Recursion Theory of Ramsey’s Theorem

Università degli Studi di Siena
April 2006
Session VI

Chitat CHONG

Department of Mathematics
National University of Singapore

chongct@math.nus.edu.sg
COH in $B\Sigma^0_2$ Models

Definition

$\mathcal{M} \models \text{RCA}_0$ is a $B\Sigma^0_2$ model if it satisfies $B\Sigma^0_2$ but not $I\Sigma^0_2$.

Theorem (6.1)

(Chong, Slaman and Yang [2006]) $\text{RCA}_0 + \text{COH} + B\Sigma^0_2$ is Π^1_1-conservative over $\text{RCA}_0 + B\Sigma^0_2$.

By Löwenheim-Skolem, this is a consequence of

Theorem (6.2)

Every countable model \mathcal{M} of $\text{RCA}_0 + B\Sigma^0_2$ is an \mathcal{M}-submodel of one satisfying COH.
Definition

\[\mathcal{M} \models \text{RCA}_0 \text{ is a } B\Sigma^0_2 \text{ model if it satisfies } B\Sigma^0_2 \text{ but not } I\Sigma^0_2. \]

Theorem (6.1)

(Chong, Slaman and Yang [2006]) \(\text{RCA}_0 + \text{COH} + B\Sigma^0_2 \text{ is } \Pi^1_1 \text{-conservative over } \text{RCA}_0 + B\Sigma^0_2.\)

By Löwenheim-Skolem, this is a consequence of

Theorem (6.2)

Every countable model \(\mathcal{M}\) of \(\text{RCA}_0 + B\Sigma^0_2\) is an \(\mathcal{M}\)-submodel of one satisfying COH.
COH in $B\Sigma^0_2$ Models

Definition

$\mathcal{M} \models RCA_0$ is a $B\Sigma^0_2$ model if it satisfies $B\Sigma^0_2$ but not $I\Sigma^0_2$.

Theorem (6.1)

(Chong, Slaman and Yang [2006]) $RCA_0 + COH + B\Sigma^0_2$ is Π^1_1-conservative over $RCA_0 + B\Sigma^0_2$.

By Löwenheim-Skolem, this is a consequence of

Theorem (6.2)

*Every countable model \mathcal{M} of $RCA_0 + B\Sigma^0_2$ is an \mathcal{M}-submodel of one satisfying COH.***
Definition

\(\mathcal{M} \models \text{RCA}_0 \) is a \(B\Sigma^0_2 \) model if it satisfies \(B\Sigma^0_2 \) but not \(I\Sigma^0_2 \).

Theorem (6.1)

(Chong, Slaman and Yang [2006]) \(\text{RCA}_0 + \text{COH} + B\Sigma^0_2 \) is \(\Pi^1_1 \)-conservative over \(\text{RCA}_0 + B\Sigma^0_2 \).

By Löwenheim-Skolem, this is a consequence of

Theorem (6.2)

Every countable model \(\mathcal{M} \) of \(\text{RCA}_0 + B\Sigma^0_2 \) is an \(M \)-submodel of one satisfying \(\text{COH} \).
Building a Y'-recursive Tree of R-cohesive Paths

Let \mathcal{M} be a $B\Sigma^0_2$ model and fix $Y \in \mathcal{M}$ so that I is a $\Sigma^0_2(Y)$ cut and $g : I \rightarrow \mathcal{M}$ is $\Sigma^0_2(Y)$, cofinal and increasing.

Lemma (6.1)

Let $R \in \mathbb{X}$ be an array. There is an \mathcal{M}-infinite Y'-recursive tree T such that every \mathcal{M}-infinite path G on T is R-cohesive and generalized low relative to Y, i.e. $G' \leq_T G \oplus Y'$.
Let \mathcal{M} be a $B\Sigma_2^0$ model and fix $Y \in \mathcal{M}$ so that I is a $\Sigma_2^0(Y)$ cut and $g : I \rightarrow M$ is $\Sigma_2^0(Y)$, cofinal and increasing.

Lemma (6.1)

Let $R \in \mathbb{X}$ be an array. There is an \mathcal{M}-infinite Y'-recursive tree T such that every \mathcal{M}-infinite path G on T is R-cohesive and generalized low relative to Y, i.e. $G' \leq_T G \oplus Y'$.
Building a Y'-recursive Tree of R-cohesive Paths

Proof. We may assume that $R \leq_T Y$. Let $R_s = \{ s \mid (s, t) \in R \}$.

