},
\]

which has \(SO_m \times GL_2 \) weight \((2,0,\ldots,0) \otimes (2,2)\). Since \(\beta_2 \) transforms under \(GL_2 \) by the determinant representation, we have

\[
\langle \alpha_1 \rangle \otimes \langle \beta_2 \rangle = \langle \alpha_1 \beta_2 \rangle.
\]

The relation

\[
\alpha_1^2 \gamma_2 + \beta_1^2 + \gamma_1 \beta_2 = 0
\]

follows from a direct computation.

Recall the definition of \(\delta, \xi, \) and \(\omega \) in Section 3 (see (3.9), (3.10), and (3.11)).

Theorem 4.2. (a) \(R_{1,2} \) is the polynomial ring in \(\omega = x_{11} \).

(b) \(R_{2,2} \) is freely generated by \(\alpha_1, \overline{\alpha_1}, \) and \(\xi \).

(c) Let \(S \) be the ring generated by \(\alpha_1, \beta_1, \beta_2, \gamma_1 \) and \(\gamma_2 \) with the relation

\[
\alpha_1^2 \gamma_2 + \beta_1^2 + \gamma_1 \beta_2 = 0. \quad (4.2)
\]

Then \(R_{3,2} = S \oplus S \delta \).

(d) If \(m \geq 4 \), \(R_{m,2} \) is generated by \(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \) and \(\gamma_2 \) with the relation (4.2).

Proof: We have shown (a) and (b) in Section 2. We will first prove (d). Because

\[
\langle \alpha_1^{n} \rangle \otimes \langle \gamma_1^{n} \rangle \hookrightarrow \langle \alpha_1 \rangle \otimes \langle \alpha_1^{-1} \rangle \otimes \langle \gamma_1 \rangle,
\]

we can use Eq. (4.1) and a straightforward induction to conclude that \(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \) and \(\gamma_2 \) generate \(R_{m,2} \). By Theorem 2.1, the Krull dimension of \(R_{m,2} \) is 5. (It is simple to see that \(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \) and \(\gamma_2 \) are algebraically independent.) The ideal of relations among \(\alpha_1, \alpha_2, \beta_1, \beta_2, \)
γ₁, and γ₂ will therefore have to be a principal ideal. Since
\[α₁^2γ₂ + β₁^2 + γ₁β₂ \]
is an irreducible polynomial in the variables α₁, α₂, β₁, β₂, γ₁, γ₂, it generates this ideal. The proof of (c) is similar.

Corollary 4.3. The ring of \(O_m × \text{GL}_2 \) highest weight vectors in \(ℙ(ℂ^{m,2}) \) is Cohen–Macaulay and its Poincaré series, \(P(t) \), is as follows

\[
P(t) = \begin{cases}
1 + t^3 & \text{for } m \geq 4, \\
\frac{(1 - t)^2(1 - t^2)^2}{(1 - t^3)^2} & \text{for } m = 3, \\
\frac{1}{(1 - t)^3(1 - t^2)} & \text{for } m = 2, \\
\frac{1}{1 - t} & \text{for } m = 1.
\end{cases}
\]

Remark. That the ring \(R_{m,n} \) is Cohen–Macaulay is a special case of a well-known result of Hochschild and Mostow (14).

Proof. Immediate from Theorem 4.2.

4.2. A Branching Rule from \(\text{GL}_m \) to \(O_m \)

A consequence of Theorem 4.2 is a branching law for \(O_m \) representations appearing in a \(GL_m \) representation of depth at most two. Since the result is probably well known for \(m = 2 \) or 3, we will only state it for \(m \geq 4 \).

Corollary 4.4. We have the following formulae for the restriction of a representation \((a, b, 0, \ldots, 0) \) of \(GL_m \) to \(O_m \) for \(m \geq 4 \).

\[
(a, b, 0, \ldots, 0)|_{O_m} = \sum_{s \in S} (x_s, y_s, 0, \ldots, 0; (-1)^s),
\]

where

\[
S = \{(a_1, a_2, b_1, b_2, c_1, c_2) ∈ ℤ^6_+ \mid a_1 + a_2 + 2b_1 + 2b_2 + 2c_1 + 2c_2 = a, \]
\[
a_2 + b_1 + 2b_2 + 2c_2 = b, \quad b_1 = 0, 1\}.
\]
and for \(s \in S \), we have

\[
x_s = a_1 + a_2 + b_1 + 2b_2, \quad y_s = a_2, \quad \varepsilon_s = \begin{cases} a_1 + b_1 & \text{if } m \text{ is odd}, \\ 0 & \text{otherwise}. \end{cases}
\]

Proof. This follows from the \(GL_m \times GL_2 \) duality ([16])

\[
\mathcal{P}(C^{m,2})|_{GL_m \times GL_2} = \sum V_\sigma \otimes \tilde{V}_\sigma,
\]

where \(\sigma \) is a Young diagram with at most 2 rows and \(V_\sigma \) (respectively \(\tilde{V}_\sigma \)) is a \(GL_m \) (respectively \(GL_2 \)) representation indexed by the Young diagram \(\sigma \). The \(O_m \) highest weights in \(V_\sigma \) are those that transform under \(GL_2 \) by a representation of type \(\tilde{V}_\sigma \). The result now follows from the description of the ring of \(O_m \times GL_2 \) highest weights in Theorem 4.2.

