Π¹₁ Conservation of COH Over $BΣ₂$

(Joint work with Ted Slaman and Yue Yang)

C T Chong

National University of Singapore

chongct@math.nus.edu.sg

8 December 2008
Fix $\mathcal{M} = \langle M, X, +, \cdot, 0, 1 \rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.

- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an M-finite set onto an M-finite set.

Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$

- We take as base theory RCA$_0$ (Recursive Comprehension Axiom plus $I\Sigma_1$).
Fix $\mathcal{M} = \langle M, X, +, \cdot, 0, 1 \rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.

- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an M-finite set onto an M-finite set.

- Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$

- We take as base theory RCA$_0$ (Recursive Comprehension Axiom plus $I\Sigma_1$).
Fix $\mathcal{M} = \langle M, X, +, \cdot, 0, 1 \rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.

- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an M-finite set onto an M-finite set.

Kirby-Paris: $\cdots \to I\Sigma_{n+1} \to B\Sigma_{n+1} \to I\Sigma_n \to \cdots$

- We take as base theory RCA$_0$ (Recursive Comprehension Axiom plus $I\Sigma_1$).
Hierarchy of the Induction Scheme

Fix $\mathcal{M} = \langle M, X, +, \cdot, 0, 1 \rangle$ to be a structure in the language of second order arithmetic. $X \subseteq M$ is M-finite if it is coded in M. Fix $n \geq 1$.

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.

- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an M-finite set onto an M-finite set.

- Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$

- We take as base theory RCA$_0$ (Recursive Comprehension Axiom plus $I\Sigma_1$).
Fix $\mathcal{M} = \langle M, X, +, \cdot, 0, 1 \rangle$ to be a structure in the language of second order arithmetic. $X \subset M$ is M-finite if it is coded in M. Fix $n \geq 1$.

- $\mathcal{M} \models I\Sigma_n$ (Σ_n induction) if it satisfies every Σ_n instance (with parameters in \mathcal{M}) of the induction scheme.

- $\mathcal{M} \models B\Sigma_n$ (Σ_n bounding) if every Σ_n definable function maps an M-finite set onto an M-finite set.

- Kirby-Paris: $\cdots \rightarrow I\Sigma_{n+1} \rightarrow B\Sigma_{n+1} \rightarrow I\Sigma_n \rightarrow \cdots$

- We take as base theory RCA$_0$ (Recursive Comprehension Axiom plus $I\Sigma_1$).
The Combinatorial Principle COH

Definition

Let $R \in \mathbb{X}$ and $R_s = \{ t | (s, t) \in R \}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \bar{R}_s$ is M-finite.

COH: $M \models \text{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.

An M-extension of M is a structure $M^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1 \rangle$ such that $M = M^*$ and $\mathbb{X} \subseteq \mathbb{X}^*$.

Theorem

(Cholak, Jockusch and Slaman) Let $n = 1, 2$. Every countable $M \models \text{RCA}_0 + I\Sigma_n$ has an M-extension $M^* \models \text{RCA}_0 + \text{COH} + I\Sigma_n$.
The Combinatorial Principle COH

Definition

Let $R \in \mathbb{X}$ and $R_s = \{ t \mid (s, t) \in R \}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \bar{R}_s$ is M-finite.

COH: $\mathcal{M} \models \text{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.

An M-extension of \mathcal{M} is a structure $\mathcal{M}^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1 \rangle$ such that $M = M^*$ and $\mathbb{X} \subseteq \mathbb{X}^*$.

Theorem

(Cholak, Jockusch and Slaman) Let $n = 1, 2$. Every countable $\mathcal{M} \models \text{RCA}_0 + \text{I} \Sigma_n$ has an M-extension $\mathcal{M}^* \models \text{RCA}_0 + \text{COH} + \text{I} \Sigma_n$.
The Combinatorial Principle COH

Definition

Let \(R \in X \) and \(R_s = \{ t \mid (s, t) \in R \} \). \(C \subset M \) is cohesive for \(R \) if for all \(s \), either \(C \cap R_s \) is \(M \)-finite or \(C \cap \bar{R}_s \) is \(M \)-finite.

COH: \(\mathcal{M} \models \text{COH} \) if for all \(R \in X \), there is a \(C \in X \) that is cohesive for \(R \).

An \(M \)-extension of \(\mathcal{M} \) is a structure \(\mathcal{M}^* = \langle M^*, X^*, +, \cdot, 0, 1 \rangle \) such that \(M = M^* \) and \(X \subseteq X^* \).

Theorem

(Cholak, Jockusch and Slaman) Let \(n = 1, 2 \). Every countable \(\mathcal{M} \models \text{RCA}_0 + \text{I}\Sigma_n \) has an \(M \)-extension \(\mathcal{M}^* \models \text{RCA}_0 + \text{COH} + \text{I}\Sigma_n \).
The Combinatorial Principle COH

Definition

Let $R \in \mathbb{X}$ and $R_s = \{ t | (s, t) \in R \}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \bar{R}_s$ is M-finite.

