The Seetapun-Slaman Theorem

Theorem (3.1)

(Seetapun and Slaman [1995]) Given \(\{C_i\}_{i<\omega} \) such that \(C_i \geq_T \emptyset \), and \(f : [\mathbb{N}]^2 \to 2 \) where \(f \) is recursive, there is an \(H_f \) such that \(C_i \not\leq_T H_f \) for all \(i \).

Corollary

There is an \(\omega \)-model of \(\text{RCA}_0 + \text{WKL}_0 + \text{RT}_2^2 \) which is not a model of \(\text{RT}_2^n \) for \(n \geq 3 \). Hence \(\text{RCA}_0 + \text{RT}_2^2 + \text{WKL}_0 \not\rightarrow \text{RT}_2^n \) for \(n \geq 3 \).
The Seetapun-Slaman Theorem

Theorem (3.1)

(Seetapun and Slaman [1995]) Given \(\{C_i\}_{i<\omega} \) such that \(C_i > T \emptyset \), and \(f : [\mathbb{N}]^2 \rightarrow 2 \) where \(f \) is recursive, there is an \(H_f \) such that \(C_i \not\leq_T H_f \) for all \(i \).

Corollary

There is an \(\omega \)-model of \(\text{RCA}_0 \+ \text{WKL}_0 \+ \text{RT}_2^2 \) which is not a model of \(\text{RT}_2^n \) for \(n \geq 3 \). Hence \(\text{RCA}_0 \+ \text{RT}_2^2 \+ \text{WKL}_0 \not\vdash \text{RT}_2^n \) for \(n \geq 3 \).
Let $Z \subset \omega$ and $f : [\mathbb{N}]^2 \rightarrow 2$ be Z-recursive.

Definition

If $f(x, y) = 0$, then $\{x, y\}$ is colored red. Otherwise it is colored blue.

Definition

Given two (finite) binary strings σ and τ, a set X is suitable for $\langle \sigma, \tau \rangle$ if $\{x, z\}$ is red for all $x \in \sigma$ and $z \in X$, and $\{y, z\}$ is blue for all $y \in \tau$ and $z \in X$.
Let $Z \subset \omega$ and $f : [\mathbb{N}]^2 \to 2$ be Z-recursive.

Definition

If $f(x, y) = 0$, then $\{x, y\}$ is colored red. Otherwise it is colored blue.

Definition

Given two (finite) binary strings σ and τ, a set X is suitable for $\langle \sigma, \tau \rangle$ if $\{x, z\}$ is red for all $x \in \sigma$ and $z \in X$, and $\{y, z\}$ is blue for all $y \in \tau$ and $z \in X$.
Let $Z \subseteq \omega$ and $f : [\mathbb{N}]^2 \to 2$ be Z-recursive.

Definition

If $f(x, y) = 0$, then $\{x, y\}$ is colored *red*. Otherwise it is colored *blue*.

Definition

Given two (finite) binary strings σ and τ, a set X is *suitable* for $\langle \sigma, \tau \rangle$ if $\{x, z\}$ is red for all $x \in \sigma$ and $z \in X$, and $\{y, z\}$ is blue for all $y \in \tau$ and $z \in X$.
Mathias Forcing Avoiding \emptyset'

Definition

A forcing condition $p = \langle \sigma, \tau, X \rangle$ is a triple of the form

- σ, τ are finite strings;
- σ is red: $\{x, z\}$ is red for any $x, z \in \sigma$;
- τ is blue: $\{y, z\}$ is blue for any $y, z \in \tau$;
- X is infinite, $X \oplus Z \not\geq_T \emptyset'$, and is suitable for σ, τ;
- $\text{Max } \sigma \cup \tau < \text{Min } X$.

Definition

$q = \langle \sigma_q, \tau_q, X_q \rangle$ is **stronger** than $p = \langle \sigma_p, \tau_p, X_p \rangle$ ($p \geq q$) if

- $\sigma_p \leq \sigma_q$ and $\tau_p \leq \tau_q$;
- $X_p \supset X_q$;
- $\sigma_q \setminus \sigma_p \subset X_p \setminus X_q$, and $\tau_q \setminus \tau_p \subset X_p \setminus X_q$.
Mathias Forcing Avoiding \emptyset'

Definition

A forcing condition $p = \langle \sigma, \tau, X \rangle$ is a triple of the form

- σ, τ are finite strings;
- σ is red: $\{x, z\}$ is red for any $x, z \in \sigma$;
- τ is blue: $\{y, z\}$ is blue for any $y, z \in \tau$;
- X is infinite, $X \oplus Z \not\geq_T \emptyset'$, and is suitable for σ, τ;
- $\text{Max } \sigma \cup \tau < \text{Min } X$.