4.3. Poincaré Series for Highest Weight Modules of \(Sp_4 \)

Since \(\mathcal{P}(C^{m,2}) \) is the Fock space for the dual pair \((O_m, Sp_4) \) ([3]), we have

\[
\mathcal{P}(C^{m,2}) = \sum_{\tau \in O_m} \tau \otimes W_\tau,
\]

where the \(W_\tau \) are certain highest weight modules (or holomorphic representations) of the metaplectic cover of \(Sp_4 \), denoted by \(\widetilde{Sp}_4 \). (When \(m \) is even, this factors through to give a representation of \(Sp_4 \). Since this technicality will not affect our later discussion of Poincaré series and highest weight vectors, we will ignore this distinction and simply write \(Sp_4 \).) The space \(W_\tau \) admits a grading induced from the usual grading on \(\mathcal{P}(C^{m,2}) \), so it makes sense to define the Poincaré series of \(W_\tau \) as

\[
P_{W_\tau}(t) = \sum \dim V_{(\lambda_1, \lambda_2)} t^{\lambda_1 + \lambda_2},
\]

where the sum is over all \(GL_2 \)-types \(V_{(\lambda_1, \lambda_2)} \) in \(W_\tau \). It is well known ([3]) that all holomorphic representations of \(Sp_4 \) arise through the duality correspondence with some representation of \(O_m \). In the following, we will describe the \(GL_2 \) structures of these representations and compute their Poincaré series.
Proposition 4.5. Let \(\tau \in \mathcal{O}_m \) be defined as
\[
\tau = \begin{cases}
(x, y, 0, \ldots, 0; (-1)^r) & \text{if } m \geq 4, \\
(x; (-1)^r) & \text{if } m = 3 \text{ or } 2, \\
((-1)^r) & \text{if } m = 1.
\end{cases}
\] \hspace{1cm} (4.4)

The representation \(W_\tau \) of \(\text{Sp}_4 \) occurs in the duality correspondence
\[
\mathcal{P}(\mathbb{C}^{m,2}) = \sum_{\tau \in \mathcal{O}_m} \tau \otimes W_\tau
\]
if and only if
\[
\varepsilon = \begin{cases}
(x - y \text{ mod } 2) & \text{if } m \geq 5 \text{ is odd}, \\
0 \text{ mod } 2 & \text{if } m \geq 4 \text{ is even}, \\
0 \text{ or } 1 \text{ mod } 2 & \text{if } m = 3 \text{ and } x \neq 0, \\
0 \text{ mod } 2 & \text{if } m = 3 \text{ and } x = 0, \\
0 \text{ mod } 2 & \text{if } m = 2 \text{ and } x \neq 0, \\
0 \text{ or } 1 \text{ mod } 2 & \text{if } m = 2 \text{ and } x = 0, \\
0 \text{ or } 1 \text{ mod } 2 & \text{if } m = 1.
\end{cases}
\] \hspace{1cm} (4.5)

Proof. An important tool here is Howe’s reciprocity formula ([5])
\[
m(V_{(a,b), W_\tau}) = m(\tau, (a, b, 0, \ldots, 0)),
\]
where \(m(V_{(a,b), W_\tau}) \) is the multiplicity of \(V_{(a,b)} \in \text{GL}_2 \) in \(W_\tau \) and \(m(\tau, (a, b, 0, \ldots, 0)) \) is the multiplicity of \(\tau \in \mathcal{O}_m \) in \((a, b, 0, \ldots, 0) \in \text{GL}_m \).
Assume that \(m \geq 4 \) and let \(\tau = (x, y, 0, \ldots, 0; (-1)^r) \in \mathcal{O}_m \). The vector space of \(\mathcal{O}_m \times \text{GL}_2 \) highest weights of fixed \(\mathcal{O}_m \) weight \(\tau \) in \(\mathcal{P}(\mathbb{C}^{m,2}) \) is a \(\mathbb{C}[\gamma_1, \gamma_2] \) module. It is spanned by vectors
\[
\alpha_1^{a_1} \alpha_2^{a_2} \beta_1^{b_1} \beta_2^{b_2} \gamma_1^{c_1} \gamma_2^{c_2},
\]
where \(a_1, a_2, b_1, b_2, c_1, c_2 \) are positive integers satisfying
\[
x = a_1 + a_2 + b_1 + 2b_2, \\
y = a_2,
\]
\[
\varepsilon = \begin{cases}
a_1 + b_1 \text{ mod } 2 & \text{if } m \text{ is odd}, \\
0 \text{ mod } 2 & \text{if } m \text{ is even},
\end{cases}
\] \hspace{1cm} (4.6)
\[
b_1 = 0 \text{ or } 1.
\]
The GL_2-types of W_z are parameterized by $(a, b) \in \overline{GL}_2$ given by
\[
\begin{align*}
a &= a_1 + a_2 + 2b_1 + 2b_2 + 2c_1 + 2c_2, \\
b &= a_2 + b_1 + 2b_2 + 2c_2,
\end{align*}
\]
(4.7)
where $(a_1, a_2, b_1, b_2, c_1, c_2)$ satisfies (4.6). It is easy to see that solutions
$(a_1, a_2, b_1, b_2, c_1, c_2) \in \mathbb{Z}_+^6$ of equations (4.6) and (4.7) exist if and only if
\[
e = a_1 + b_1 = x - y + 2b_2 \equiv x - y \mod 2
\]
if m is odd and $e \equiv 0 \mod 2$ if m is even. The proofs for $m = 3, 2$ or 1 are similar. \[\Box\]