COH: $\mathcal{M} \models \text{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.

An M-extension of \mathcal{M} is a structure $\mathcal{M}^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1 \rangle$ such that $M = M^*$ and $\mathbb{X} \subset \mathbb{X}^*$.

Theorem

(Cholak, Jockusch and Slaman) Let $n = 1, 2$. Every countable $\mathcal{M} \models \text{RCA}_0 + \text{I} \Sigma_n$ has an M-extension $\mathcal{M}^* \models \text{RCA}_0 + \text{COH} + \text{I} \Sigma_n$.
The Combinatorial Principle COH

Definition

Let $R \in \mathbb{X}$ and $R_s = \{ t | (s, t) \in R \}$. $C \subset M$ is cohesive for R if for all s, either $C \cap R_s$ is M-finite or $C \cap \overline{R}_s$ is M-finite.

COH: $\mathcal{M} \models \text{COH}$ if for all $R \in \mathbb{X}$, there is a $C \in \mathbb{X}$ that is cohesive for R.

An M-extension of \mathcal{M} is a structure $\mathcal{M}^* = \langle M^*, \mathbb{X}^*, +, \cdot, 0, 1 \rangle$ such that $M = M^*$ and $\mathbb{X} \subseteq \mathbb{X}^*$.

Theorem

(Cholak, Jockusch and Slaman) *Let $n = 1, 2$. Every countable* $\mathcal{M} \models \text{RCA}_0 + \text{I} \Sigma_n$ *has an M-extension* $\mathcal{M}^* \models \text{RCA}_0 + \text{COH} + \text{I} \Sigma_n$.
COH and $B\Sigma_2$

Corollary

$COH + RCA_0 + I\Sigma_n$ is Π^1_1 conservative over $RCA_0 + I\Sigma_n$, i.e. if φ is Π^1_1 and $RCA_0 + COH + I\Sigma_n \vdash \varphi$, then $RCA_0 + I\Sigma_n \vdash \varphi$.

Theorem

Every countable $\mathcal{M} \models RCA_0 + B\Sigma_2$ has an \mathcal{M}-extension $\mathcal{M}^* \models RCA_0 + COH + B\Sigma_2$.

Corollary

$COH + RCA_0 + B\Sigma_2$ is Π^1_1 conservative over $RCA_0 + B\Sigma_2$.
Corollary

\[\text{COH} + \text{RCA}_0 + I\Sigma_n \text{ is } \Pi^1_1 \text{ conservative over } \text{RCA}_0 + I\Sigma_n, \text{ i.e. if } \varphi \text{ is } \Pi^1_1 \text{ and } \text{RCA}_0 + \text{COH} + I\Sigma_n \vdash \varphi, \text{ then } \text{RCA}_0 + I\Sigma_n \vdash \varphi. \]

Theorem

Every countable \(\mathcal{M} \models \text{RCA}_0 + B\Sigma_2 \) has an \(\mathcal{M} \)-extension \(\mathcal{M}^* \models \text{RCA}_0 + \text{COH} + B\Sigma_2 \).

Corollary

\[\text{COH} + \text{RCA}_0 + B\Sigma_2 \text{ is } \Pi^1_1 \text{ conservative over } \text{RCA}_0 + B\Sigma_2. \]
COH and $B\Sigma_2$

Corollary

$COH + RCA_0 + I\Sigma_n$ is Π^1_1 conservative over $RCA_0 + I\Sigma_n$, i.e. if φ is Π^1_1 and $RCA_0 + COH + I\Sigma_n \vdash \varphi$, then $RCA_0 + I\Sigma_n \vdash \varphi$.

Theorem

Every countable $\mathcal{M} \models RCA_0 + B\Sigma_2$ *has an \mathcal{M}-extension* $\mathcal{M}^* \models RCA_0 + COH + B\Sigma_2$.

Corollary

$COH + RCA_0 + B\Sigma_2$ is Π^1_1 conservative over $RCA_0 + B\Sigma_2$.
Theorem

Every countable $\mathcal{M} \models RCA_0 + B\Sigma_2$ has an \mathcal{M}-extension $\mathcal{M}^* \models RCA_0 + COH + B\Sigma_2$.

Corollary

$COH + RCA_0 + B\Sigma_2$ is Π^1_1 conservative over $RCA_0 + B\Sigma_2$.

Corollary

$COH + RCA_0 + I\Sigma_n$ is Π^1_1 conservative over $RCA_0 + I\Sigma_n$, i.e. if φ is Π^1_1 and $RCA_0 + COH + I\Sigma_n \vdash \varphi$, then $RCA_0 + I\Sigma_n \vdash \varphi$.