Definition

$q = \langle \sigma_q, \tau_q, X_q \rangle$ is **stronger** than $p = \langle \sigma_p, \tau_p, X_p \rangle$ ($p \geq q$) if

- $\sigma_p \leq \sigma_q$ and $\tau_p \leq \tau_q$;
- $X_p \supset X_q$;
- $\sigma_q \setminus \sigma_p \subset X_p \setminus X_q$, and $\tau_q \setminus \tau_p \subset X_p \setminus X_q$.
Mathias Forcing Avoiding \emptyset'

Definition

A forcing condition $p = \langle \sigma, \tau, X \rangle$ is a triple of the form

- σ, τ are finite strings;
- σ is red: $\{x, z\}$ is red for any $x, z \in \sigma$;
- τ is blue: $\{y, z\}$ is blue for any $y, z \in \tau$;
- X is infinite, $X \oplus Z \not\geq_T \emptyset'$, and is suitable for σ, τ;
- $\text{Max } \sigma \cup \tau < \text{Min } X$.

Definition

$q = \langle \sigma_q, \tau_q, X_q \rangle$ is *stronger* than $p = \langle \sigma_p, \tau_p, X_p \rangle$ ($p \geq q$) if

- $\sigma_p \leq \sigma_q$ and $\tau_p \leq \tau_q$;
- $X_p \supset X_q$;
- $\sigma_q \setminus \sigma_p \subset X_p \setminus X_q$, and $\tau_q \setminus \tau_p \subset X_p \setminus X_q$.
Mathias Forcing Avoiding \emptyset'

Definition

A forcing condition $p = \langle \sigma, \tau, X \rangle$ is a triple of the form

- σ, τ are finite strings;
- σ is red: $\{x, z\}$ is red for any $x, z \in \sigma$;
- τ is blue: $\{y, z\}$ is blue for any $y, z \in \tau$;
- X is infinite, $X \oplus Z \nsubseteq_T \emptyset'$, and is suitable for σ, τ;
- $\text{Max } \sigma \cup \tau < \text{Min } X$.

Definition

$q = \langle \sigma_q, \tau_q, X_q \rangle$ is stronger than $p = \langle \sigma_p, \tau_p, X_p \rangle$ ($p \geq q$) if

- $\sigma_p \leq \sigma_q$ and $\tau_p \leq \tau_q$;
- $X_p \supset X_q$;
- $\sigma_q \setminus \sigma_p \subset X_p \setminus X_q$, and $\tau_q \setminus \tau_p \subset X_p \setminus X_q$.
Mathias Forcing Avoiding \emptyset'

Definition

A forcing condition $p = \langle \sigma, \tau, X \rangle$ is a triple of the form

- σ, τ are finite strings;
- σ is red: $\{x, z\}$ is red for any $x, z \in \sigma$;
- τ is blue: $\{y, z\}$ is blue for any $y, z \in \tau$;
- X is infinite, $X \oplus Z \not\geq_T \emptyset'$, and is suitable for σ, τ;
- $\operatorname{Max} \sigma \cup \tau < \operatorname{Min} X$.

Definition

$q = \langle \sigma_q, \tau_q, X_q \rangle$ is **stronger** than $p = \langle \sigma_p, \tau_p, X_p \rangle$ ($p \geq q$) if

- $\sigma_p \leq \sigma_q$ and $\tau_p \leq \tau_q$;
- $X_p \supset X_q$;
- $\sigma_q \setminus \sigma_p \subset X_p \setminus X_q$, and $\tau_q \setminus \tau_p \subset X_p \setminus X_q$.
Mathias Forcing Avoiding \emptyset'

Definition

A forcing condition $p = \langle \sigma, \tau, X \rangle$ is a triple of the form

- σ, τ are finite strings;
- σ is red: $\{x, z\}$ is red for any $x, z \in \sigma$;
- τ is blue: $\{y, z\}$ is blue for any $y, z \in \tau$;
- X is infinite, $X \oplus Z \not\geq_T \emptyset'$, and is suitable for σ, τ;
- $\text{Max } \sigma \cup \tau < \text{Min } X$.

Definition

$q = \langle \sigma_q, \tau_q, X_q \rangle$ is stronger than $p = \langle \sigma_p, \tau_p, X_p \rangle$ ($p \geq q$) if

- $\sigma_p \leq \sigma_q$ and $\tau_p \leq \tau_q$;
- $X_p \supset X_q$;
- $\sigma_q \setminus \sigma_p \subset X_p \setminus X_q$, and $\tau_q \setminus \tau_p \subset X_p \setminus X_q$.
Mathias Forcing Avoiding \emptyset'

Definition

A forcing condition $p = \langle \sigma, \tau, X \rangle$ is a triple of the form

- σ, τ are finite strings;
- σ is red: $\{x, z\}$ is red for any $x, z \in \sigma$;
- τ is blue: $\{y, z\}$ is blue for any $y, z \in \tau$;
- X is infinite, $X \oplus Z \ngeq_T \emptyset'$, and is suitable for σ, τ;
- $\text{Max}\, \sigma \cup \tau < \text{Min}\, X$.

Definition

$q = \langle \sigma_q, \tau_q, X_q \rangle$ is stronger than $p = \langle \sigma_p, \tau_p, X_p \rangle$ ($p \geq q$) if

- $\sigma_p \leq \sigma_q$ and $\tau_p \leq \tau_q$;
- $X_p \supset X_q$;
- $\sigma_q \setminus \sigma_p \subset X_p \setminus X_q$, and $\tau_q \setminus \tau_p \subset X_p \setminus X_q$.
Mathias Forcing Avoiding \emptyset'

Definition

A forcing condition $p = \langle \sigma, \tau, X \rangle$ is a triple of the form

- σ, τ are finite strings;
- σ is red: $\{x, z\}$ is red for any $x, z \in \sigma$;
- τ is blue: $\{y, z\}$ is blue for any $y, z \in \tau$;
- X is infinite, $X \oplus Z \not\geq_T \emptyset'$, and is suitable for σ, τ;
- $\text{Max } \sigma \cup \tau < \text{Min } X$.

