Maximal Chains and Antichains in the Turing Degrees
(Joint Work with Liang YU)

C T Chong

National University of Singapore

chongct@math.nus.edu.sg

June 2007
Chains and Antichains

- $\langle \mathcal{D}, \leq \rangle$ denotes the structure of Turing degrees.

- $\mathcal{A} \subset \mathcal{D}$ is a chain if for any two elements $a, b \in \mathcal{A}$, either $a < b$ or $b < a$.

- $\mathcal{A} \subset \mathcal{D}$ is an antichain if no two a, b are comparable.

- Every maximal chain has size \aleph_1. Every maximal antichain has size 2^{\aleph_0}.

- AC implies existence of maximal chains and antichains.

Is there a definable maximal chain?
Chains and Antichains

- \(\langle \mathcal{D}, \leq \rangle \) denotes the structure of Turing degrees.

- \(\mathcal{A} \subset \mathcal{D} \) is a chain if for any two elements \(a, b \in \mathcal{A} \), either \(a < b \) or \(b < a \).

- \(\mathcal{A} \subset \mathcal{D} \) is an antichain if no two \(a, b \) are comparable.

- Every maximal chain has size \(\aleph_1 \). Every maximal antichain has size \(2^{\aleph_0} \).

- AC implies existence of maximal chains and antichains.

Is there a definable maximal chain?
Chains and Antichains

- \(\langle \mathcal{D}, \leq \rangle \) denotes the structure of Turing degrees.

- \(\mathcal{A} \subset \mathcal{D} \) is a chain if for any two elements \(a, b \in \mathcal{A} \), either \(a < b \) or \(b < a \).

- \(\mathcal{A} \subset \mathcal{D} \) is an antichain if no two \(a, b \) are comparable.

- Every maximal chain has size \(\aleph_1 \). Every maximal antichain has size \(2^{\aleph_0} \).

- AC implies existence of maximal chains and antichains.

Is there a definable maximal chain?
Chains and Antichains

- \(\langle \mathcal{D}, \leq \rangle \) denotes the structure of Turing degrees.

- \(\mathcal{A} \subset \mathcal{D} \) is a chain if for any two elements \(a, b \in \mathcal{A} \), either \(a < b \) or \(b < a \).

- \(\mathcal{A} \subset \mathcal{D} \) is an antichain if no two \(a, b \) are comparable.

- Every maximal chain has size \(\aleph_1 \). Every maximal antichain has size \(2^{\aleph_0} \).

- AC implies existence of maximal chains and antichains.

Is there a definable maximal chain?
Chains and Antichains

- $\langle \mathcal{D}, \leq \rangle$ denotes the structure of Turing degrees.

- $\mathcal{A} \subset \mathcal{D}$ is a chain if for any two elements $a, b \in \mathcal{A}$, either $a < b$ or $b < a$.

- $\mathcal{A} \subset \mathcal{D}$ is an antichain if no two a, b are comparable.

- Every maximal chain has size \aleph_1. Every maximal antichain has size 2^{\aleph_0}.

- AC implies existence of maximal chains and antichains.

Is there a definable maximal chain?
Existence of a Π^1_1 Maximal Chain

Fact. There is no Σ^1_1 subset of 2^ω whose Turing degrees form a maximal chain: Any uncountable Σ^1_1 set contains a perfect subset. Any perfect set contains two Turing incomparable members.

Theorem

(Chong and Yu) *Let $L[a]$ denote the relative constructible universe with $a \subset \omega$. Then $\omega_1^{L[a]} = \omega_1$ if and only if there exists a $\Pi^1_1[a]$ subset of 2^ω whose Turing degrees form a maximal chain.*
Existence of a Π^1_1 Maximal Chain

Fact. There is no Σ^1_1 subset of 2^ω whose Turing degrees form a maximal chain: Any uncountable Σ^1_1 set contains a perfect subset. Any perfect set contains two Turing incomparable members.

Theorem (Chong and Yu) Let $L[a]$ denote the relative constructible universe with $a \subset \omega$. Then $\omega_1^{L[a]} = \omega_1$ if and only if there exists a $\Pi^1_1[a]$ subset of 2^ω whose Turing degrees form a maximal chain.
Existence of a Π_1^1 Maximal Chain

Fact. There is no Σ_1^1 subset of 2^ω whose Turing degrees form a maximal chain: Any uncountable Σ_1^1 set contains a perfect subset. Any perfect set contains two Turing incomparable members.