Corollary

$COH + RCA_0 + B\Sigma_2$ is Π^1_1 conservative over $RCA_0 + B\Sigma_2$.

COH and $B\Sigma_2$
An M-extension Theorem

Let $\mathcal{M} \models RCA_0 + B\Sigma_2$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^* = \mathcal{M}[G] \models RCA_0 + B\Sigma_2$ such that G is cohesive for R.

This is established using a two stage forcing construction.
An M-extension Theorem

Theorem

Let $\mathcal{M} \models RCA_0 + B\Sigma_2$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^* = \mathcal{M}[G] \models RCA_0 + B\Sigma_2$ such that G is cohesive for R.

This is established using a two stage forcing construction.
An M-extension Theorem

Theorem

Let $\mathcal{M} \models RCA_0 + B\Sigma_2$ be countable. If $R \in \mathbb{X}$, then \mathcal{M} has an M-extension $\mathcal{M}^* = \mathcal{M}[G] \models RCA_0 + B\Sigma_2$ such that G is cohesive for R.

This is established using a two stage forcing construction.
Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL$_1$ relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in M and $g : I \rightarrow M$ be Σ_2, increasing and cofinal.

Build a uniformly R'-recursive nested sequence $\{C_i | i \in I\}$ of M-infinite R-recursive trees such that for all $i \in I$:

(i) $C_i \supset C_{i+1}$
(ii) Every unbounded path on C_i is cohesive for R_s, $s < g(i)$
(iii) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, $s < g(i)$, where φ_s is Δ_0
(iv) $T = \bigcap C_i$.

A Two-Stage Construction for M-Extension
A Two-Stage Construction for M-Extension

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL$_1$ relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in M and $g : I \to M$ be Σ_2, increasing and cofinal.

Build a uniformly R'-recursive nested sequence $\{C_i | i \in I\}$ of M-infinite R-recursive trees such that for all $i \in I$:

(i) $C_i \supset C_{i+1}$
(ii) Every unbounded path on C_i is cohesive for R_s, $s < g(i)$
(iii) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, $s < g(i)$, where φ_s is Δ_0
(iv) $T = \bigcap C_i$.
A Two-Stage Construction for M-Extension

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in M and $g : I \rightarrow M$ be Σ_2, increasing and cofinal.

Build a uniformly R'-recursive nested sequence $\{C_i|i \in I\}$ of M-infinite R-recursive trees such that for all $i \in I$:

(i) $C_i \supset C_{i+1}$

(ii) Every unbounded path on C_i is cohesive for R_s, $s < g(i)$

(iii) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, $s < g(i)$, where φ_s is Δ_0

(iv) $T = \bigcap C_i$.
Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in M and $g : I \rightarrow M$ be Σ_2, increasing and cofinal.

Build a uniformly R'-recursive nested sequence $\{C_i|i \in I\}$ of M-infinite R-recursive trees such that for all $i \in I$:

(i) $C_i \supset C_{i+1}$
(ii) Every unbounded path on C_i is cohesive for R_s, $s < g(i)$
(iii) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, $s < g(i)$, where φ_s is Δ_0
(iv) $T = \bigcap C_i$.

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in \mathcal{M} and $g : I \rightarrow \mathcal{M}$ be Σ_2, increasing and cofinal.

Build a uniformly R'-recursive nested sequence $\{C_i | i \in I\}$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:

(i) $C_i \supset C_{i+1}$
(ii) Every unbounded path on C_i is cohesive for R_s, $s < g(i)$
(iii) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, $s < g(i)$, where φ_s is Δ_0
(iv) $T = \bigcap C_i$.

A Two-Stage Construction for M-Extension
A Two-Stage Construction for M-Extension

- **Stage 1.** Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in M and $g : I \rightarrow M$ be Σ_2, increasing and cofinal.

- Build a uniformly R'-recursive nested sequence $\{C_i|i \in I\}$ of M-infinite R-recursive trees such that for all $i \in I$:

 (i) $C_i \supset C_{i+1}$

 (ii) Every unbounded path on C_i is cohesive for R_s, $s < g(i)$

 (iii) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, $s < g(i)$, where φ_s is Δ_0

 (iv) $T = \bigcap C_i$.

Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in M and $g : I \rightarrow M$ be Σ_2, increasing and cofinal.

Build a uniformly R'-recursive nested sequence $\{C_i| i \in I\}$ of M-infinite R-recursive trees such that for all $i \in I$:

(i) $C_i \supset C_{i+1}$
(ii) Every unbounded path on C_i is cohesive for R_s, $s < g(i)$
(III) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, $s < g(i)$, where φ_s is Δ_0
(iv) $T = \bigcap C_i$.