Definition

$q = \langle \sigma_q, \tau_q, X_q \rangle$ is **stronger** than $p = \langle \sigma_p, \tau_p, X_p \rangle$ ($p \geq q$) if

- $\sigma_p \leq \sigma_q$ and $\tau_p \leq \tau_q$;
- $X_p \supset X_q$;
- $\sigma_q \setminus \sigma_p \subset X_p \setminus X_q$, and $\tau_q \setminus \tau_p \subset X_p \setminus X_q$.
Mathias Forcing Avoiding \emptyset'

Definition

- If $\sigma \cup \sigma_0$ and $\sigma \cup \sigma_1$ are red, and $\sigma \leq \sigma_0$ and $\sigma \leq \sigma_1$ are incompatible, then σ_0 and σ_1 *Φ-split* for red over σ if there is an $x \leq s = \text{Max} \ \sigma_0 \cup \sigma_1$ such that $\Phi^{\sigma_0 \oplus Z}_s(x) \downarrow \neq \Phi^{\sigma_1 \oplus Z}_s(x) \downarrow$;
- Define Φ-split for blue over τ similarly.

Let G_R and G_B be generic: For all φ in the language of second order arithmetic with set constants G_R and G_B and constant Z, there is a condition $p = \langle \sigma, \tau, X \rangle$ such that $\sigma < G_R$ and $\tau < G_B$ ("<" means initial segment) and $p \models \varphi$ or $\neg \varphi$.
Mathias Forcing Avoiding \emptyset'

Definition

- If $\sigma \cup \sigma_0$ and $\sigma \cup \sigma_1$ are red, and $\sigma \leq \sigma_0$ and $\sigma \leq \sigma_1$ are incompatible, then σ_0 and σ_1 Φ-split for red over σ if there is an $x \leq s = \text{Max } \sigma_0 \cup \sigma_1$ such that $\Phi_{s}^{\sigma_0 \oplus Z}(x) \downarrow \neq \Phi_{s}^{\sigma_1 \oplus Z}(x) \downarrow$;
- Define Φ-split for blue over τ similarly.

Let G_R and G_B be generic: For all φ in the language of second order arithmetic with set constants G_R and G_B and constant Z, there is a condition $p = \langle \sigma, \tau, X \rangle$ such that $\sigma < G_R$ and $\tau < G_B$ ("<" means initial segment) and $p \not\models \varphi$ or $\neg \varphi$.
Mathias Forcing Avoiding \emptyset'

Definition

- If $\sigma \cup \sigma_0$ and $\sigma \cup \sigma_1$ are red, and $\sigma \leq \sigma_0$ and $\sigma \leq \sigma_1$ are incompatible, then σ_0 and σ_1 **Φ-split** for red over σ if there is an $x \leq s = \text{Max } \sigma_0 \cup \sigma_1$ such that $\Phi_{s_0}^{\sigma_0 \oplus Z}(x) \downarrow \neq \Phi_{s_1}^{\sigma_1 \oplus Z}(x) \downarrow$;
- Define Φ-split for blue over τ similarly.

Let G_R and G_B be generic: For all φ in the language of second order arithmetic with set constants G_R and G_B and constant Z, there is a condition $p = \langle \sigma, \tau, X \rangle$ such that $\sigma < G_R$ and $\tau < G_B$ ("<" means initial segment) and $p \models \varphi$ or $\neg \varphi$.
Mathias Forcing Avoiding \emptyset'

Lemma (3.1)

Given $\langle \sigma, \tau, X \rangle$, if no incompatible $\sigma_0, \sigma_1 \geq \sigma$ with $\sigma_0 \setminus \sigma, \sigma_1 \setminus \sigma \subset X$ Φ-split for red over σ and if $\Phi^{GR \oplus Z}$ is total, then it is recursive in $X \oplus Z$. Same conclusion for τ.

A finite set D is red if $\{x, z\}$ is red for all $x, z \in D$.

Definition

Let $p = \langle \sigma, \tau, X \rangle$ be a condition. X is blue-hyperimmune if for any infinite $X \oplus Z$-recursive array of red finite sets $\langle D_i | i \in \omega \rangle$, there is a D_i and an infinite $Y \subset X$ such that $Y \leq_T X$, $\text{Max } D_i < \text{Min } Y$ and $\{x, z\}$ is red for all $x \in D_i$ and $z \in Y$.