Theorem

(Chong and Yu) *Let $L[a]$ denote the relative constructible universe with $a \subset \omega$. Then $\omega_1^{L[a]} = \omega_1$ if and only if there exists a $\Pi_1^1[a]$ subset of 2^ω whose Turing degrees form a maximal chain.*
When $\omega_1^L = \omega_1$

Lemma

For $A \subset D$ countable, the set of minimal upper bounds of A has double jumps cofinal in D.

Corollary. Borel Determinacy implies that there is a cone of degrees which are double jumps of minimal upper bounds of A.

$V = L$ allows a sequence $A^* = \{a_\gamma | \gamma < \omega_1^L\}$ to be constructed effectively and uniformly, so that

1. a_γ is a minimal upper bound of $\{a_\delta | \delta < \gamma\}$
2. a_γ'' is Turing equivalent to a master code in the sense of fine structure theory of L (Jensen, Boolos and Putnam).
When $\omega_1^L = \omega_1$

Lemma

For $A \subset D$ countable, the set of minimal upper bounds of A has double jumps cofinal in D.

Corollary. Borel Determinacy implies that there is a cone of degrees which are double jumps of minimal upper bounds of A.

$V = L$ allows a sequence $A^* = \{a_\gamma | \gamma < \omega_1^L\}$ to be constructed effectively and uniformly, so that

1. a_γ is a minimal upper bound of $\{a_\delta | \delta < \gamma\}$
2. a_γ'' is Turing equivalent to a master code in the sense of fine structure theory of L (Jensen, Boolos and Putnam).
When $\omega_1^L = \omega_1$

Lemma

For $A \subset \mathcal{D}$ countable, the set of minimal upper bounds of A has double jumps cofinal in \mathcal{D}.

Corollary. Borel Determinacy implies that there is a cone of degrees which are double jumps of minimal upper bounds of A.

- $V = L$ allows a sequence $A^* = \{a_\gamma | \gamma < \omega_1^L\}$ to be constructed effectively and uniformly, so that
 1. a_γ is a minimal upper bound of $\{a_\delta | \delta < \gamma\}$
 2. a''_γ is Turing equivalent to a master code in the sense of fine structure theory of L (Jensen, Boolos and Putnam).
Lemma

For $A \subset \mathbb{D}$ countable, the set of minimal upper bounds of A has double jumps cofinal in \mathbb{D}.

Corollary. Borel Determinacy implies that there is a cone of degrees which are double jumps of minimal upper bounds of A.

$V = L$ allows a sequence $A^* = \{a_\gamma | \gamma < \omega^L_1\}$ to be constructed effectively and uniformly, so that

1. a_γ is a minimal upper bound of $\{a_\delta | \delta < \gamma\}$
2. a_γ'' is Turing equivalent to a master code in the sense of fine structure theory of L (Jensen, Boolos and Putnam).
When $\omega_1^L = \omega_1$

Lemma

For $A \subset D$ countable, the set of minimal upper bounds of A has double jumps cofinal in D.

Corollary. Borel Determinacy implies that there is a cone of degrees which are double jumps of minimal upper bounds of A.

$V = L$ allows a sequence $A^* = \{a_\gamma | \gamma < \omega_1^L\}$ to be constructed effectively and uniformly, so that

1. a_γ is a minimal upper bound of $\{a_\delta | \delta < \gamma\}_L$
2. a''_γ is Turing equivalent to a master code in the sense of fine structure theory of L (Jensen, Boolos and Putnam).
Gandy-Spector analysis shows that A^* is Π^1_1 if and only if there is a Σ_1 ("effective") definition uniformly over $L_{\omega_1^x}[x]$ for each $x \in A^*$.

$\{a_\gamma | \gamma < \omega_1^L\}$ forms a Π^1_1 maximal chain in L.

Being a chain of Turing degrees is an absolute property. This ensures that a maximal chain in $\langle \mathcal{D}, \leq \rangle^L$ is a maximal chain in V.