A Two-Stage Construction for M-Extension
Stage 1. Build an R'-recursive tree T for which every unbounded path X on T is cohesive for R and GL_1 relative to R, i.e. $X \oplus R' \equiv_T X'$.

Let I be a Σ_2 cut in \mathcal{M} and $g : I \rightarrow \mathcal{M}$ be Σ_2, increasing and cofinal.

Build a uniformly R'-recursive nested sequence $\{C_i| i \in I\}$ of \mathcal{M}-infinite R-recursive trees such that for all $i \in I$:

(i) $C_i \supset C_{i+1}$
(ii) Every unbounded path on C_i is cohesive for R_s, $s < g(i)$
(iii) Every unbounded path on C_i is 1-generic on C_i for $\exists x \varphi_s$, $s < g(i)$, where φ_s is Δ_0
(iv) $T = \bigcap C_i$.

A Two-Stage Construction for M-Extension
A Cohen-type forcing construction carried out recursively in R' is deployed to achieve GL_1. However,

For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_s$ for all $s < g(i)$.

Effectively we are constructing T so that each $X \in [T]$ is hyperregular.

This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_2(R)$ set is coded".
A Cohen-type forcing construction carried out recursively in R' is deployed to achieve GL_1. However,

- For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_s$ for all $s < g(i)$.

- Effectively we are constructing T so that each $X \in [T]$ is hyperregular.

- This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_2(R)$ set is coded".
A Two-Stage Forcing Construction

- A Cohen-type forcing construction carried out recursively in R' is deployed to achieve GL_1. However,

- For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_s$ for all $s < g(i)$.

- Effectively we are constructing T so that each $X \in [T]$ is hyperregular.

- This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_2(R)$ set is coded".
A Two-Stage Forcing Construction

- A Cohen-type forcing construction carried out recursively in R' is deployed to achieve GL_1. However,

- For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_s$ for all $s < g(i)$.

- Effectively we are constructing T so that each $X \in [T]$ is hyperregular.

- This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_2(R)$ set is coded".
A Two-Stage Forcing Construction

- A Cohen-type forcing construction carried out recursively in R' is deployed to achieve GL_1. However,

- For each $i \in I$, need to argue that there is a condition forcing $\exists x \varphi_s$ for all $s < g(i)$.

- Effectively we are constructing T so that each $X \in [T]$ is hyperregular.

- This is achieved by exploiting a coding lemma that says "Every bounded $\Delta_2(R)$ set is coded".
Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B\Sigma_2$.

Define countable sequences $\{T_n\}$ and $\{\sigma_n\}, n < \omega$, such that for each n,

- $T_n \supset T_{n+1}$ are recursive in R'
- $\sigma_n \in T_n$, $\sigma_n \leq \sigma_{n+1}$
- $\sigma_n \oplus R'$ forces $B\Sigma_1(G')$ for the nth $\Sigma_1(G \oplus R')$ sentence.
- T_n above σ_n is \mathcal{M}-infinite.

Put $G = \bigcup_n \sigma_n$.
Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B\Sigma_2$.

Define countable sequences $\{T_n\}$ and $\{\sigma_n\}$, $n < \omega$, such that for each n,

- $T_n \supset T_{n+1}$ are recursive in R'
- $\sigma_n \in T_n$, $\sigma_n \leq \sigma_{n+1}$
- $\sigma_n \oplus R'$ forces $B\Sigma_1(G')$ for the nth $\Sigma_1(G \oplus R')$ sentence.
- T_n above σ_n is \mathcal{M}-infinite.

Put $G = \bigcup_n \sigma_n$.
Stage 2. Define a path G (from the *outside*) on T such that $\mathcal{M}[G] \models B\Sigma_2$.

Define countable sequences $\{T_n\}$ and $\{\sigma_n\}$, $n < \omega$, such that for each n,

- $T_n \supset T_{n+1}$ are recursive in R'
- $\sigma_n \in T_n$, $\sigma_n \leq \sigma_{n+1}$
- $\sigma_n \oplus R'$ forces $B\Sigma_1(G')$ for the nth $\Sigma_1(G \oplus R')$ sentence.
- T_n above σ_n is \mathcal{M}-infinite.

Put $G = \bigcup_n \sigma_n$.
A Two-Stage Forcing Construction

- Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B\Sigma_2$.

- Define countable sequences $\{T_n\}$ and $\{\sigma_n\}$, $n < \omega$, such that for each n,
 - $T_n \supset T_{n+1}$ are recursive in R'
 - $\sigma_n \in T_n$, $\sigma_n \leq \sigma_{n+1}$
 - $\sigma_n \oplus R'$ forces $B\Sigma_1(G')$ for the nth $\Sigma_1(G \oplus R')$ sentence.
 - T_n above σ_n is \mathcal{M}-infinite.

