CONGRUENCES SATISFIED BY APÉRY-LIKE NUMBERS

HENG HUAT CHAN∗, SHAUN COOPER† and FRANCESCO SICA‡

∗Department of Mathematics, National University of Singapore
Block S17, 10, Lower Kent Ridge Road, 119076 Singapore
matchh@nus.edu.sg

†Institute of Information and Mathematical Sciences
Massey University, Private Bag 102904
North Shore Mail Centre, Auckland, New Zealand
s.cooper@massey.ac.nz

‡Mathematics and Computer Science, Mount Allison University
67 York Street, Sackville, NB, E4L 1E6, Canada
fsica@mta.ca

Received 12 May 2008
Accepted 16 June 2008

In this article, we investigate congruences satisfied by Apéry-like numbers.

Keywords: Apéry numbers; congruence; modular form.

Mathematics Subject Classification 2010: 11B83, 11A07

1. Introduction: Apéry Numbers

In his proof of the irrationality of $\zeta(3)$, R. Apéry introduced the numbers

$$\alpha_n = \sum_{j=0}^{n} \binom{n}{j}^2 \binom{n+j}{j}^2, \quad n \in \mathbb{N}.$$

These numbers are now known as the Apéry numbers. Since the appearance of Apéry’s work, properties of α_n were gradually discovered. One of these is the observation that for primes $p \geq 5$,

$$\alpha_p \equiv \alpha_1 \pmod{p^3}. \quad (1.1)$$

The congruence (1.1) was conjectured by Chowla et al. [6] and proved by Gessel [7], who established the stronger result

$$\alpha_{pn} \equiv \alpha_n \pmod{p^3}. \quad (1.2)$$

In this article, we investigate other sequences of integers $\{f_n\}_{n=1}^{\infty}$ that satisfy relations similar to (1.2).
Let
\[\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \]
where \(q = \exp(2\pi i \tau) \) and \(\Im(\tau) > 0 \). It can be shown [10] that if
\[t_1(\tau) = \left(\frac{\eta(6\tau)\eta(\tau)}{\eta(2\tau)\eta(3\tau)} \right)^{12} \]
and \(F_1(\tau) = \frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} \),
then
\[F_1(\tau) = \sum_{n=0}^{\infty} \alpha_n t_1^n(\tau) \quad (1.3) \]
for suitably small \(|t_1(\tau)| \). The identification of \(\alpha_n \) as the coefficients of certain power series serves as a starting point for us in our search of other sequences \(\{f_n\}_{n=1}^{\infty} \) satisfying congruences similar to (1.2).

2. The Domb Numbers

Consider the functions
\[t_2(\tau) = \left(\frac{\eta(2\tau)\eta(6\tau)}{\eta(\tau)\eta(3\tau)} \right)^6 \]
and \(F_2(\tau) = \frac{(\eta(\tau)\eta(3\tau))^4}{(\eta(2\tau)\eta(6\tau))^2} \).

It can be shown [2, (4.14)] that when \(|t_2(\tau)| \) is sufficiently small, we have
\[F_2(\tau) = \sum_{n=0}^{\infty} (-1)^n \beta_n t_2^n(\tau) \quad (2.1) \]
where
\[\beta_n = \sum_{j=0}^{n} \binom{n}{j}^2 \binom{2j}{j} \binom{2(n-j)}{n-j}. \]

The sequence \(\{\beta_n\}_{n=1}^{\infty} \) turns out to satisfy the congruence

Theorem 2.1. For primes \(p \geq 5 \),
\[\beta_{pn} \equiv \beta_n \quad (\text{mod } p^3). \]

Proof. The method of proof given here is due to Gessel [7]. For a prime \(p \geq 5 \), we find that
\[\beta_{pn} = \sum_{j=0}^{pn} \binom{pn}{j}^2 \binom{2j}{j} \binom{2(pm-j)}{pm-j} \]
\[= S_1 + S_2, \quad (2.2) \]
where
\[S_1 = \sum_{j=0}^{n} \binom{pn}{pj}^2 \binom{2pj}{pj} \binom{2(pn-j)}{p(n-j)} \]
and

\[S_2 = \sum_{k=1}^{p-1} \sum_{m=0}^{n-1} \binom{pn}{k + pm}^2 \binom{2(k + pm)}{k + pm} \binom{2(pm - k - pm)}{pm - k - pm}. \]