When $\omega_1^L = \omega_1$
When $\omega_1^L = \omega_1$

- Gandy-Spector analysis shows that A^* is Π^1_1 if and only if there is a Σ_1 ("effective") definition uniformly over $L_{\omega_1^x}[x]$ for each $x \in A^*$.

- $\{a_\gamma | \gamma < \omega_1^L\}$ forms a Π^1_1 maximal chain in L.

- Being a chain of Turing degrees is an absolute property. This ensures that a maximal chain in $\langle \mathcal{D}, \leq \rangle^L$ is a maximal chain in V.
When $\omega_1^L = \omega_1$

- Gandy-Spector analysis shows that A^* is Π^1_1 if and only if there is a Σ_1 (“effective”) definition uniformly over $L_{\omega_1^x}[x]$ for each $x \in A^*$.

- $\{a_\gamma | \gamma < \omega_1^L\}$ forms a Π^1_1 maximal chain in L.

- Being a chain of Turing degrees is an absolute property. This ensures that a maximal chain in $\langle \mathcal{D}, \leq \rangle^L$ is a maximal chain in V.
When $\omega_1^L = \omega_1$

- Gandy-Spector analysis shows that A^* is Π^1_1 if and only if there is a Σ_1 (“effective”) definition uniformly over $L_{\omega_1^x}[x]$ for each $x \in A^*$.

- $\{a_\gamma | \gamma < \omega_1^L\}$ forms a Π^1_1 maximal chain in L.

- Being a chain of Turing degrees is an absolute property. This ensures that a maximal chain in $\langle \mathcal{D}, \leq \rangle^L$ is a maximal chain in V.
When $\omega_1^L = \omega_1$

Conversely, any uncountable Π^1_1 subset of 2^ω whose Turing degrees form a maximal chain contains no perfect subset, hence constructible (Mansfield-Solovay). So $\omega_1 = \omega_1^L$.

Corollary. The following are equiconsistent:

(i) ZFC+ “There is an inaccessible cardinal”.

(ii) There is no (bold face) Π^1_1 subset of 2^ω whose Turing degrees form a maximal chain.
When $\omega_1^L = \omega_1$

- Conversely, any uncountable Π^1_1 subset of 2^ω whose Turing degrees form a maximal chain contains no perfect subset, hence constructible (Mansfield-Solovay). So $\omega_1 = \omega_1^L$.

- **Corollary.** The following are equiconsistent:

 (i) ZFC + “There is an inaccessible cardinal”.

 (ii) There is no (bold face) Π^1_1 subset of 2^ω whose Turing degrees form a maximal chain.
When \(\omega_1^L = \omega_1 \)

- Conversely, any uncountable \(\Pi^1_1 \) subset of \(2^\omega \) whose Turing degrees form a maximal chain contains no perfect subset, hence constructible (Mansfield-Solovay). So \(\omega_1 = \omega_1^L \).

- **Corollary.** The following are equiconsistent:

 (i) ZFC+ “There is an inaccessible cardinal”.

 (ii) There is no (bold face) \(\Pi^1_1 \) subset of \(2^\omega \) whose Turing degrees form a maximal chain.
When $\omega_1^L = \omega_1$

- Conversely, any uncountable Π^1_1 subset of 2^ω whose Turing degrees form a maximal chain contains no perfect subset, hence constructible (Mansfield-Solovay). So $\omega_1 = \omega_1^L$.

- **Corollary.** The following are equiconsistent:

 (i) ZFC+ “There is an inaccessible cardinal”.

 (ii) There is no (bold face) Π^1_1 subset of 2^ω whose Turing degrees form a maximal chain.
When $\omega_1^L = \omega_1$

- Conversely, any uncountable Π_1^1 subset of 2^ω whose Turing degrees form a maximal chain contains no perfect subset, hence constructible (Mansfield-Solovay). So $\omega_1 = \omega_1^L$.

- **Corollary.** The following are equiconsistent:

 (i) ZFC+ “There is an inaccessible cardinal”.

 (ii) There is no (bold face) Π_1^1 subset of 2^ω whose Turing degrees form a maximal chain.
Definable Maximal Antichains

- $\mathcal{A}^* \subset 2^\omega$ is thin if it contains no perfect subset.

- ZFC implies there is a thin set whose Turing degrees form a maximal antichain.