Put $G = \bigcup_n \sigma_n$.
Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B\Sigma_2$.

Define countable sequences $\{T_n\}$ and $\{\sigma_n\}$, $n < \omega$, such that for each n,

- $T_n \supset T_{n+1}$ are recursive in R'
- $\sigma_n \in T_n$, $\sigma_n \leq \sigma_{n+1}$
- $\sigma_n \oplus R'$ forces $B\Sigma_1(G')$ for the nth $\Sigma_1(G \oplus R')$ sentence.
- T_n above σ_n is \mathcal{M}-infinite.

Put $G = \bigcup_n \sigma_n$.

Stage 2. Define a path G (from the *outside*) on T such that $\mathcal{M}[G] \models B\Sigma_2$.

Define countable sequences $\{T_n\}$ and $\{\sigma_n\}$, $n < \omega$, such that for each n,

- $T_n \supset T_{n+1}$ are recursive in R'
- $\sigma_n \in T_n$, $\sigma_n \leq \sigma_{n+1}$
- $\sigma_n \oplus R'$ forces $B\Sigma_1(G')$ for the nth $\Sigma_1(G \oplus R')$ sentence.
- T_n above σ_n is \mathcal{M}-infinite.

Put $G = \bigcup_n \sigma_n$.

A Two-Stage Forcing Construction

- Stage 2. Define a path G (from the outside) on T such that $\mathcal{M}[G] \models B\Sigma_2$.

- Define countable sequences $\{T_n\}$ and $\{\sigma_n\}$, $n < \omega$, such that for each n,

 - $T_n \supset T_{n+1}$ are recursive in R'
 - $\sigma_n \in T_n$, $\sigma_n \leq \sigma_{n+1}$
 - $\sigma_n \oplus R'$ forces $B\Sigma_1(G')$ for the nth $\Sigma_1(G \oplus R')$ sentence.
 - T_n above σ_n is \mathcal{M}-infinite.

Put $G = \bigcup_n \sigma_n$.
Stage 2. Define a path G (from the *outside*) on T such that $\mathcal{M}[G] \models B\Sigma_2$.

Define countable sequences $\{T_n\}$ and $\{\sigma_n\}$, $n < \omega$, such that for each n,

- $T_n \supset T_{n+1}$ are recursive in R'
- $\sigma_n \in T_n$, $\sigma_n \leq \sigma_{n+1}$
- $\sigma_n \oplus R'$ forces $B\Sigma_1(G')$ for the nth $\Sigma_1(G \oplus R')$ sentence.
- T_n above σ_n is \mathcal{M}-infinite.

Put $G = \bigcup_n \sigma_n$.
Ramsey’s Theorem For Pairs

Let $\mathcal{M} \models \text{RCA}_0$.

RT^2_2: Every two coloring of $[M]^2$ (pairs of elements of M) has a homogeneous set in \mathcal{M}.

SRT^2_2: Every stable two coloring of $[M]^2$ has a homogeneous set in \mathcal{M} ($f : [M]^2 \to 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA_0, $\text{RT}^2_2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0, $\text{RT}^2_2 \leftrightarrow \text{COH} + \text{SRT}^2_2$.

Question: Over RCA_0, does $\text{RT}^2_2 \rightarrow I\Sigma_2$? Does $\text{SRT}^2_2 \rightarrow \text{RT}^2_2$?
Ramsey’s Theorem For Pairs

Let $\mathcal{M} \models \text{RCA}_0$.

RT_2^2: Every two coloring of $[\mathcal{M}]^2$ (pairs of elements of \mathcal{M}) has a homogeneous set in \mathcal{M}.

SRT_2^2: Every stable two coloring of $[\mathcal{M}]^2$ has a homogeneous set in \mathcal{M} ($f : [\mathcal{M}]^2 \to 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA_0, $\text{RT}_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0, $\text{RT}_2^2 \leftrightarrow \text{COH} + \text{SRT}_2^2$.

Question: Over RCA_0, does $\text{RT}_2^2 \rightarrow I\Sigma_2$? Does $\text{SRT}_2^2 \rightarrow \text{RT}_2^2$?
Ramsey’s Theorem For Pairs

Let $\mathcal{M} \models \text{RCA}_0$.

RT_2^2: Every two coloring of $[\mathcal{M}]^2$ (pairs of elements of \mathcal{M}) has a homogeneous set in \mathcal{M}.

SRT_2^2: Every stable two coloring of $[\mathcal{M}]^2$ has a homogeneous set in \mathcal{M} ($f : [\mathcal{M}]^2 \to 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA_0, $\text{RT}_2^2 \to B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0, $\text{RT}_2^2 \leftrightarrow \text{COH} + \text{SRT}_2^2$.