Now,

\[S_1 \equiv \sum_{j=0}^{n} \binom{n}{j}^2 \binom{2j}{j} \binom{2(n - j)}{n - j} \pmod{p^3} \]

since [8]

\[\binom{pa}{pb} \equiv \binom{a}{b} \pmod{p^3} \quad \text{for primes } p \geq 5. \] (2.3)

Therefore,

\[S_1 \equiv \beta_n \pmod{p^3}. \] (2.4)

For \(0 < k < p\), we have [7]

\[\binom{pm}{k + pm} \equiv (-1)^k \binom{pm}{k} \binom{n - 1}{m} \pmod{p^3}. \]

Hence,

\[S_2 \equiv \sum_{k=1}^{p-1} \sum_{m=0}^{n-1} \binom{n-1}{m}^2 \binom{2k + 2pm}{k + pm} \binom{2(pm - k - pm)}{pm - k - pm} \pmod{p^3}. \] (2.5)

In order to prove that

\[S_2 \equiv 0 \pmod{p^3}, \]

it suffices to show that

\[\sum_{k=1}^{p-1} \sum_{m=0}^{n-1} \binom{n-1}{m}^2 \binom{2k + 2pm}{k + pm} \binom{2(pm - k - pm)}{pm - k - pm} \equiv 0 \pmod{p}. \] (2.6)

By Lucas’ congruence [9],

\[\binom{a + pb}{c + pd} \equiv \binom{a}{c} \binom{b}{d} \pmod{p}. \] (2.7)

Hence, we deduce that

\[\sum_{k=1}^{p-1} \sum_{m=0}^{n-1} \binom{n-1}{m}^2 \binom{2k + 2pm}{k + pm} \binom{2(pm - k - pm)}{pm - k - pm} \]

\[= \sum_{k=1}^{p-1} \sum_{m=0}^{n} \binom{n-1}{m-1}^2 \binom{2k + 2p(m - 1)}{k + p(m - 1)} \binom{2(pm - k - p(m - 1))}{pm - k - p(m - 1)} \]

\[\equiv \sum_{k=1}^{p-1} \sum_{m=1}^{n} \binom{n-1}{m-1}^2 \binom{2k}{k} \binom{2(m - 1)}{m - 1} \binom{2(n - m)}{n - m} \binom{2(p - k)}{p - k} \pmod{p}. \]
But for $1 \leq k \leq p - 1$,

$$p \mid \binom{2k}{k} \quad \text{or} \quad p \mid \binom{2(p - k)}{p - k}.$$

Hence,

$$\binom{2k}{k} \binom{2(p - k)}{p - k} \equiv 0 \pmod{p},$$

and we deduce (2.6).

A simple corollary of Theorem 2.1 is that

$$\beta_p \equiv \beta_1 \equiv 4 \pmod{p^3}$$

for all prime numbers $p > 3$.

3. Almkvist–Zudilin Sequence

The study of the sequence $\{\beta_n\}_{n=1}^{\infty}$ is inspired by the fact that α_n appears as the coefficients of the power series given by (1.3). As we have seen above, β_n are coefficients of the power series given by (2.1). There is a third sequence that behaves similarly to both α_n and β_n. To motivate our discovery of this third sequence, we observe that F_1 and F_2 are modular forms associated with $\Gamma_0(6)_{+6}$ and $\Gamma_0(6)_{+3}$ respectively. Naturally, one would expect to have a third sequence arising from $\Gamma_0(6)_{+2}$. Indeed, in [5] it was shown that if

$$t_3(\tau) = \left(\frac{\eta(3\tau)\eta(6\tau)}{\eta(\tau)\eta(2\tau)} \right)^4 \quad \text{and} \quad F_3(\tau) = \frac{(\eta(\tau)\eta(2\tau))^3}{\eta(3\tau)\eta(6\tau)},$$

and $|t_3(\tau)|$ is sufficiently small, then

$$F_3(\tau) = \sum_{n=0}^{\infty} (-1)^n \gamma_n t_3^n(\tau),$$

where γ_n are the Almkvist–Zudilin numbers [1], given by

$$\gamma_n = \sum_{j=0}^{\lfloor n/3 \rfloor} (-1)^j 3^{n-3j}(3j)! \binom{n}{j} \binom{n+j}{j}. \quad (3.1)$$

The numbers γ_n appear to satisfy the congruence

Conjecture 3.1.

$$\gamma_{pn} \equiv \gamma_n \pmod{p^3}$$

for all primes $p > 3$.