Proposition 4.6. Suppose that $\tau \in \overline{O}_m$ satisfies (4.4) and (4.5) in Proposition 4.5. The Poincaré series of W_z is then
\[
P_{W_z}(t) = \begin{cases}
\frac{(1 + x - y)t^{x+y}}{(1 - t^2)^3} & \text{if } m \geq 4, \\
\frac{(1 + x)t^x}{(1 - t^2)^3} & \text{if } m = 3, x \equiv 0 \mod 2 \text{ and } e \equiv 0 \mod 2, \\
\frac{xt^{x+1}}{(1 - t^2)^3} & \text{if } m = 3, x \equiv 1 \mod 2 \text{ and } e \equiv 0 \mod 2, \\
\frac{(1 + x)t^x - t^{2x+1}}{(1 - t^2)^3} & \text{if } m = 3, x \equiv 1 \mod 2 \text{ and } e \equiv 1 \mod 2, \\
\frac{(1 + |x| + (1 - |x|)t^2)t^{1+|x|}}{(1 - t^2)^3} & \text{if } m = 2 \text{ and } x \neq 0, \\
\frac{1}{(1 - t^2)^3} & \text{if } m = 2, x = 0 \text{ and } e \equiv 0 \mod 2, \\
\frac{t^2}{(1 - t^2)^3} & \text{if } m = 2, x = 0 \text{ and } e \equiv 1 \mod 2, \\
\frac{1 + t^2}{(1 - t^2)^2} & \text{if } m = 1 \text{ and } e \equiv 0 \mod 2, \\
\frac{2t}{(1 - t^2)^3} & \text{if } m = 1 \text{ and } e \equiv 1 \mod 2.
\end{cases}
\]
Remark. It is known (for \(m \geq 4 \)) that these representations of \(Sp_4 \) are the holomorphic discrete series representations or their limits (\(\mathbb{L} \)), and their \(GL_2 \) structure is simply the tensor product of \(\mathbb{F} = W_0 \) with the lowest \(GL_2 \)-type in \(W_\tau \). Using this fact, the Poincaré series could be derived from knowing the lowest \(GL_2 \)-type. Here we compute the series without appealing to this fact.

Proof. We will give the proof for \(m \geq 4 \). The proof for the remaining cases are similar, so we will leave out the details. If \(m \geq 4 \) and \(\tau = (x, y, 0, \ldots, 0; (-1)^n) \) with \(\epsilon \) as above, then the \(GL_2 \) highest weight vectors of \(W_\tau \) are of the form

\[
\alpha_1^{x-y-2b} \alpha_2^{2b} \beta_2^{y \gamma_1 \gamma_2^c} \quad \text{or} \quad \alpha_1^{x-y-2b-1} \alpha_2^{2b} \beta_1 \beta_2^{y \gamma_1 \gamma_2^c}.
\]

Note that if \(\tau = 0 \) is the trivial representation, then the \(GL_2 \) highest weight vectors of \(W_0 = \mathcal{H}(\mathbb{C}^{m+2})^{O_m} \) are \(\gamma_1 \gamma_2^c \), which is well known. Thus, the Poincaré series for \(W_\tau \) is given by

\[
\sum_{c_1, c_2 \geq 0, x-y \geq 2b, b \geq 0} \dim(V_{(x+2c_1+2c_2, y+2b+2c_2)}) t^{x+y+2b+2c_1+4c_2} \\
+ \sum_{c_1, c_2 \geq 0, x-y \geq 2b+1, b \geq 0} \dim(V_{(x+2c_1+2c_2+1, y+2b+2c_2+1)}) t^{x+y+2b+2c_1+4c_2+2}
\]

\[
= \sum_{c_1, c_2 \geq 0, x-y \geq 2b, b \geq 0} (x-y+2c_1-2b+1)t^{x+y+2b+2c_1+4c_2}
\]

\[
+ \sum_{c_1, c_2 \geq 0, x-y \geq 2b+1, b \geq 0} (x-y+2c_1-2b+1)t^{x+y+2b+2c_1+4c_2+2}
\]

\[
= \sum_{x-y \geq 2b, b \geq 0} \left(\frac{(x-y-2b+1)t^{x+y+2b}}{(1-t^2)(1-t^4)} + \frac{2t^{x+y+2b+2}}{(1-t^2)^2(1-t^4)} \right)
\]

\[
+ \sum_{x-y \geq 2b+1, b \geq 0} \left(\frac{(x-y-2b+1)t^{x+y+2b+2}}{(1-t^2)(1-t^4)} + \frac{2t^{x+y+2b+4}}{(1-t^2)^2(1-t^4)} \right)
\]

\[
= \frac{(x-y+1)t^{x+y}}{(1-t^2)^3}.
\]

\[\square\]

Corollary 4.7. Let \(\tau \in \overline{O}_m \) be defined as in (4.4) and (4.5). Then

the Gelfand–Kirillov dimension of \(W_\tau \) = \[
\begin{cases}
3 & \text{if } m \geq 2, \\
2 & \text{if } m = 1.
\end{cases}
\]
and

the Berenstein degree of \(W \),

\[
\begin{cases}
 x - y + 1 & \text{if } m \geq 4, \\
 x + 1 & \text{if } m = 3, x = 0 \mod 2 \text{ and } \epsilon = 0 \mod 2, \\
 x & \text{for the remaining } m = 3 \text{ cases}, \\
 2 & \text{if } m = 2 \text{ and } x \neq 0, \\
 1 & \text{if } m = 2 \text{ and } x = 0, \\
 2 & \text{if } m = 1.
\end{cases}
\]

Proof. The Gelfand–Kirillov dimension ([17]) can be read from the denominator of the Poincaré series while the Berenstein degree ([17]) is the value of the numerator at \(t = 1 \).