Question: Over RCA_0, does $\text{RT}_2^2 \to I\Sigma_2$? Does $\text{SRT}_2^2 \to \text{RT}_2^2$?
Ramsey’s Theorem For Pairs

Let $\mathcal{M} \models \text{RCA}_0$.

RT_2^2: Every two coloring of $[\mathcal{M}]^2$ (pairs of elements of \mathcal{M}) has a homogeneous set in \mathcal{M}.

SRT_2^2: Every stable two coloring of $[\mathcal{M}]^2$ has a homogeneous set in \mathcal{M} ($f : [\mathcal{M}]^2 \to 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA_0, $\text{RT}_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0, $\text{RT}_2^2 \leftrightarrow \text{COH} + \text{SRT}_2^2$.

Question: Over RCA_0, does $\text{RT}_2^2 \rightarrow I\Sigma_2$? Does $\text{SRT}_2^2 \rightarrow \text{RT}_2^2$?
Ramsey’s Theorem For Pairs

Let $\mathcal{M} \models \text{RCA}_0$.

RT_2^2: Every two coloring of $[\mathcal{M}]^2$ (pairs of elements of \mathcal{M}) has a homogeneous set in \mathcal{M}.

SRT_2^2: Every stable two coloring of $[\mathcal{M}]^2$ has a homogeneous set in \mathcal{M} ($f : [\mathcal{M}]^2 \to 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA_0, $\text{RT}_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0, $\text{RT}_2^2 \leftrightarrow \text{COH} + \text{SRT}_2^2$.

Question: Over RCA_0, does $\text{RT}_2^2 \rightarrow I\Sigma_2$? Does $\text{SRT}_2^2 \rightarrow \text{RT}_2^2$?
Ramsey’s Theorem For Pairs

Let $\mathcal{M} \models \text{RCA}_0$.

RT_2^2: Every two coloring of $[\mathcal{M}]^2$ (pairs of elements of \mathcal{M}) has a homogeneous set in \mathcal{M}.
SRT_2^2: Every stable two coloring of $[\mathcal{M}]^2$ has a homogeneous set in \mathcal{M} ($f : [\mathcal{M}]^2 \to 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA_0, $\text{RT}_2^2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA_0, $\text{RT}_2^2 \leftrightarrow \text{COH} + \text{SRT}_2^2$.

Question: Over RCA_0, does $\text{RT}_2^2 \rightarrow I\Sigma_2$? Does $\text{SRT}_2^2 \rightarrow \text{RT}_2^2$?
Let $\mathcal{M} \models \text{RCA}_0$.

RT^2_2: Every two coloring of $[\mathcal{M}]^2$ (pairs of elements of \mathcal{M}) has a homogeneous set in \mathcal{M}.

SRT^2_2: Every stable two coloring of $[\mathcal{M}]^2$ has a homogeneous set in \mathcal{M} ($f : [\mathcal{M}]^2 \rightarrow 2$ is stable if for all x, $\lim_y f(x, y)$ exists).

Hirst: Over RCA$_0$, $\text{RT}^2_2 \rightarrow B\Sigma_2$

Cholak, Jockusch and Slaman: Over RCA$_0$, $\text{RT}^2_2 \leftrightarrow \text{COH} + \text{SRT}^2_2$.

Question: Over RCA$_0$, does $\text{RT}^2_2 \rightarrow I\Sigma_2$? Does $\text{SRT}^2_2 \rightarrow \text{RT}^2_2$?
Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_2 set $A \subset \omega$ such that neither A nor \bar{A} contains an infinite low Δ_2 set.

Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_2 set $A \subset \omega$ either contains or is disjoint from an infinite incomplete Δ_2 set.

For $A \Delta_2$, call any infinite $X \subset A$ or \bar{A} a solution for A.

Interpreting these Δ_2 solutions in $\text{RCA}_0 + B\Sigma_2$:
Downey, Hirschfeldt, Lempp and Solomon: There is a \(\Delta_2 \) set \(A \subseteq \omega \) such that neither \(A \) nor \(\bar{A} \) contains an infinite low \(\Delta_2 \) set.

Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every \(\Delta_2 \) set \(A \subseteq \omega \) either contains or is disjoint from an infinite incomplete \(\Delta_2 \) set.

For \(A \Delta_2 \), call any infinite \(X \subseteq A \) or \(\bar{A} \) a solution for \(A \).

Interpreting these \(\Delta_2 \) solutions in \(\text{RCA}_0 + B\Sigma_2 \):
Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_2 set $A \subseteq \omega$ such that neither A nor \bar{A} contains an infinite low Δ_2 set.

Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_2 set $A \subseteq \omega$ either contains or is disjoint from an infinite incomplete Δ_2 set.

For $A \Delta_2$, call any infinite $X \subseteq A$ or \bar{A} a solution for A.