We have been unable to give a proof of Conjecture 3.1 as Gessel’s method does not seem to work in this case.
4. Yang–Zudilin Sequence

For positive integers k and n, let

$$y_{k,n} = \sum_{j=0}^{n} \binom{n}{j}^k.$$

Around 2003, Zudilin realized that $y_{4,n}$ is associated with a certain modular form and modular function as in the case for the Apéry numbers, Domb numbers and the Almkvist–Zudilin numbers. This form and function were eventually obtained by Yang [11] (see [4] for the explicit forms of the form and function).

In this section, we will deduce that for primes $p \geq 7$,

$$y_{4,p} \equiv y_{4,1} \equiv 2 \pmod{p^5}$$

by showing the following more general result:

Theorem 4.1. Suppose k is even, and $p > 3$ is a prime number for which $p-1 \nmid k$. Then

$$y_{k,p} \equiv 2 \pmod{p^{k+1}}.$$

Proof. Observe that

$$p \bigg| \binom{p}{j} \quad \text{for} \quad 1 \leq j \leq p-1.$$

Hence it suffices to show that

$$p \bigg| \sum_{j=1}^{p-1} \left(\frac{(p-1)!}{j!(p-j)!} \right)^k. \quad (4.1)$$

Now

$$\frac{(p-1)!}{j!(p-j)!} = \frac{1}{j} \prod_{i=1}^{p-j} \frac{p-i}{i} \equiv \frac{1}{j} (-1)^{p-j} \pmod{p}. $$

Thus, since k is even,

$$\sum_{j=1}^{p-1} \left(\frac{(p-1)!}{j!(p-j)!} \right)^k \equiv \sum_{j=1}^{p-1} \frac{1}{j^k} \equiv \sum_{j=1}^{p-1} j^k \pmod{p}. \quad (4.2)$$

But

$$\sum_{j=1}^{p-1} j^k \equiv \begin{cases} 0 & \text{if } p-1 \nmid k, \\ -1 & \text{if } p-1 \mid k. \end{cases} \quad (4.3)$$

By hypothesis $p-1 \mid k$, therefore (4.1) follows from (4.2) and (4.3). This completes the proof.

Theorem 4.1 does not have a generalization modulo p^{k+1} similar to Theorem 2.1. However, we have the following result:

Theorem 4.2. Let $p > 3$ be prime and let $k > 1$ be an integer. Then

$$y_{k,pn} \equiv y_{k,n} \pmod{p^3}.$$
Proof. When \(k = 2 \) we have

\[
y_{2,n} = \sum_{j=0}^{n} \binom{n}{j}^2 = \binom{2n}{n},
\]

so

\[
y_{2,pn} = \binom{2pn}{pn} \equiv \binom{2n}{n} \equiv y_{2,n} \pmod{p^3}
\]

by (2.3). This establishes the result for \(k = 2 \). For the remainder of the proof, suppose \(k \geq 3 \) and write

\[
y_{pn} = \sum_{j=0}^{pn} \binom{pn}{j}^k = T_1 + T_2,
\]

where

\[
T_1 = \sum_{j=0}^{n} \binom{pn}{jp}^k,
\]

and

\[
T_2 = \sum_{j=1}^{p-1} \sum_{m=0}^{n-1} \binom{pn}{j + pm}^k.
\]

Using (2.3), we deduce

\[
T_1 \equiv y_n \pmod{p^3}.
\]

Next, we rewrite \(T_2 \) as

\[
T_2 = \sum_{j=1}^{p-1} \sum_{m=0}^{n-1} \left(\binom{pn}{j + pm}^k \right) = \sum_{j=1}^{p-1} \sum_{m=0}^{n-1} \left(\binom{p + p(n - 1)}{j + pm}^k \right).
\]

By (2.7), we find that

\[
\binom{p + p(n - 1)}{j + pm} \equiv \binom{n - 1}{m} \binom{p}{j} \equiv 0 \pmod{p}.
\]

This implies that for \(k \geq 3 \) and \(1 \leq j \leq p - 1 \),

\[
\binom{p + p(n - 1)}{j + pm}^k \equiv 0 \pmod{p^3}.
\]

Substituting (4.5) into (4.4), we conclude that

\[
T_2 \equiv 0 \pmod{p^3}
\]

and this completes the proof of Theorem 4.2.

5. Other Sequences

We hope that we have illustrated that sequences arising from the study of modular forms serve as a good source of numbers satisfying interesting congruences modulo
certain power of primes. We end this article with a series of conjectures associated with various modular forms. The letter \(p \) always denotes a prime number.