In principle, one could even write down the character of \(W \), and exhibit its global character ([16], [10]).

5. Generators for \(R_{m,3} \)

We have already described \(R_{1,3} \) and \(R_{2,3} \). We proceed to study the case \(n = 3 \) and \(m \geq 6 \). As in the previous section, we use Theorem 3.1 to reduce our study to \(GL_3 \) tensor products of the form

\[
\langle \alpha_1^a \alpha_2^b \alpha_3^c \rangle \otimes \langle \gamma_1^d \gamma_2^e \gamma_3^f \rangle.
\]

Since \(\langle \alpha_3 \rangle \) and \(\langle \gamma_3 \rangle \) each generate a one-dimensional representation of \(GL_3 \), it suffices to study

\[
\langle \alpha_1^a \alpha_2^b \rangle \otimes \langle \gamma_1^d \gamma_2^e \rangle.
\]

Because

\[
\langle \alpha_1^a \alpha_2^b \rangle \otimes \langle \gamma_1^d \gamma_2^e \rangle \rightarrow \langle \alpha_1 \rangle \otimes (\langle \alpha_1^{a-1} \alpha_2^b \rangle \otimes \langle \gamma_1^d \gamma_2^e \rangle)
\]

if \(a \neq 0 \) and

\[
\langle \alpha_1^a \alpha_2^b \rangle \otimes \langle \gamma_1^d \gamma_2^e \rangle \rightarrow \langle \alpha_2 \rangle \otimes (\langle \alpha_1^a \alpha_2^{b-1} \rangle \otimes \langle \gamma_1^d \gamma_2^e \rangle)
\]

if \(b \neq 0 \), we shall first consider decompositions of the \(GL_3 \) modules

\[
\langle \alpha_1 \rangle \otimes V \quad \text{and} \quad \langle \alpha_2 \rangle \otimes V
\]

for an arbitrary irreducible \(GL_3 \) module \(V \).
Let us introduce some notations. Recall our selection of the set of diagonal matrices

$$h_R = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}, \quad d_j \in \mathbb{C}$$

as the Cartan subalgebra in \mathfrak{gl}_3. Define the functionals

$$\epsilon_j \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} = d_j, \quad j = 1, 2, 3.$$

The nonzero roots of \mathfrak{l}_3 are

$$\Delta = \{ \pm (\epsilon_i - \epsilon_j) \mid 1 \leq i < j \leq 3 \},$$

where the root vectors of $\epsilon_i - \epsilon_j$ and $-(\epsilon_i - \epsilon_j)$ are the matrix units E_{ij} and E_{ji}, respectively. These root vectors act on $\mathcal{B}(C^{m,3})$ as R_{ij} described by (1.1). Select a positive system as follows

$$\Theta = \{ \epsilon_1 = \epsilon_3 - \epsilon_2, \epsilon_2 = \epsilon_2 - \epsilon_3 \}.$$

If h is a GL_3 highest weight vector in $\mathcal{B}(C^{m,3})$, we shall denote by $\langle h \rangle$ the GL_3 module generated by h. If V_1 and V_2 are two GL_3 modules in $\mathcal{B}(C^{m,3})$, we have the multiplication map

$$\Phi: V_1 \otimes V_2 \to \mathcal{B}(C^{m,3}),$$

$$\Phi(v_1 \otimes v_2) = v_1 v_2, \quad v_1 \in V_1, v_2 \in V_2.$$

If V_{λ_1} and V_{λ_2} are GL_3 modules of highest weight λ_1 and λ_2, respectively, standard representation theory says that

$$V_{\lambda_1} \otimes V_{\lambda_2} = \sum_{\lambda \in P} m_{\lambda} V_{\lambda_1 + \lambda_2 - \lambda} = \sum_{\lambda \in P} W_{\lambda_1 + \lambda_2 - \lambda},$$

where P is the set of sums of positive roots (including the zero sum), m_λ is the multiplicity of the representation $V_{\lambda_1 + \lambda_2 - \lambda}$ in the tensor product and $W_{\lambda_1 + \lambda_2 - \lambda}$ is the $V_{\lambda_1 + \lambda_2 - \lambda}$-isotypic component. For $\lambda \in P$, let

$$\pi_\lambda: V_{\lambda_1} \otimes V_{\lambda_2} \to W_{\lambda_1 + \lambda_2 - \lambda}$$

be the projection onto the $V_{\lambda_1 + \lambda_2 - \lambda}$-isotypic component, and define another map

$$F_\lambda: V_{\lambda_1} \otimes V_{\lambda_2} \to \Phi(W_{\lambda_1 + \lambda_2 - \lambda}),$$

$$F_\lambda = \Phi \circ \pi_\lambda.$$
The following lemma is straightforward.