- $\nu \in 2^{g(0)}$ is *fulfilled* if there is a σ such that (i) $\sigma(x) = 1$ for some $x \leq \text{lth}(\sigma)$ and (ii) $\forall x \leq \text{lth}(\sigma) \sigma(x) = 1$ if and only if $x \in \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i$.
- If ν is fulfilled, let σ_ν be the least σ that witnesses it. Let $F_0 = \{ \sigma_\nu \mid \nu \in 2^{g(0)} \}$.
- Let $C_0[\sigma_\nu] = \{ \sigma \geq \sigma_\nu \mid \sigma \subset \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i \}$.
- Let $C_0 = \bigcup_{\sigma_\nu \in F_0} C_0[\sigma_\nu]$.
- **Claim 1.** C_0 is \mathcal{M}-infinite.
- Otherwise, let b be the least upper bound and let $\sigma = \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i \upharpoonright s_0$ for some $\nu \in F_0$. Define μ recursively in Y':
Building a Y'-recursive Tree of R-cohesive Paths

Proof. We may assume that $R \leq_T Y$. Let $R_s = \{s|(s, t) \in R\}$.

- $\nu \in 2^{g(0)}$ is *fulfilled* if there is a σ such that (i) $\sigma(x) = 1$ for some $x \leq \text{lth}(\sigma)$ and (ii) $\forall x \leq \text{lth}(\sigma) \sigma(x) = 1$ if and only if $x \in \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i$.

- If ν is fulfilled, let σ_ν be the least σ that witnesses it. Let $F_0 = \{\sigma_\nu | \nu \in 2^{g(0)}\}$.

- Let $C_0[\sigma_\nu] = \{\sigma \geq \sigma_\nu | \sigma \subset \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i\}$.

- Let $C_0 = \bigcup_{\sigma_\nu \in F_0} C_0[\sigma_\nu]$.

- **Claim 1.** C_0 is $\cal M$-infinite.

- Otherwise, let b be the least upper bound and let $\sigma = \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i \upharpoonright s_0$ for some $\nu \in F_0$. Define μ recursively in Y':
Building a Y'-recursive Tree of R-cohesive Paths

Proof. We may assume that $R \leq_T Y$. Let $R_s = \{s | (s, t) \in R\}$.

- $\nu \in 2^{g(0)}$ is fulfilled if there is a σ such that (i) $\sigma(x) = 1$ for some $x \leq \lth(\sigma)$ and (ii) $\forall x \leq \lth(\sigma) \sigma(x) = 1$ if and only if $x \in \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i$.

- If ν is fulfilled, let σ_{ν} be the least σ that witnesses it. Let $F_0 = \{\sigma_{\nu} | \nu \in 2^{g(0)}\}$.

- Let $C_0[\sigma_{\nu}] = \{\sigma \geq \sigma_{\nu} | \sigma \subset \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i\}$.

- Let $C_0 = \bigcup_{\sigma_{\nu} \in F_0} C_0[\sigma_{\nu}]$.

- Claim 1. C_0 is \mathcal{M}-infinite.

- Otherwise, let b be the least upper bound and let $\sigma = \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i \upharpoonright s_0$ for some $\nu \in F_0$. Define μ recursively in Y':
Proof. We may assume that $R \leq_T Y$. Let $R_s = \{s| (s, t) \in R\}$.

- $\nu \in 2^{g(0)}$ is fulfilled if there is a σ such that (i) $\sigma(x) = 1$ for some $x \leq \text{th}(\sigma)$ and (ii) $\forall x \leq \text{th}(\sigma)\sigma(x) = 1$ if and only if $x \in \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i$.

- If ν is fulfilled, let σ_{ν} be the least σ that witnesses it. Let $F_0 = \{\sigma_{\nu} | \nu \in 2^{g(0)}\}$.

- Let $C_0[\sigma_{\nu}] = \{\sigma \geq \sigma_{\nu} | \sigma \subseteq \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i\}$.

- Let $C_0 = \bigcup_{\sigma_{\nu} \in F_0} C_0[\sigma_{\nu}]$.

- Claim 1. C_0 is \mathcal{M}-infinite.

- Otherwise, let b be the least upper bound and let $\sigma = \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i \upharpoonright s_0$ for some $\nu \in F_0$. Define μ recursively in Y':
Building a Y'-recursive Tree of R-cohesive Paths

Proof. We may assume that $R \leq_T Y$. Let $R_s = \{ s | (s, t) \in R \}$.