- There is no uncountable Σ^1_1 thin set of reals to form a maximal antichain of Turing degrees.

Theorem (Chong and Yu) There is a $\Pi^1_1[a]$ thin set whose Turing degrees form a maximal antichain if and only if $(2^\omega)^{L[a]} = 2^\omega$.
A* ⊂ 2ω is thin if it contains no perfect subset.

ZFC implies there is a thin set whose Turing degrees form a maximal antichain.

There is no uncountable Σ₁ thin set of reals to form a maximal antichain of Turing degrees.

Theorem

(Chong and Yu) There is a Π₁¹[a] thin set whose Turing degrees form a maximal antichain if and only if (2ω)L[a] = 2ω.
Definable Maximal Antichains

- $\mathcal{A}^* \subset 2^\omega$ is thin if it contains no perfect subset.

- ZFC implies there is a thin set whose Turing degrees form a maximal antichain.

- There is no uncountable Σ^1_1 thin set of reals to form a maximal antichain of Turing degrees.

Theorem

(Chong and Yu) *There is a $\Pi^1_1[a]$ thin set whose Turing degrees form a maximal antichain if and only if $(2^\omega)^{L[a]} = 2^\omega$.*
Definable Maximal Antichains

- $\mathcal{A}^* \subset 2^\omega$ is thin if it contains no perfect subset.

- ZFC implies there is a thin set whose Turing degrees form a maximal antichain.

- There is no uncountable Σ^1_1 thin set of reals to form a maximal antichain of Turing degrees.

Theorem

(Chong and Yu) There is a $\Pi^1_1[a]$ thin set whose Turing degrees form a maximal antichain if and only if $(2^\omega)^{L[a]} = 2^\omega$.
Definable Maximal Antichains

- $\mathcal{A}^* \subset 2^\omega$ is thin if it contains no perfect subset.

- ZFC implies there is a thin set whose Turing degrees form a maximal antichain.

- There is no uncountable Σ^1_1 thin set of reals to form a maximal antichain of Turing degrees.

Theorem

(Chong and Yu) There is a $\Pi^1_1[a]$ thin set whose Turing degrees form a maximal antichain if and only if $\left(2^\omega\right)^{L[a]} = 2^\omega$.
When \((2^\omega)^L = 2^\omega\)

- For \(\mathcal{A}\) a countable antichain, the double jumps of Turing degrees \(a\) where \(\mathcal{A} \cup \{a\}\) forms an antichain is cofinal in \(\mathcal{D}\).

- Borel determinacy implies that there is a cone in which every member is the double jump of some \(a\) where \(\mathcal{A} \cup \{a\}\) is an antichain.

- \((2^\omega)^L = 2^\omega\) implies that there is an effective constructible sequence \(\mathcal{A}^* = \{a_\gamma | \gamma < \omega_1^L\}\) whose degrees form a maximal antichain in \(L\), such that \(a_\gamma''\) is a master code for each \(\gamma\).
When \((2^\omega)^L = 2^\omega\)

- For \(\mathcal{A}\) a countable antichain, the double jumps of Turing degrees \(a\) where \(\mathcal{A} \cup \{a\}\) forms an antichain is cofinal in \(\mathcal{Q}\).

- Borel determinacy implies that there is a cone in which every member is the double jump of some \(a\) where \(\mathcal{A} \cup \{a\}\) is an antichain.

- \((2^\omega)^L = 2^\omega\) implies that there is an effective constructible sequence \(\mathcal{A}^* = \{a_\gamma | \gamma < \omega_1^L\}\) whose degrees form a maximal antichain in \(L\), such that \(a_\gamma''\) is a master code for each \(\gamma\).
When $(2^\omega)^L = 2^\omega$

- For \mathcal{A} a countable antichain, the double jumps of Turing degrees a where $\mathcal{A} \cup \{a\}$ forms an antichain is cofinal in \mathcal{D}.

- Borel determinacy implies that there is a cone in which every member is the double jump of some a where $\mathcal{A} \cup \{a\}$ is an antichain.