Lemma 5.1. Let \(V_1 = \langle v_1 \rangle \) and \(V_2 = \langle v_2 \rangle \) be irreducible \(GL_3 \) modules generated by highest weight vectors \(v_1 \) and \(v_2 \) of weight \((\lambda_1, \lambda_2, \lambda_3)\) and \((\mu_1, \mu_2, \mu_3)\), respectively. We have the following formulae.

(a) \(F_{e_1}^v(v_1 \otimes v_2) = (\lambda_1 - \lambda_2) v_1 (R_{21} v_2) - (\mu_1 - \mu_2) (R_{21} v_1) v_2, \)

(b) \(F_{e_2}^v(v_1 \otimes v_2) = (\lambda_2 - \lambda_3) v_1 (R_{32} v_2) - (\mu_2 - \mu_3) (R_{32} v_1) v_2, \)

(c) \(F_{e_1 + e_2}^v(\alpha_1 \otimes v_1) = \alpha_1 (R_{21} R_{32} v_1) - (\lambda_2 - \lambda_3) \alpha_2 (R_{32} v_1) \)
\[+ (\lambda_1 - \lambda_3 + 1) (R_{21} \alpha_1) (R_{32} v_1) + (\lambda_2 - \lambda_3) \lambda_1 - \lambda_3 + 1) \]
\[(R_{32} \alpha_1) v_1, \]

(d) \(F_{e_1 + e_2}^v(\alpha_2 \otimes v_1) = \alpha_2 (R_{21} R_{32} v_1) - (\lambda_1 - \lambda_2 + 1) \alpha_2 (R_{32} v_1) \)
\[+ (\lambda_1 - \lambda_3 + 1) (R_{21} \alpha_2) (R_{32} v_1) + (\lambda_1 - \lambda_2) \lambda_1 - \lambda_3 + 1) \]
\[(R_{32} \alpha_2) v_1. \]

Proposition 5.2. Let \(V_1 = \langle v_1 \rangle \) and \(V_2 = \langle v_2 \rangle \) be irreducible \(GL_3 \) modules generated by highest weight vectors \(v_1 \) and \(v_2 \) of weight \((\lambda_1, \lambda_2, \lambda_3)\) and \((\mu_1, \mu_2, \mu_3)\), respectively. We have the following formulae.

(a) \(F_{e_1}^v(\alpha_1 \otimes (v_1 v_2)) = v_1 F_{e_1}^v(\alpha_1 \otimes v_2) + v_2 F_{e_1}^v(\alpha_1 \otimes v_1), \)

(b) \(F_{e_2}^v(\alpha_2 \otimes (v_1 v_2)) = v_1 F_{e_2}^v(\alpha_2 \otimes v_2) + v_2 F_{e_2}^v(\alpha_2 \otimes v_1), \)

(c) \(F_{e_1 + e_2}^v(\alpha_1 \otimes (v_1 v_2)) \)
\[= \frac{\left[F_{e_2}(F_{e_1}(\alpha_1 \otimes v_2) \otimes v_1) + (\lambda_2 + \mu_2 - \lambda_3 - \mu_3 + 1) v_1 F_{e_1 + e_2}(\alpha_1 \otimes v_2)\right]}{\left(\mu_2 - \mu_3 + 1\right)} \]
\[+ \frac{\left[F_{e_2}(F_{e_1}(\alpha_1 \otimes v_1) \otimes v_2) + (\lambda_2 + \mu_2 - \lambda_3 - \mu_3 + 1) v_2 F_{e_1 + e_2}(\alpha_1 \otimes v_1)\right]}{\left(\lambda_2 - \lambda_3 + 1\right)}, \]

(d) \(F_{e_1 + e_2}^v(\alpha_2 \otimes (v_1 v_2)) \)
\[= \frac{\left[F_{e_2}(F_{e_1}(\alpha_2 \otimes v_1) \otimes v_2) + (\lambda_1 + \mu_1 - \lambda_2 - \mu_2 + 1) v_2 F_{e_1 + e_2}(\alpha_2 \otimes v_1)\right]}{\left(\mu_1 - \mu_2 + 1\right)} \]
\[+ \frac{\left[F_{e_2}(F_{e_1}(\alpha_2 \otimes v_2) \otimes v_1) + (\lambda_1 + \mu_1 - \lambda_2 - \mu_2 + 1) v_1 F_{e_1 + e_2}(\alpha_2 \otimes v_2)\right]}{\left(\lambda_1 - \lambda_2 + 1\right)}. \]
Proof. The first two formulae follow directly from Lemma 5.1. We shall prove (c) and omit the proof of (d), which is similar.