- $\nu \in 2^{g(0)}$ is *fulfilled* if there is a σ such that (i) $\sigma(x) = 1$ for some $x \leq \text{lth}(\sigma)$ and (ii) $\forall x \leq \text{lth}(\sigma) \sigma(x) = 1$ if and only if $x \in \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i$.

- If ν is fulfilled, let σ_ν be the least σ that witnesses it. Let $F_0 = \{ \sigma_\nu | \nu \in 2^{g(0)} \}$.

- Let $C_0[\sigma_\nu] = \{ \sigma \geq \sigma_\nu | \sigma \subset \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i \}$.

- Let $C_0 = \bigcup_{\sigma_\nu \in F_0} C_0[\sigma_\nu]$.

- **Claim 1.** C_0 is \mathcal{M}-infinite.

- Otherwise, let b be the least upper bound and let $\sigma = \bigcap_{\nu(i) = 1} R_i \cap \bigcap_{\nu(i) = 0} \bar{R}_i \upharpoonright s_0$ for some $\nu \in F_0$. Define μ recursively in Y':
Proof. We may assume that $R \leq_T Y$. Let $R_s = \{s | (s, t) \in R\}$.

- $\nu \in 2^{g(0)}$ is **fulfilled** if there is a σ such that (i) $\sigma(x) = 1$ for some $x \leq \text{lth}(\sigma)$ and (ii) $\forall x \leq \text{lth}(\sigma) \sigma(x) = 1$ if and only if $x \in \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i$.

- If ν is fulfilled, let σ_ν be the least σ that witnesses it. Let $F_0 = \{\sigma_\nu | \nu \in 2^{g(0)}\}$.

- Let $C_0[\sigma_\nu] = \{\sigma \geq \sigma_\nu | \sigma \subset \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i\}$.

- Let $C_0 = \bigcup_{\sigma_\nu \in F_0} C_0[\sigma_\nu]$.

- **Claim 1.** C_0 is \mathcal{M}-infinite.

- Otherwise, let b be the least upper bound and let $\sigma = \bigcap_{\nu(i)=1} R_i \cap \bigcap_{\nu(i)=0} \bar{R}_i \upharpoonright s_0$ for some $\nu \in F_0$. Define μ recursively in Y':
Internal Forcing

Let $\mu(0) = 1$ if R_0 has at least $2^{g(0)}g(0)$ elements above b, and 0 otherwise. If $\mu(s)$ is defined and $S = \bigcap_{\mu(t)=1} R_t \cap \bigcap_{\mu(t)=0} \bar{R}_t$ has at least $2^{g(0) - s}g(0)$ elements above b, let $\mu(s + 1) = 1$ if $S \cap R_{s+1}$ has at least $2^{g(0) - (s+1)}$ elements above b, and 0 otherwise.

$\mu \in 2^{g(0)}$ is \mathcal{M}-finite and $\bigcap_{\mu(t)=1} R_t \cap \bigcap_{\mu(t)=0} \bar{R}_t$ has at least $g(0)$ elements above b. Then σ_μ shows b is not least upper bound.

At least one $C_0[\sigma_\nu]$ is \mathcal{M}-infinite.

Claim 2. Forcing the jump of generic paths. Each $C_0[\sigma_\nu]$, if \mathcal{M}-infinite, contains a $\sigma^*_\nu \geq \sigma_\nu$ such that for all $e \leq g(0)$, either (i): $\Phi_{\mu^*_\nu}(e) \downarrow$, or (ii): no $\sigma \geq \sigma^*_\nu$ in $C_0[\sigma_\nu]$ satisfies $\Phi_{\mu}(e) \downarrow$.

Let $\mu(0) = 1$ if R_0 has at least $2^{g(0)} g(0)$ elements above b, and 0 otherwise. If $\mu(s)$ is defined and $S = \bigcap_{\mu(t) = 1} R_t \cap \bigcap_{\mu(t) = 0} \bar{R}_t$ has at least $2^{g(0)} - s g(0)$ elements above b, let $\mu(s + 1) = 1$ if $S \cap R_{s+1}$ has at least $2^{g(0)} - (s+1)$ elements above b, and 0 otherwise.

$\mu \in 2^{g(0)}$ is \mathcal{M}-finite and $\bigcap_{\mu(t) = 1} R_t \cap \bigcap_{\mu(t) = 0} \bar{R}_t$ has at least $g(0)$ elements above b. Then σ_μ shows b is not least upper bound.