- $(2^\omega)^L = 2^\omega$ implies that there is an effective constructible sequence $\mathcal{A}^* = \{a_\gamma | \gamma < \omega_1^L\}$ whose degrees form a maximal antichain in L, such that a_γ'' is a master code for each γ.
When \((2^\omega)^L = 2^\omega\)

- For \(\mathcal{A}\) a countable antichain, the double jumps of Turing degrees \(a\) where \(\mathcal{A} \cup \{a\}\) forms an antichain is cofinal in \(\mathcal{D}\).

- Borel determinacy implies that there is a cone in which every member is the double jump of some \(a\) where \(\mathcal{A} \cup \{a\}\) is an antichain.

- \((2^\omega)^L = 2^\omega\) implies that there is an effective constructible sequence \(\mathcal{A}^* = \{a_\gamma | \gamma < \omega_1^T\}\) whose degrees form a maximal antichain in \(L\), such that \(a_\gamma''\) is a master code for each \(\gamma\).
When \((2^\omega)^L = 2^\omega\)

- This ensures that \(a_\gamma \in L_{\omega_1^{\omega_1}}\), so that \(A^*\) is thin (Mansfield-Solovay).

- Gandy-Spector analysis guarantees that \(A^*\) is \(\Pi^1_1\). Then \(\mathcal{A} = \{\deg(a_\gamma) | \gamma < \omega_1^L\}\) is a thin \(\Pi^1_1\) maximal antichain.

- Conversely, if \(A^*\) is \(\Pi^1_1\) and thin, then \(A^* \subset L\) by Mansfield-Solovay. For any real \(x\), there is a \(y\) of minimal degree such that \(x \leq_T y'\) (Cooper). Then \(y \leq_T z\) for some \(z \in A^*\), so that \(x \in L\). Thus \((2^\omega)^L = 2^\omega\).
When \((2^\omega)^L = 2^\omega\)

- This ensures that \(a_\gamma \in L_{\omega_1^{a_\gamma}}\), so that \(\mathcal{A}^*\) is thin (Mansfield-Solovay).

- Gandy-Spector analysis guarantees that \(\mathcal{A}^*\) is \(\Pi^1_1\). Then \(\mathcal{A} = \{\deg(a_\gamma) | \gamma < \omega_1^L\}\) is a thin \(\Pi^1_1\) maximal antichain.

- Conversely, if \(\mathcal{A}^*\) is \(\Pi^1_1\) and thin, then \(\mathcal{A}^* \subset L\) by Mansfield-Solovay. For any real \(x\), there is a \(y\) of minimal degree such that \(x \leq_T y'\) (Cooper). Then \(y \leq_T z\) for some \(z \in \mathcal{A}^*\), so that \(x \in L\). Thus \((2^\omega)^L = 2^\omega\).
When \((2^\omega)^L = 2^\omega\)

- This ensures that \(a_\gamma \in L_{\omega_1^{a_\gamma}}\), so that \(A^*\) is thin (Mansfield-Solovay).

- Gandy-Spector analysis guarantees that \(A^*\) is \(\Pi^1_1\). Then \(A = \{\deg(a_\gamma) | \gamma < \omega_1^L\}\) is a thin \(\Pi^1_1\) maximal antichain.

- Conversely, if \(A^*\) is \(\Pi^1_1\) and thin, then \(A^* \subseteq L\) by Mansfield-Solovay. For any real \(x\), there is a \(y\) of minimal degree such that \(x \leq_T y'\) (Cooper). Then \(y \leq_T z\) for some \(z \in A^*\), so that \(x \in L\). Thus \((2^\omega)^L = 2^\omega\).
When \((2^\omega)^L = 2^\omega\)

- This ensures that \(a_\gamma \in L_\omega a_\gamma\), so that \(A^*\) is thin (Mansfield-Solovay).

- Gandy-Spector analysis guarantees that \(A^*\) is \(\Pi^1_1\). Then
 \[A = \{\deg(a_\gamma) | \gamma < \omega_1^L\}\]
 is a thin \(\Pi^1_1\) maximal antichain.

- Conversely, if \(A^*\) is \(\Pi^1_1\) and thin, then \(A^* \subset L\) by Mansfield-Solovay. For any real \(x\), there is a \(y\) of minimal degree such that \(x \leq_T y'\) (Cooper). Then \(y \leq_T z\) for some \(z \in A^*\), so that \(x \in L\). Thus \((2^\omega)^L = 2^\omega\).