\[F_{r_1, r_2}(\alpha_1 @ (r'_{12})) \]

\[- \alpha_1((R_{23}v_{12})(R_{32}v_{12}) + v_1(R_{21}R_{32}v_{12}) + (R_{23}R_{32}v_{12})v_2 + (R_{32}v_{12})(R_{23}v_{12})) \]

\[- (\lambda_2 + \mu_2 - \lambda_3 - \mu_3)\alpha_1(v_1(R_{31}v_{12}) + v_2(R_{31}v_{12})) \]

\[- (\lambda_1 + \mu_1 - \lambda_3 - \mu_3 + 1)(R_{21}v_{12})(v_1(R_{31}v_{12}) + v_2(R_{31}v_{12})) \]

\[+ (\lambda_2 + \mu_2 - \lambda_3 - \mu_3)(\lambda_1 + \mu_1 - \lambda_3 - \mu_3 + 1)(R_{31}v_{12})(v_1v_{12}) \]

\[= r_1F_{r_1, r_2}(\alpha_1 @ v_{12}) + r_2F_{r_1, r_2}(\alpha_1 @ v_{12}) \]

\[- (\lambda_2 - \lambda_3)v_1[\alpha_1(R_{31}v_{12}) + (R_{21}v_{12})(R_{31}v_{12}) - (\mu_1 - \mu_3)(R_{31}v_{12})v_{12}] \]

\[- (\mu_1 - \mu_3)v_2[\alpha_1(R_{31}v_{12}) + (R_{21}v_{12})(R_{31}v_{12}) - (\lambda_1 - \lambda_3)(R_{31}v_{12})v_{12}] \]

\[+ F_{r_1}(\alpha_1 @ v_{12})(R_{31}v_{12}) + (R_{31}v_{12})F_{r_1, r_2}(\alpha_1 @ v_{12}) \]

\[- v_1F_{r_1, r_2}(\alpha_1 @ v_{12}) + v_2F_{r_1, r_2}(\alpha_1 @ v_{12}) \]

\[+ \frac{F_{r_1}(\alpha_1 @ v_{12}) @ v_{12}}{(\lambda_2 - \lambda_3 + 1)} + \frac{F_{r_1}(\alpha_1 @ v_{12}) @ v_{12}}{(\mu_2 - \mu_3 + 1)} \]

\[+ \frac{(\lambda_2 - \lambda_3)v_1[\alpha_1(R_{31}R_{21}v_{12}) - (\mu_1 - \mu_3)(R_{31}v_{12})v_{12} - (\mu_1 - \mu_3)(R_{21}v_{12})(R_{31}v_{12})]}{(\mu_2 - \mu_3 + 1)} \]

\[+ \frac{(\mu_2 - \mu_3)v_2[\alpha_1(R_{31}R_{21}v_{12}) - (\lambda_1 - \lambda_3)(R_{31}v_{12})v_{12} - (\lambda_1 - \lambda_3)(R_{21}v_{12})(R_{31}v_{12})]}{(\lambda_2 - \lambda_3 + 1)} \]

\[- (\lambda_2 - \lambda_3)v_1[\alpha_1(R_{31}v_{12}) + (R_{21}v_{12})(R_{31}v_{12}) - (\mu_1 - \mu_3)(R_{31}v_{12})v_{12}] \]

\[- (\mu_1 - \mu_3)v_2[\alpha_1(R_{31}v_{12}) + (R_{21}v_{12})(R_{31}v_{12}) - (\lambda_1 - \lambda_3)(R_{31}v_{12})v_{12}] \]

\[= \frac{F_{r_1}(\alpha_1 @ v_{12}) + (\lambda_2 + \mu_2 - \lambda_3 - \mu_3 + 1)v_1F_{r_1, r_2}(\alpha_1 @ v_{12})}{(\mu_2 - \mu_3 + 1)} \]

\[+ \frac{F_{r_1}(\alpha_1 @ v_{12}) + (\lambda_2 + \mu_2 - \lambda_3 - \mu_3 + 1)v_2F_{r_1, r_2}(\alpha_1 @ v_{12})}{(\lambda_2 - \lambda_3 + 1)}. \]
Define

\[
\beta_1 = \begin{bmatrix}
z_{11} & z_{12} \\
 r_{11}^2 & r_{12}^2
\end{bmatrix},
\beta_2 = \begin{bmatrix}
z_{11} & z_{12} & z_{13} \\
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23}
\end{bmatrix},
\beta_3 = \begin{bmatrix}
z_{11} & z_{12} & z_{13} \\
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23}
\end{bmatrix},
\beta_4 = \begin{bmatrix}
z_{11} & z_{12} & z_{13} \\
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23}
\end{bmatrix}
\]

\[
\beta_5 = \begin{bmatrix}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23}
\end{bmatrix},
\beta_6 = \begin{bmatrix}
z_{11} & z_{12} & z_{13} \\
z_{11} & r_{12} & r_{13} \\
z_{21} & r_{22} & r_{23} \\
r_{11} & r_{12} & r_{13}
\end{bmatrix},
\beta_7 = \begin{bmatrix}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23}
\end{bmatrix},
\beta_8 = \begin{bmatrix}
z_{11} & z_{12} & z_{13} \\
z_{11} & r_{12} & r_{13} \\
z_{21} & r_{22} & r_{23} \\
r_{11} & r_{12} & r_{13}
\end{bmatrix}
\]

The \(O_m \times GL_3 \) weights of the above polynomials are given in Table 1.

Theorem 5.3. If \(m \geq 6 \), the ring of \(O_m \times GL_3 \) highest weight vectors in \(\mathcal{P}(\mathbb{C}^m, 3) \) is generated by

\[\alpha_i, \ i = 1, 2, 3, \quad \beta_j, \ j = 1, \ldots, 9, \quad \gamma_k, \ k = 1, 2, 3.\]

Remarks. Since the Krull dimension of \(R_{m, 3} \) is 9, we expect to find a set of 6 relations generating the ideal of relations. We suspect that the following set of relations is enough.