At least one $C_0[\sigma_\nu]$ is \mathcal{M}-infinite.

Claim 2. Forcing the jump of generic paths. Each $C_0[\sigma_\nu]$, if \mathcal{M}-infinite, contains a $\sigma_\nu^* \geq \sigma_\nu$ such that for all $e \leq g(0)$, either (i): $\Phi_{\sigma_\nu^*}(e) \downarrow$, or (ii): no $\sigma \geq \sigma_\nu^*$ in $C_0[\sigma_\nu]$ satisfies $\Phi_{\sigma}(e) \downarrow$.

Internal Forcing

- Let $\mu(0) = 1$ if R_0 has at least $2^{g(0)}g(0)$ elements above b, and 0 otherwise. If $\mu(s)$ is defined and $S = \bigcap_{\mu(t)=1} R_t \cap \bigcap_{\mu(t)=0} \bar{R}_t$ has at least $2^{g(0)}-s g(0)$ elements above b, let $\mu(s+1) = 1$ if $S \cap R_{s+1}$ has at least $2^{g(0)}-(s+1)$ elements above b, and 0 otherwise.

- $\mu \in 2^{g(0)}$ is \mathcal{M}-finite and $\bigcap_{\mu(t)=1} R_t \cap \bigcap_{\mu(t)=0} \bar{R}_t$ has at least $g(0)$ elements above b. Then σ_μ shows b is not least upper bound.

- At least one $C_0[\sigma_\nu]$ is \mathcal{M}-infinite.

- **Claim 2.** Forcing the jump of generic paths. Each $C_0[\sigma_\nu]$, if \mathcal{M}-infinite, contains a $\sigma^*_\nu \geq \sigma_\nu$ such that for all $e \leq g(0)$, either (i): $\Phi^*_{\sigma_\nu^e}(e) \downarrow$, or (ii): no $\sigma \geq \sigma^*_\nu$ in $C_0[\sigma_\nu]$ satisfies $\Phi^*_{\sigma}(e) \downarrow$.

Internal Forcing

- Let $\mu(0) = 1$ if R_0 has at least $2^{g(0)}g(0)$ elements above b, and 0 otherwise. If $\mu(s)$ is defined and $S = \bigcap_{\mu(t) = 1} R_t \cap \bigcap_{\mu(t) = 0} \bar{R}_t$ has at least $2^{g(0)-s}g(0)$ elements above b, let $\mu(s + 1) = 1$ if $S \cap R_{s+1}$ has at least $2^{g(0)-(s+1)}$ elements above b, and 0 otherwise.

- $\mu \in 2^{g(0)}$ is \mathcal{M}-finite and $\bigcap_{\mu(t) = 1} R_t \cap \bigcap_{\mu(t) = 0} \bar{R}_t$ has at least $g(0)$ elements above b. Then σ_μ shows b is not least upper bound.

- At least one $C_0[\sigma_\nu]$ is \mathcal{M}-infinite.

- **Claim 2.** Forcing the jump of generic paths. Each $C_0[\sigma_\nu]$, if \mathcal{M}-infinite, contains a $\sigma_\nu^* \geq \sigma_\nu$ such that for all $e \leq g(0)$, either (i): $\Phi_{e}^{\sigma_\nu^*}(e) \downarrow$, or (ii): no $\sigma \geq \sigma_\nu^*$ in $C_0[\sigma_\nu]$ satisfies $\Phi_{e}^{\sigma}(e) \downarrow$.
Internal Forcing

- Sequentially construct $\sigma_e, e \leq g(0)$, to force either (i) or (ii) in $C_0[\sigma_\nu]$. If $C_0[\sigma_\nu]$ is \mathcal{M}-infinite, and the sequence, which is Y'-recursive, is not total on $g(0)$, then it is defined on a $\Sigma^0_2(\mathcal{M})$ cut J.

- The set $\{e | \sigma_e \text{ satisfies (i)}\}$ is $\Delta^0_2(Y)$ on J and therefore coded on J.

- If $\bigcup_{e \in J} \sigma_e$ is unbounded, then the code provides a Y-recursive way of computing $\sigma_e, e \in J$, contradicting $I\Sigma^0_1(Y)$.

- Thus if $C_0[\sigma_\nu]$ is \mathcal{M}-infinite, σ^*_ν is defined.