Note. In this case $\langle \sigma, \tau, X \rangle \geq \langle \sigma_{D_i}, \tau, Y \rangle$, where $\sigma_{D_i}(x) = \sigma(x)$ for $x \leq \text{lth}(\sigma)$, and equal to $D_i(x)$ otherwise.
Lemma (3.1)

Given $\langle \sigma, \tau, X \rangle$, if no incompatible $\sigma_0, \sigma_1 \geq \sigma$ with $\sigma_0 \setminus \sigma, \sigma_1 \setminus \sigma \subset X$ Φ-split for red over σ and if $\Phi^{GR \oplus Z}$ is total, then it is recursive in $X \oplus Z$. Same conclusion for τ.

A finite set D is red if $\{x, z\}$ is red for all $x, z \in D$.

Definition

Let $p = \langle \sigma, \tau, X \rangle$ be a condition. X is blue-hyperimmune if for any infinite $X \oplus Z$-recursive array of red finite sets $\langle D_i \mid i \in \omega \rangle$, there is a D_i and an infinite $Y \subset X$ such that $Y \leq_T X$, $\text{Max } D_i < \text{Min } Y$ and $\{x, z\}$ is red for all $x \in D_i$ and $z \in Y$.

Note. In this case $\langle \sigma, \tau, X \rangle \geq \langle \sigma_{D_i}, \tau, Y \rangle$, where $\sigma_{D_i}(x) = \sigma(x)$ for $x \leq \text{lth}(\sigma)$, and equal to $D_i(x)$ otherwise.
Lemma (3.1)

Given \(\langle \sigma, \tau, X \rangle \), if no incompatible \(\sigma_0, \sigma_1 \geq \sigma \) with \(\sigma_0 \setminus \sigma, \sigma_1 \setminus \sigma \subset X \) \(\Phi \)-split for red over \(\sigma \) and if \(\Phi^{GR \oplus Z} \) is total, then it is recursive in \(X \oplus Z \). Same conclusion for \(\tau \).

A finite set \(D \) is red if \(\{x, z\} \) is red for all \(x, z \in D \).

Definition

Let \(p = \langle \sigma, \tau, X \rangle \) be a condition. \(X \) is \textit{blue-hyperimmune} if for any infinite \(X \oplus Z \)-recursive array of red finite sets \(\langle D_i | i \in \omega \rangle \), there is a \(D_i \) and an infinite \(Y \subset X \) such that \(Y \leq_T X \), Max \(D_i < \text{Min } Y \) and \(\{x, z\} \) is red for all \(x \in D_i \) and \(z \in Y \).

Note. In this case \(\langle \sigma, \tau, X \rangle \geq \langle \sigma_{D_i}, \tau, Y \rangle \), where \(\sigma_{D_i}(x) = \sigma(x) \) for \(x \leq \text{lth}(\sigma) \), and equal to \(D_i(x) \) otherwise.
Mathias Forcing Avoiding \emptyset'

Lemma (3.1)

Given $\langle \sigma, \tau, X \rangle$, if no incompatible $\sigma_0, \sigma_1 \geq \sigma$ with $\sigma_0 \setminus \sigma, \sigma_1 \setminus \sigma \subset X$ Φ-split for red over σ and if $\Phi^{G_{R \oplus Z}}$ is total, then it is recursive in $X \oplus Z$. Same conclusion for τ.

A finite set D is red if $\{x, z\}$ is red for all $x, z \in D$.

Definition

Let $p = \langle \sigma, \tau, X \rangle$ be a condition. X is blue-hyperimmune if for any infinite $X \oplus Z$-recursive array of red finite sets $\langle D_i | i \in \omega \rangle$, there is a D_i and an infinite $Y \subset X$ such that $Y \leq_T X$, $\text{Max } D_i < \text{Min } Y$ and $\{x, z\}$ is red for all $x \in D_i$ and $z \in Y$.

Note. In this case $\langle \sigma, \tau, X \rangle \geq \langle \sigma_{D_i}, \tau, Y \rangle$, where $\sigma_{D_i}(x) = \sigma(x)$ for $x \leq \text{lth}(\sigma)$, and equal to $D_i(x)$ otherwise.
Avoiding \emptyset'

Lemma (3.2)

*If the set of conditions $\langle \sigma, \tau, X \rangle$ with X blue-hyperimmune is dense, then any G_R is an H_f satisfying $G_R \oplus Z \not\geq_T \emptyset'$.***

Proof. Suppose $\Phi^{G_R \oplus Z} = \emptyset'$. Then there is a $p = \langle \sigma, \tau, X \rangle$ such that $p \models \Phi^{G_R \oplus Z} = \emptyset'$, $\sigma < G_R$, and X is blue-hyperimmune. Enumerate $X \oplus Z$-recursively pairwise disjoint red finite subsets $\langle D_{i,0}, D_{i,1} \rangle$ of X such that $\langle \sigma_{D_{i,0}}, \sigma_{D_{i,1}} \rangle \Phi$-split for red over σ.

- **Case 1.** There are only finitely many such i's. Then there is an s such that if $Y = X \cap \{x | x > s\}$, no pair of strings that Φ-split for red over σ exists by choosing them from finite subsets of Y. Now $q = \langle \sigma, \tau, Y \rangle \leq p$ and so $q \models \Phi^{G_R \oplus Z} = \emptyset'$. However, Lemma 3.1 says $q \models \Phi^{G_R \oplus Z} \leq_T Y \oplus Z$. Since $Y \oplus Z \not\geq_T \emptyset'$, we have a contradiction.
Avoiding \emptyset'

Lemma (3.2)

If the set of conditions $\langle \sigma, \tau, X \rangle$ with X blue-hyperimmune is dense, then any G_R is an H_f satisfying $G_R \oplus Z \not\geq_T \emptyset'$.