1. \(\beta_1^2 + \beta_2 \gamma_1 + \alpha_1^2 \gamma_2 = 0, \)
2. \(\beta^2 + \beta_6 \gamma_2 - \beta_2 \gamma_3 = 0, \)
3. \(\beta_3^2 + \alpha_2^2 \gamma_1 \gamma_3 + \beta_3^2 \gamma_2 - \beta_4 \gamma_1 \gamma_2 = 0, \)
TABLE I

\begin{center}
\begin{tabular}{|c|c|}
\hline
SO_{3} weight & GL_{3} weight \\
\hline
σ_{1} & (1, 0, \ldots, 0) \\
σ_{2} & (1, 1, 0, \ldots, 0) \\
σ_{3} & (1, 1, 1, 0, \ldots, 0) \\
γ_{1} & (0, \ldots, 0) \\
γ_{2} & (0, \ldots, 0) \\
γ_{3} & (0, \ldots, 0) \\
β_{1} & (1, 0, \ldots, 0) \\
β_{2} & (1, 0, \ldots, 0) \\
β_{3} & (1, 1, 0, \ldots, 0) \\
β_{4} & (1, 1, 1, 0, \ldots, 0) \\
β_{5} & (2, 0, \ldots, 0) \\
β_{6} & (2, 0, \ldots, 0) \\
β_{7} & (2, 1, 0, \ldots, 0) \\
β_{8} & (2, 2, 0, \ldots, 0) \\
β_{9} & (2, 2, 0, \ldots, 0) \\
\hline
\end{tabular}
\end{center}

(4) \hspace{1cm} \beta_{7}^{2} + \beta_{2} \beta_{9} - \sigma_{3} \beta_{6} = 0,

(5) \hspace{1cm} \beta_{5}^{2} + \sigma_{3} \beta_{6} \gamma_{3} + \beta_{8} \beta_{6} \gamma_{1} - \beta_{3}^{2} \beta_{6} = 0,

(6) \hspace{1cm} \beta_{1} \beta_{3} - \beta_{7} \gamma_{1} - \sigma_{1} \beta_{5} = 0.

These relations were found using the computer algebra programs [1] and [19] and the methods of [14]. In particular, the last relation is a consequence of following identity

\[\begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ y_{11} & y_{12} & y_{13} \end{vmatrix} = y_{11} \begin{vmatrix} 0 & x_{11} & x_{12} & x_{13} \\ 0 & x_{21} & x_{22} & x_{23} \\ x_{11} & y_{11} & y_{12} & y_{13} \\ x_{12} & y_{21} & y_{22} & y_{23} \end{vmatrix} + x_{11} \begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ 0 & y_{11} & y_{12} & y_{13} \\ 0 & y_{21} & y_{22} & y_{23} \end{vmatrix}. \] (5.2)

To prove (5.2), we start with the matrix

\[M = \begin{vmatrix} x_{11} & 0 & 0 & 0 & y_{11} \\ 0 & x_{11} & x_{12} & x_{13} & 0 \\ 0 & x_{21} & x_{22} & x_{23} & 0 \\ 0 & y_{11} & y_{12} & y_{13} & 0 \\ x_{12} & y_{21} & y_{22} & y_{23} & y_{21} \end{vmatrix}. \]
It is easy to see that det M equals the left hand side of (5.2), but if we add the first row to the fourth row before evaluating the determinant of M, we obtain the right hand side of (5.2). (These computations can be carried out using the usual expansions along rows or columns, or by applying the Lewis Carroll identity ([11]) to M.)

Proof. By Proposition 5.2, it suffices to find a set of highest weights S that is closed under F_{e_i} and F_{e_j}, i.e., $x, y \in S$ implies that $F_{e_i}(x \otimes y)$ is generated by elements in S. That the 15 elements listed above satisfy this criterion is shown in Table II. \[\square \]

6. A Subring of the Ring of $O_m \times GL_n$ Highest Weight Vectors

As in previous sections, we assume that $m \geq 2n$. Let $S_{m,n}$ be the following subring of the ring $R_{m,n}$

$$S_{m,n} = \{ f \in R_{m,n} | f(xh) = f(x), \forall h \in SL_n \}$$

$$= \{ f \in \mathcal{P}(C^{m,n}) | f(u^{-1}xh) = f(x), \forall u \in N_L, h \in SL_n \}. \quad (6.1)$$

Clearly, an $O_m \times GL_n$ highest weight vector f is in $S_{m,n}$ only if the corresponding GL_n highest weight is of the form (t, \ldots, t) for $t \in \mathbb{Z}$. Conversely, if f is an $O_m \times GL_n$ highest weight vector with GL_n highest weight (t, \ldots, t), then f generates an irreducible representation of GL_n, which must be a power of the determinant representation, and so f is right SL_n invariant, i.e., $f \in S_{m,n}$.

This ring was studied by Sato in [12]. He found among other things a set of generators of $S_{m,n}$. In this section we will give a different set of generators, which are more in line with the spirit of this article.