Interpreting these Δ_2 solutions in RCA$_0 + B\Sigma_2$:
Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_2 set $A \subseteq \omega$ such that neither A nor \overline{A} contains an infinite low Δ_2 set.

Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_2 set $A \subseteq \omega$ either contains or is disjoint from an infinite incomplete Δ_2 set.

For $A \Delta_2$, call any infinite $X \subseteq A$ or \overline{A} a solution for A.

Interpreting these Δ_2 solutions in $\text{RCA}_0 + B\Sigma_2$:
Downey, Hirschfeldt, Lempp and Solomon: There is a Δ_2 set $A \subset \omega$ such that neither A nor \overline{A} contains an infinite low Δ_2 set.

Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman: Every Δ_2 set $A \subset \omega$ either contains or is disjoint from an infinite incomplete Δ_2 set.

For $A \Delta_2$, call any infinite $X \subset A$ or \overline{A} a solution for A.

Interpreting these Δ_2 solutions in $\text{RCA}_0 + B\Sigma_2$:
Nonstandard Methods in RT^2_2

- Chong and Yag, Mytilinaios and Slaman: Let $\mathcal{M} \models RCA_0 + B\Sigma_2$. If G is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $RCA_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an \mathcal{M} in which each of the three possibilities occurs;
 - There is an \mathcal{M} in which every $\Delta_2(\mathcal{M})$ G satisfies either $\mathcal{M}[G] \models RCA_0 \setminus I\Sigma_1$ plus $B\Sigma_1$ or $B\Sigma_2$ (and each possibility occurs).

P: For every $\mathcal{M} \models RCA_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution G exists with an M-extension $\mathcal{M}[G] \models RCA_0 + B\Sigma_2$

Q: For every $\mathcal{M} \models RCA_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution G with an M-extension $\mathcal{M}[G] \models RCA_0$ or $RCA_0 + B\Sigma_2$.

Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If G is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore

- There is an \mathcal{M} in which each of the three possibilities occurs;
- There is an \mathcal{M} in which every $\Delta_2(\mathcal{M})$ G satisfies either $\mathcal{M}[G] \models \text{RCA}_0 \setminus I\Sigma_1$ plus $B\Sigma_1$ or $B\Sigma_2$ (and each possibility occurs).

P: For every $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$, there is a Δ_2 $A \subset M$ for which no Δ_2 solution G exists with an M-extension $\mathcal{M}[G] \models \text{RCA}_0 + B\Sigma_2$.

Q: For every $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ and every Δ_2 $A \subset M$, there is a Δ_2 solution G with an M-extension $\mathcal{M}[G] \models \text{RCA}_0$ or $\text{RCA}_0 + B\Sigma_2$.
Nonstandard Methods in RT^2_2

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models RCA_0 + B\Sigma_2$. If G is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $RCA_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an \mathcal{M} in which each of the three possibilities occurs;
 - There is an \mathcal{M} in which every $\Delta_2(\mathcal{M})$ G satisfies either $\mathcal{M}[G] \models RCA_0 \setminus I\Sigma_1$ plus $B\Sigma_1$ or $B\Sigma_2$ (and each possibility occurs).

P: For every $\mathcal{M} \models RCA_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution G exists with an M-extension $\mathcal{M}[G] \models RCA_0 + B\Sigma_2$.

Q: For every $\mathcal{M} \models RCA_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution G with an M-extension $\mathcal{M}[G] \models RCA_0$ or $RCA_0 + B\Sigma_2$.
Chong and Yag, Mytilinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If G is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore

- There is an \mathcal{M} in which each of the three possibilities occurs;
- There is an \mathcal{M} in which every $\Delta_2(\mathcal{M})$ G satisfies either $\mathcal{M}[G] \models \text{RCA}_0 \setminus I\Sigma_1$ plus $B\Sigma_1$ or $B\Sigma_2$ (and each possibility occurs).

\mathcal{P}: For every $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$, there is a Δ_2 $A \subset M$ for which no Δ_2 solution G exists with an M-extension $\mathcal{M}[G] \models \text{RCA}_0 + B\Sigma_2$.

\mathcal{Q}: For every $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ and every Δ_2 $A \subset M$, there is a Δ_2 solution G with an M-extension $\mathcal{M}[G] \models \text{RCA}_0$ or $\text{RCA}_0 + B\Sigma_2$.

Nonstandard Methods in RT_2^2

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If G is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an \mathcal{M} in which each of the three possibilities occurs;
 - There is an \mathcal{M} in which every $\Delta_2(\mathcal{M})$ G satisfies either $\mathcal{M}[G] \models \text{RCA}_0 \setminus I\Sigma_1$ plus $B\Sigma_1$ or $B\Sigma_2$ (and each possibility occurs).