Proof. Suppose $\Phi^{G_R \oplus Z} = \emptyset'$. Then there is a $p = \langle \sigma, \tau, X \rangle$ such that $p \models \Phi^{G_R \oplus Z} = \emptyset'$, $\sigma < G_R$, and X is blue-hyperimmune. Enumerate $X \oplus Z$-recursively pairwise disjoint red finite subsets $\langle D_{i,0}, D_{i,1} \rangle$ of X such that $\langle \sigma_{D_{i,0}}, \sigma_{D_{i,1}} \rangle \Phi$-split for red over σ.

- Case 1. There are only finitely many such i's. Then there is an s such that if $Y = X \cap \{x | x > s\}$, no pair of strings that Φ-split for red over σ exists by choosing them from finite subsets of Y. Now $q = \langle \sigma, \tau, Y \rangle \leq p$ and so $q \models \Phi^{G_R \oplus Z} = \emptyset'$. However, Lemma 3.1 says $q \models \Phi^{G_R \oplus Z} \leq_T Y \oplus Z$. Since $Y \oplus Z \not\geq_T \emptyset'$, we have a contradiction.
Case 2. There are infinitely many i's. Then since X is blue-hyperimmune, there exist i and infinite $Y \subset X$ with $Y \leq_T X$ such that $\{x, z\}$ is red for all $x \in D_{i,0} \cup D_{i,1}$ and $z \in Y$, where $\text{Max } D_{i,0} \cup D_{i,1} < \text{Min } Y$. Then $\langle \sigma_{D_{i,0}}, \tau, Y \rangle$ and $\langle \sigma_{D_{i,1}}, \tau, Y \rangle \leq p$ and $\langle \sigma_{D_{i,0}}, \sigma_{D_{i,1}} \rangle \Phi$-split for red over σ, contradicting the assumption that $p \models \Phi^{G_R \oplus Z} = \emptyset'$.

Definition

Let X be infinite. A *Seetapun tree* for X is an infinite X-recursively bounded X-recursive tree T such that for each n, there is a string $\nu \in T$ of length n satisfying: for all $i \leq n$ and all infinite $Y \subset X$ with $Y \leq_T X$, $\{z \in Y | \{\nu(i), z\} \text{ is blue}\}$ is infinite.
Lemma (3.3)

Assume that \(\{ \langle \sigma, \tau, X \rangle \mid X \text{ is blue-hyperimmune} \} \) is not dense. Then there is a \(G_B \) that is an \(H_f \) and \(G_B \oplus Z \not\leq_T \emptyset' \).

Proof Fix \(p = \langle \sigma_p, \tau_p, X_p \rangle \) so that if \(q = \langle \sigma_q, \tau_q, X_q \rangle \leq p \), then \(X_q \) is not blue-hyperimmune. Let \(G_B \) be such that \(\tau_q < G_B \). Suppose \(\Phi_{G_B \oplus Z} = \emptyset' \) and let \(q \vDash \Phi_{G_B \oplus Z} = \emptyset' \) with \(q \leq p \).

Let \(\langle D_i \rangle \) be an infinite \(X_q \)-recursive pairwise disjoint array of finite subsets of \(X_q \) that witnesses the non-blue-hyperimmunity of \(X_q \). Define \(T \) to be the collection of all strings \(\nu \) such that if \(n = \text{ith}(\nu) \), then \(\nu(i) \in D_i \) for \(i \leq n \). We may assume that \(\text{Max } D_i < \text{Min } D_{i+1} \).

\(T \) is a Seetapun tree.
Lemma (3.3)

Assume that \(\{ \langle \sigma, \tau, X \rangle | X \text{ is blue-hyperimmune} \} \) is not dense. Then there is a \(G_B \) that is an \(H_f \) and \(G_B \oplus Z \nsubseteq T \emptyset' \).

Proof Fix \(p = \langle \sigma_p, \tau_p, X_p \rangle \) so that if \(q = \langle \sigma_q, \tau_q, X_q \rangle \leq p \), then \(X_q \) is not blue-hyperimmune. Let \(G_B \) be such that \(\tau_q < G_B \). Suppose \(\Phi^{G_B \oplus Z} = \emptyset' \) and let \(q \models \Phi^{G_B \oplus Z} = \emptyset' \) with \(q \leq p \).

Let \(\langle D_i \rangle \) be an infinite \(X_q \)-recursive pairwise disjoint array of finite subsets of \(X_q \) that witnesses the non-blue-hyperimmunity of \(X_q \). Define \(T \) to be the collection of all strings \(\nu \) such that if \(n = \text{lth}(\nu) \), then \(\nu(i) \in D_i \) for \(i \leq n \). We may assume that \(\text{Max } D_i < \text{Min } D_{i+1} \).