Let us write $z_i = (z_{i1}, z_{i2}, \ldots, z_{im})$ and define the following $(n + t) \times (n + t)$ determinant for $1 \leq t \leq (n - 1)$,

$$\delta_t = \begin{vmatrix} 0 & \cdots & 0 & z_{11} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & z_t \\ z_{1i} & \cdots & z_{ti} & \gamma \end{vmatrix} \quad (6.2)$$
TABLE II

<table>
<thead>
<tr>
<th></th>
<th>α_1</th>
<th>α_2</th>
<th>γ_1</th>
<th>γ_2</th>
<th>β_1</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
<th>β_5</th>
<th>β_6</th>
<th>β_7</th>
<th>β_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>*</td>
<td>—</td>
<td>β_1</td>
<td>—</td>
<td>β_2</td>
<td>—</td>
<td>β_7</td>
<td>—</td>
<td>$\alpha_1\beta_4$</td>
<td>—</td>
<td>$\alpha_1\beta_6$</td>
<td>—</td>
</tr>
<tr>
<td>α_2</td>
<td>—</td>
<td>*</td>
<td>—</td>
</tr>
<tr>
<td>γ_1</td>
<td>—</td>
</tr>
<tr>
<td>γ_2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2$\alpha_1\gamma_2$</td>
<td>—</td>
<td>2β_5</td>
<td>—</td>
<td>2$\beta_5\gamma_2$</td>
<td>—</td>
<td>2$\alpha_1\alpha_2\gamma_3 - 2\beta_3\beta_4$</td>
<td>—</td>
</tr>
<tr>
<td>β_1</td>
<td>$\alpha_1\beta_3$</td>
<td>—</td>
<td>$\beta_4\gamma_3$</td>
<td>—</td>
<td>2$\alpha_4\beta_2$</td>
<td>—</td>
<td>2$\alpha_4\beta_4$</td>
<td>—</td>
<td>2$\alpha_4\beta_5$</td>
<td>—</td>
<td>2$\alpha_4\beta_7$</td>
<td>—</td>
</tr>
<tr>
<td>β_2</td>
<td>$\alpha_1\beta_7$</td>
<td>—</td>
<td>$-\beta_1\beta_4$</td>
<td>2$\alpha_4\beta_2$</td>
<td>2$\alpha_4\beta_4$</td>
<td>2$\alpha_4\beta_6$</td>
<td>2$\alpha_4\beta_8$</td>
<td>—</td>
<td>2$\alpha_4\beta_7$</td>
<td>—</td>
<td>2$\alpha_4\beta_7$</td>
<td>—</td>
</tr>
<tr>
<td>β_3</td>
<td>—</td>
</tr>
<tr>
<td>β_4</td>
<td>—</td>
<td>β_9</td>
<td>—</td>
</tr>
<tr>
<td>β_5</td>
<td>$\beta_5\gamma_3 - \beta_3^3$</td>
<td>—</td>
<td>$\alpha_1\gamma_3 + \beta_6\gamma_1$</td>
<td>$-\beta_1\beta_6$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>β_7</td>
<td>$\alpha_1\beta_9$</td>
<td>$\alpha_1\beta_8$</td>
<td>$-\alpha_1\beta_8$</td>
<td>$-\alpha_1\beta_8$</td>
<td>$-\alpha_1\beta_8$</td>
<td>$-\alpha_1\beta_8$</td>
<td>$-\alpha_1\beta_8$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>β_8</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. Let $i < j$. The (j, i) (respectively (i, j)) entry is the image of the map F_{γ} (respectively F_{α_i}) of the tensor product of the ith entry of the first column with the jth entry of the first row. Note that $F_i(v \otimes v) = 0$ for all highest weight vectors v and $i = 1, 2$. $-$ or $*$ means that the entry is 0.
where
\[\tilde{\gamma} = \begin{bmatrix} r_{11}^2 & r_{12}^2 & \cdots & r_{1n}^2 \\ r_{11} & r_{12} & \cdots & r_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n1}^2 & r_{n2}^2 & \cdots & r_{nn}^2 \end{bmatrix}. \]

It is easy to see that \(\delta_i \) is an \(O_m \times GL_n \) highest weight vectors of weight
\[\left(2, \ldots, 2, 0, \ldots, 0; 1 \right) \otimes \left(2, \ldots, 2 \right), \]
\(t \) copies \(\otimes \) \(n \) copies (6.3)

We observe that \(\gamma_n, \delta_1, \ldots, \delta_{n-1}, \alpha_n \) are all in \(S_{m,n} \) (see (3.7) and (3.8) for the definitions of \(\alpha_n \) and \(\gamma_n \)). Define
\[P_0 = \gamma_n, \]
\[P_t = \delta_t, \quad 1 \leq t \leq n - 2, \]
\[P_{n-1} = \begin{cases} \delta_{n-1} & \text{if } m > 2n, \\ \delta_{n-1} / \alpha_n & \text{if } m = 2n, \end{cases} \] (6.4)
\[P_n = \alpha_n. \]

Adapting the proof of the similar theorem in [12], we have the following.

Theorem 6.1. If \(m \geq 2n \), the ring \(S_{m,n} \) is freely generated by \(P_0, \ldots, P_n \).

References

[1] D. Bayer and M. Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for Unix and Macintosh computers. Contact the authors, or download from zariski.harvard.edu via anonymous ftp.