\mathcal{P}: For every $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution G exists with an \mathcal{M}-extension $\mathcal{M}[G] \models \text{RCA}_0 + B\Sigma_2$

\mathcal{Q}: For every $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution G with an \mathcal{M}-extension $\mathcal{M}[G] \models \text{RCA}_0$ or $\text{RCA}_0 + B\Sigma_2$.
Nonstandard Methods in RT_2^2

- Chong and Yag, Mytillinaios and Slaman: Let $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$. If G is $\Delta_2(\mathcal{M})$, then $\mathcal{M}[G]$ satisfies $\text{RCA}_0 \setminus I\Sigma_1$ plus either $B\Sigma_1$, $I\Sigma_1$ or $B\Sigma_2$. Furthermore
 - There is an \mathcal{M} in which each of the three possibilities occurs;
 - There is an \mathcal{M} in which every $\Delta_2(\mathcal{M})$ G satisfies either $\mathcal{M}[G] \models \text{RCA}_0 \setminus I\Sigma_1$ plus $B\Sigma_1$ or $B\Sigma_2$ (and each possibility occurs).

\mathcal{P} : For every $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$, there is a $\Delta_2 A \subset M$ for which no Δ_2 solution G exists with an M-extension $\mathcal{M}[G] \models \text{RCA}_0 + B\Sigma_2$.

\mathcal{Q} : For every $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ and every $\Delta_2 A \subset M$, there is a Δ_2 solution G with an M-extension $\mathcal{M}[G] \models \text{RCA}_0$ or $\text{RCA}_0 + B\Sigma_2$.
Either P or Q is false.

Conjecture 1: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an M-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

There is a (first order) $\mathcal{M} \models B\Sigma_2$ with a recursive two coloring of $[M]^2$ having no regular \emptyset''-recursive homogeneous set.
Either P or Q is false.

Conjecture 1: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an M-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

There is a (first order) $\mathcal{M} \models B\Sigma_2$ with a recursive two coloring of $[M]^2$ having no regular \emptyset''-recursive homogeneous set.
Either \(P \) or \(Q \) is false.

Conjecture 1: There is a countable \(\mathcal{M} \models \text{RCA}_0 + B\Sigma_2 \) with an \(\mathcal{M} \)-extension for the same theory in which every \(\Delta_2 \) set has a solution.

Corollary (to Conjecture 1): \(\text{RT}^2_2 \) does not imply \(\text{I} \Sigma_2 \).

Jockusch: There is a recursive two coloring of \([\mathbb{N}]^2 \) with no \(\Delta_2 \) homogeneous set.

Theorem

There is a (first order) \(\mathcal{M} \models B\Sigma_2 \) with a recursive two coloring of \([M]^2 \) having no regular \(\emptyset'' \)-recursive homogeneous set.
Either P or Q is false.

Conjecture 1: There is a countable $\mathcal{M} \models RCA_0 + B\Sigma_2$ with an \mathcal{M}-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT^2_2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

There is a (first order) $\mathcal{M} \models B\Sigma_2$ with a recursive two coloring of $[M]^2$ having no regular \emptyset''-recursive homogeneous set.
Either \mathcal{P} or \mathcal{Q} is false.

Conjecture 1: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an M-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

There is a (first order) $\mathcal{M} \models B\Sigma_2$ with a recursive two coloring of $[M]^2$ having no regular \emptyset'''-recursive homogeneous set.
Either \mathcal{P} or \mathcal{Q} is false.

Conjecture 1: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an \mathcal{M}-extension for the same theory in which every Δ_2 set has a solution.

Corollary (to Conjecture 1): RT_2^2 does not imply $I\Sigma_2$.

Jockusch: There is a recursive two coloring of $[\mathbb{N}]^2$ with no Δ_2 homogeneous set.

Theorem

There is a (first order) $\mathcal{M} \models B\Sigma_2$ with a recursive two coloring of $[\mathcal{M}]^2$ having no regular \emptyset''-recursive homogeneous set.
Conjecture 2: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an M-extension for the same theory in which every Δ_2 set has a solution, and in which there is a recursive 2-coloring of $[M]^2$ with no homogeneous set.

Corollary (to Conjecture 2): RT_2^2 does not imply SRT_2^2.
Conjecture 2: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an \mathcal{M}-extension for the same theory in which every Δ_2 set has a solution, and in which there is a recursive 2-coloring of $[\mathcal{M}]^2$ with no homogeneous set.

Corollary (to Conjecture 2): RT_2^2 does not imply SRT_2^2.
Conjecture 2: There is a countable $\mathcal{M} \models \text{RCA}_0 + B\Sigma_2$ with an \mathcal{M}-extension for the same theory in which every Δ_2 set has a solution, and in which there is a recursive 2-coloring of $[\mathcal{M}]^2$ with no homogeneous set.

Corollary (to Conjecture 2): RT_2^2 does not imply SRT_2^2.