\(T \) is a Seetapun tree.
Lemma (3.3)

Assume that \(\{ \langle \sigma, \tau, X \rangle | X \text{ is blue-hyperimmune} \} \) is not dense. Then there is a \(G_B \) that is an \(H_f \) and \(G_B \oplus Z \not\geq_T \emptyset' \).

Proof Fix \(p = \langle \sigma_p, \tau_p, X_p \rangle \) so that if \(q = \langle \sigma_q, \tau_q, X_q \rangle \leq p \), then \(X_q \) is not blue-hyperimmune. Let \(G_B \) be such that \(\tau_q < G_B \). Suppose \(\Phi^{G_B \oplus Z} = \emptyset' \) and let \(q \models \Phi^{G_B \oplus Z} = \emptyset' \) with \(q \leq p \).

Let \(\langle D_i \rangle \) be an infinite \(X_q \)-recursive pairwise disjoint array of finite subsets of \(X_q \) that witnesses the non-blue-hyperimmunity of \(X_q \). Define \(T \) to be the collection of all strings \(\nu \) such that if \(n = \text{lth}(\nu) \), then \(\nu(i) \in D_i \) for \(i \leq n \). We may assume that \(\text{Max } D_i < \text{Min } D_{i+1} \).

\(T \) is a Seetapun tree.
Assume that \(\{ \langle \sigma, \tau, X \rangle \mid X \text{ is blue-hyperimmune} \} \) is not dense. Then there is a \(G_B \) that is an \(H_f \) and \(G_B \oplus Z \nleq_T \emptyset' \).

Proof Fix \(p = \langle \sigma_p, \tau_p, X_p \rangle \) so that if \(q = \langle \sigma_q, \tau_q, X_q \rangle \leq p \), then \(X_q \) is not blue-hyperimmune. Let \(G_B \) be such that \(\tau_q < G_B \). Suppose \(\Phi^{G_B \oplus Z} = \emptyset' \) and let \(q \models \Phi^{G_B \oplus Z} = \emptyset' \) with \(q \leq p \).

Let \(\langle D_i \rangle \) be an infinite \(X_q \)-recursive pairwise disjoint array of finite subsets of \(X_q \) that witnesses the non-blue-hyperimmunity of \(X_q \). Define \(T \) to be the collection of all strings \(\nu \) such that if \(n = \text{ith}(\nu) \), then \(\nu(i) \in D_i \) for \(i \leq n \). We may assume that \(\text{Max } D_i < \text{Min } D_{i+1} \).

\(T \) is a Seetapun tree.
Let

\[U = \{ \nu \in T | \forall E_0, E_1 \subset \nu [\langle \tau_{E_0}, \tau_{E_1} \rangle \text{ do not } \Phi\text{-split for blue over } \tau_q} \}, \]

where \(\tau_{E_i}(x) = \tau(x) \) for \(x \leq \text{lth}(\tau) \), and equal to \(E_i(x) \) otherwise. \([E \subset \nu \text{ means } \forall x(x \in E \leftrightarrow \nu(i) = x) \text{ for some } i \leq \text{lth}(\nu).]\)

- **Case 1.** \(U \) is finite. Fix \(s_0 \) such that for all \(\nu \) of length greater than \(s_0 \), there exist \(E_0, E_1 \subset \nu \) with \(\langle \tau_{E_0}, \tau_{E_1} \rangle \text{ } \Phi\text{-split for blue over } \tau \). Since \(X_q \) is not blue-hyperimmune, there is \(\langle x_0, Y_0 \rangle \) such that
 - \(x_0 \in D_0 \);
 - \(Y_0 \subset X_q \) is infinite and \(Y_0 \leq_T X_0 \);
 - \(\{x_0, z\} \) is blue for all \(z \in Y_0 \).
Seetapun Tree

Let

\[U = \{ \nu \in T | \forall E_0, E_1 \subset \nu [\langle \tau_{E_0}, \tau_{E_1} \rangle \text{ do not } \Phi\text{-split for blue over } \tau_q \} , \]

where \(\tau_{E_i}(x) = \tau(x) \) for \(x \leq \text{lth}(\tau) \), and equal to \(E_i(x) \) otherwise. \([E \subset \nu \text{ means } \forall x (x \in E \leftrightarrow \nu(i) = x) \text{ for some } i \leq \text{lth}(\nu) .]\]

Case 1. \(U \) is finite. Fix \(s_0 \) such that for all \(\nu \) of length greater than \(s_0 \), there exist \(E_0, E_1 \subset \nu \) with \(\langle \tau_{E_0}, \tau_{E_1} \rangle \) \(\Phi \)-split for blue over \(\tau \). Since \(X_q \) is not blue-hyperimmune, there is \(\langle x_0, Y_0 \rangle \) such that

- \(x_0 \in D_0 \);
- \(Y_0 \subset X_q \) is infinite and \(Y_0 \leq_T X_0 \);
- \(\{ x_0, z \} \) is blue for all \(z \in Y_0 \).
Let

\[U = \{ \nu \in T | \forall E_0, E_1 \subset \nu [\langle \tau_{E_0}, \tau_{E_1} \rangle \text{ do not } \Phi\text{-split for blue over } \tau_q \} \],

where \(\tau_{E_i}(x) = \tau(x) \) for \(x \leq \text{lth}(\tau) \), and equal to \(E_i(x) \) otherwise. \([E \subset \nu \text{ means } \forall x (x \in E \leftrightarrow \nu(i) = x) \text{ for some } i \leq \text{lth}(\nu)\].