Conjecture 5.1. If

\[
z_2 = \sum_{m=\infty}^{\infty} \sum_{n=\infty}^{\infty} q^{m^2+n^2} \quad \text{and} \quad x_2 = \frac{\eta^{12}(2\tau)}{x_2^6}
\]

and

\[
z_2 = \sum_{n=0}^{\infty} f_{2,n} x_2^n,
\]

then

\[f_{2,pn} \equiv f_{2,n} \pmod{p^2} \quad \text{when} \quad p \equiv 1 \pmod{4}.
\]

Conjecture 5.2. If

\[
z_3 = \sum_{m=\infty}^{\infty} \sum_{n=\infty}^{\infty} q^{m^2+mn+n^2} \quad \text{and} \quad x_3 = \frac{\eta^6(\tau)\eta^6(3\tau)}{z_3^6}
\]

and

\[
z_3 = \sum_{n=0}^{\infty} f_{3,n} x_3^n,
\]

then

\[f_{3,pn} \equiv f_{3,n} \pmod{p^2} \quad \text{when} \quad \left(\frac{p}{3}\right) = 1.
\]

Conjecture 5.3. If

\[
z_5 = \frac{\eta^5(\tau)}{\eta(5\tau)} \quad \text{and} \quad x_5 = \frac{\eta^5(5\tau)}{\eta^5(\tau)}
\]

and

\[
z_5 = \sum_{n=0}^{\infty} f_{5,n} x_5^n,
\]

then

\[f_{5,pn} \equiv f_{5,n} \pmod{p^3} \quad \text{for all primes} \quad p, \quad \text{including} \quad p = 2.
\]

Conjecture 5.4. If

\[
z_7 = \sum_{m=\infty}^{\infty} \sum_{n=\infty}^{\infty} q^{m^2+mn+2n^2} \quad \text{and} \quad x_7 = \frac{\eta^3(\tau)\eta^3(7\tau)}{z_7^3}
\]

and

\[
z_7 = \sum_{n=0}^{\infty} f_{7,n} x_7^n,
\]

then

\[f_{7,pn} \equiv f_{7,n} \pmod{p^3} \quad \text{when} \quad \left(\frac{p}{7}\right) = 1.
\]
Conjecture 5.5. If
\[z_{11} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+3n^2} \quad \text{and} \quad x_{11} = \frac{\eta^2(\tau)\eta^2(11\tau)}{z_{11}^2} \]
and
\[z_{11} = \sum_{n=0}^{\infty} f_{11,n} x_{11}^n, \]
then
\[f_{11,pn} \equiv f_{11,n} \pmod{p^2} \quad \text{when} \quad \left(\frac{p}{11} \right) = 1. \]

Conjecture 5.6. If
\[z_{23} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+mn+6n^2} \quad \text{and} \quad x_{23} = \frac{\eta(\tau)\eta(23\tau)}{z_{23}} \]
and
\[z_{23} = \sum_{n=0}^{\infty} f_{23,n} x_{23}^n, \]
then
\[f_{23,pn} \equiv f_{23,n} \pmod{p} \quad \text{when} \quad \left(\frac{p}{23} \right) = 1. \]

Conjecture 5.7. If
\[Z_{23} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{2m^2+mn+3n^2} \quad \text{and} \quad X_{23} = \frac{\eta(\tau)\eta(23\tau)}{Z_{23}} \]
and
\[Z_{23} = \sum_{n=0}^{\infty} F_{23,n} X_{23}^n, \]
then
\[F_{23,pn} \equiv F_{23,n} \pmod{p} \quad \text{when} \quad \left(\frac{p}{23} \right) = 1. \]

Remarks. One can verify that
\[f_{2,n} = 64^n \frac{(\frac{1}{3})_n^2}{(n!)^2} \quad \text{and} \quad f_{3,n} = 108^n \frac{(\frac{1}{7})_n (\frac{1}{7})_n}{(n!)^2}, \]
where \((a)_k = a(a+1)(a+2) \cdots (a+k-1) \). There are no known closed forms for \(f_{r,n} \) for \(r = 5, 7, 11 \) and 23 but they satisfy certain recurrence relations. The functions \(z_r \) and \(x_r \), for \(r = 3, 7, 11 \) and 23, were studied in [3].
Acknowledgments

We thank W. Zudilin for correcting the proof of Theorem 4.2 given in an earlier version of this article. The first author is supported by National University of Singapore Academic Research Fund R-146-000-103-112.

References