- **Case 1.** \(U \) is finite. Fix \(s_0 \) such that for all \(\nu \) of length greater than \(s_0 \), there exist \(E_0, E_1 \subset \nu \) with \(\langle \tau_{E_0}, \tau_{E_1} \rangle \) \(\Phi \)-split for blue over \(\tau \). Since \(X_q \) is not blue-hyperimmune, there is \(\langle x_0, Y_0 \rangle \) such that
 - \(x_0 \in D_0 \);
 - \(Y_0 \subset X_q \) is infinite and \(Y_0 \leq_T X_0 \);
 - \(\{x_0, z\} \) is blue for all \(z \in Y_0 \).
Seetapun Tree

Let

$$U = \{ \nu \in T | \forall E_0, E_1 \subset \nu [\langle \tau_{E_0}, \tau_{E_1} \rangle \text{ do not } \Phi\text{-split for blue over } \tau_q] \},$$

where $$\tau_{E_i}(x) = \tau(x)$$ for $$x \leq \text{lth}(\tau)$$, and equal to $$E_i(x)$$ otherwise. [$$E \subset \nu$$ means $$\forall x (x \in E \leftrightarrow \nu(i) = x)$$ for some $$i \leq \text{lth}(\nu)$$.]

- **Case 1.** $$U$$ is finite. Fix $$s_0$$ such that for all $$\nu$$ of length greater than $$s_0$$, there exist $$E_0, E_1 \subset \nu$$ with $$\langle \tau_{E_0}, \tau_{E_1} \rangle$$ $$\Phi$$-split for blue over $$\tau$$. Since $$X_q$$ is not blue-hyperimmune, there is $$\langle x_0, Y_0 \rangle$$ such that
 - $$x_0 \in D_0$$;
 - $$Y_0 \subset X_q$$ is infinite and $$Y_0 \leq_T X_0$$;
 - $$\{x_0, z\}$$ is blue for all $$z \in Y_0$$.
Avoiding \emptyset'

If $\langle x_i, Y_i \rangle$ is defined so that $x_i \in D_i$, $Y_i \subset X_q$ is infinite, $Y_i \leq_T X_q$, and $\{x_i, z\}$ is blue for all $z \in Y_i$, then there exists $\langle x_{i+1}, Y_{i+1} \rangle$ such that

- $x_{i+1} \in D_{i+1}$;
- $Y_{i+1} \subset Y_i$ is infinite and $Y_{i+1} \leq_T Y_i$;
- $\{x_{i+1}, z\}$ is blue for all $z \in Y_{i+1}$.

Let $\nu^*(i) = x_i$ for $i \leq s_0 + 1$. Then there exist $E_0, E_1 \subset \nu^*$ so that $\langle \tau_{E_0}, \tau_{E_1} \rangle \Phi$-split for blue over τ_q. Then $\langle \sigma, \tau_{E_0}, Y_{s_0+1} \rangle$ and $\langle \sigma, \tau_{E_1}, Y_{s_0+1} \rangle$ are two incompatible extensions of q that split Φ, contradiction.
Avoiding \emptyset'

If $\langle x_i, Y_i \rangle$ is defined so that $x_i \in D_i$, $Y_i \subseteq X_q$ is infinite, $Y_i \leq_T X_q$ and $\{x_i, z\}$ is blue for all $z \in Y_i$, then there exists $\langle x_{i+1}, Y_{i+1} \rangle$ such that

- $x_{i+1} \in D_{i+1}$;
- $Y_{i+1} \subseteq Y_i$ is infinite and $Y_{i+1} \leq_T Y_i$;
- $\{x_{i+1}, z\}$ is blue for all $z \in Y_{i+1}$.

Let $\nu^*(i) = x_i$ for $i \leq s_0 + 1$. Then there exist $E_0, E_1 \subseteq \nu^*$ so that $\langle \tau_{E_0}, \tau_{E_1} \rangle \Phi$-split for blue over τ_q. Then $\langle \sigma, \tau_{E_0}, Y_{s_0+1} \rangle$ and $\langle \sigma, \tau_{E_1}, Y_{s_0+1} \rangle$ are two incompatible extensions of q that split Φ, contradiction.
If $\langle x_i, Y_i \rangle$ is defined so that $x_i \in D_i$, $Y_i \subseteq X_q$ is infinite, $Y_i \leq_T X_q$ and \{x_i, z\} is blue for all $z \in Y_i$, then there exists $\langle x_{i+1}, Y_{i+1} \rangle$ such that

- $x_{i+1} \in D_{i+1}$;
- $Y_{i+1} \subseteq Y_i$ is infinite and $Y_{i+1} \leq_T Y_i$;
- \{x_{i+1}, z\} is blue for all $z \in Y_{i+1}$.

Let $\nu^*(i) = x_i$ for $i \leq s_0 + 1$. Then there exist $E_0, E_1 \subseteq \nu^*$ so that $\langle \tau_{E_0}, \tau_{E_1} \rangle \Phi$-split for blue over τ_q. Then $\langle \sigma, \tau_{E_0}, Y_{s_0+1} \rangle$ and $\langle \sigma, \tau_{E_1}, Y_{s_0+1} \rangle$ are two incompatible extensions of q that split Φ, contradiction.
Avoiding \(\emptyset' \)

If \(\langle x_i, Y_i \rangle \) is defined so that \(x_i \in D_i, Y_i \subset X_q \) is infinite, \(Y_i \leq_T X_q \) and \(\{x_i, z\} \) is blue for all \(z \in Y_i \), then there exists \(\langle x_{i+1}, Y_{i+1} \rangle \) such that

- \(x_{i+1} \in D_{i+1} \);
- \(Y_{i+1} \subset Y_i \) is infinite and \(Y_{i+1} \leq_T Y_i \);
- \(\{x_{i+1}, z\} \) is blue for all \(z \in Y_{i+1} \).

Let \(\nu^*(i) = x_i \) for \(i \leq s_0 + 1 \). Then there exist \(E_0, E_1 \subset \nu^* \) so that \(\langle \tau_{E_0}, \tau_{E_1} \rangle \) \(\Phi \)-split for blue over \(\tau_q \). Then \(\langle \sigma, \tau_{E_0}, Y_{s_0+1} \rangle \) and \(\langle \sigma, \tau_{E_1}, Y_{s_0+1} \rangle \) are two incompatible extensions of \(q \) that split \(\Phi \), contradiction.
Avoiding \emptyset'

Case 2. U is infinite. By the Low Basis Theorem relativized to $X_q \oplus Z$, U has a infinite path W that is low in $X_q \oplus Z$ not above \emptyset' (since $X \oplus Z \not\geq_T \emptyset'$). Then $\langle \sigma_q, \tau_q, W \rangle \leq q$ and for any $E_0, E_1 \subset W$, $\langle \tau_{E_0}, \tau_{E_1} \rangle$ does not Φ-split for blue over τ_q. Lemma 3.1 then implies that $\Phi^{G_B \oplus Z}$ is recursive in $X_q \oplus Z$, a contradiction.

The above may be iterated to produce an ω-model of $\text{RCA}_0 + \text{WKL}_0 + \text{RT}_2^2$ that avoids \emptyset', as follows:
Avoiding \emptyset'

Case 2. U is infinite. By the Low Basis Theorem relativized to $X_q \oplus Z$, U has a infinite path W that is low in $X_q \oplus Z$ not above \emptyset' (since $X \oplus Z \not\leq_T \emptyset'$). Then $\langle \sigma_q, \tau_q, W \rangle \leq q$ and for any $E_0, E_1 \subset W$, $\langle \tau_{E_0}, \tau_{E_1} \rangle$ does not Φ-split for blue over τ_q. Lemma 3.1 then implies that $\Phi^{G_B \oplus Z}$ is recursive in $X_q \oplus Z$, a contradiction.

The above may be iterated to produce an ω-model of $\text{RCA}_0 + \text{WKL}_0 + \text{RT}^2_2$ that avoids \emptyset', as follows:
Lemma (3.4)

Let $\mathcal{M} = \langle \omega, X, +, \times, 0, 1 \rangle$ be a model of RCA$_0$ such that X is finite. Assume that $X = \bigoplus_{i \in X} X_i$ does not compute \emptyset' and $X \in X$. Furthermore,

(i) T is a X-recursively bounded, X-recursive tree and
(ii) $f : [\mathbb{N}]^2 \to 2$ is an X-recursive 2-coloring of pairs.

Then T has an infinite path W so that $W \oplus X \not\leq_T \emptyset'$, and there is an H_f such that $H_f \oplus W \oplus X$ does not compute \emptyset'.

An ω-model of RCA$_0 + WKL_0 + RT^2_2$
An ω-model of $\text{RCA}_0 + \text{WKL}_0 + \text{RT}_2^2$

The proof proceeds by first applying the relativized Low Basis Theorem to obtain W, and let $X^* = X \cup \{W\}$. Then apply Theorem 3.1 with Z as the joint X of all $X_i \in X$.

Proof of corollary to Theorem 3.1. Begin with an ω-model M_0 where $X = \emptyset$. Recursively define M_n so that an infinite path for a tree $T \in X_n$ that does not compute \emptyset' is first added to X_{n+1}, followed by an H_f for a 2-coloring of pairs that satisfies the conclusion of Lemma 3.4. This can be arranged in such a way that $M = \bigcup_n M_n$ is the desired model.
The proof proceeds by first applying the relativized Low Basis Theorem to obtain W, and let $X^* = X \cup \{W\}$. Then apply Theorem 3.1 with Z as the joint X of all $X_i \in X$.

Proof of corollary to Theorem 3.1. Begin with an ω-model M_0 where $X = \emptyset$. Recursively define M_n so that an infinite path for a tree $T \in X_n$ that does not compute \emptyset' is first added to X_{n+1}, followed by an H_f for a 2-coloring of pairs that satisfies the conclusion of Lemma 3.4. This can be arranged in such a way that $M = \bigcup_n M_n$ is the desired model.
Session III:

L’estremità