- Hence Y' decides recursively whether $C_0[\sigma_\nu]$ is \mathcal{M}-finite or σ^*_ν exists. $B\Sigma^0_1(Y')$ allows Y to choose an s_0 such that $lth(\sigma^*_\nu) \leq s_0$ whenever it is defined.
Sequentially construct $\sigma_e, e \leq g(0)$, to force either (i) or (ii) in $C_0[\sigma_\nu]$. If $C_0[\sigma_\nu]$ is \mathcal{M}-infinite, and the sequence, which is Y'-recursive, is not total on $g(0)$, then it is defined on a $\Sigma^0_2(\mathcal{M})$ cut J.

The set $\{e|\sigma_e$ satisfies (i)$\}$ is $\Delta^0_2(Y)$ on J and therefore coded on J.

If $\bigcup_{e \in J} \sigma_e$ is unbounded, then the code provides a Y-recursive way of computing $\sigma_e, e \in J$, contradicting $I\Sigma^0_1(Y')$.

Thus if $C_0[\sigma_\nu]$ is \mathcal{M}-infinite, σ_ν^* is defined.

Hence Y' decides recursively whether $C_0[\sigma_\nu]$ is \mathcal{M}-finite or σ_ν^* exists. $B\Sigma^0_1(Y')$ allows Y to choose an s_0 such that $lth(\sigma_\nu^*) \leq s_0$ whenever it is defined.
Internal Forcing

- Sequentially construct $\sigma_e, e \leq g(0)$, to force either (i) or (ii) in $C_0[\sigma_\nu]$. If $C_0[\sigma_\nu]$ is \mathcal{M}-infinite, and the sequence, which is Y'-recursive, is not total on $g(0)$, then it is defined on a $\Sigma^0_2(\mathcal{M})$ cut J.

- The set $\{e | \sigma_e \text{ satisfies (i)}\}$ is $\Delta^0_2(Y)$ on J and therefore coded on J.

- If $\bigcup_{e \in J} \sigma_e$ is unbounded, then the code provides a Y-recursive way of computing $\sigma_e, e \in J$, contradicting $I\Sigma^0_1(Y)$.

- Thus if $C_0[\sigma_\nu]$ is \mathcal{M}-infinite, σ^*_ν is defined.

- Hence Y' decides recursively whether $C_0[\sigma_\nu]$ is \mathcal{M}-finite or σ^*_ν exists. $B\Sigma^0_1(Y')$ allows Y to choose an s_0 such that $lth(\sigma^*_\nu) \leq s_0$ whenever it is defined.
Sequentially construct $\sigma_e, e \leq g(0)$, to force either (i) or (ii) in $C_0[\sigma]\nu$. If $C_0[\sigma]\nu$ is \mathcal{M}-infinite, and the sequence, which is Y'-recursive, is not total on $g(0)$, then it is defined on a $\Sigma^0_2(\mathcal{M})$ cut J.

The set $\{e | \sigma_e \text{ satisfies (i)}\}$ is $\Delta^0_2(Y)$ on J and therefore coded on J.

If $\bigcup_{e \in J} \sigma_e$ is unbounded, then the code provides a Y-recursive way of computing $\sigma_e, e \in J$, contradicting $I\Sigma^0_1(Y)$.

Thus if $C_0[\sigma]\nu$ is \mathcal{M}-infinite, σ^*_ν is defined.

Hence Y' decides recursively whether $C_0[\sigma]\nu$ is \mathcal{M}-finite or σ^*_ν exists. $B\Sigma^0_1(Y')$ allows Y to choose an s_0 such that $l_{\text{th}}(\sigma^*_\nu) \leq s_0$ whenever it is defined.
Internal Forcing

- Sequentially construct σ_e, $e \leq g(0)$, to force either (i) or (ii) in $C_0[\sigma_\nu]$. If $C_0[\sigma_\nu]$ is \mathcal{M}-infinite, and the sequence, which is Y'-recursive, is not total on $g(0)$, then it is defined on a $\Sigma^0_2(\mathcal{M})$ cut J.

- The set $\{e|\sigma_e \text{ satisfies (i)}\}$ is $\Delta^0_2(Y)$ on J and therefore coded on J.

- If $\bigcup_{e \in J} \sigma_e$ is unbounded, then the code provides a Y-recursive way of computing σ_e, $e \in J$, contradicting $I\Sigma^0_1(Y)$.

- Thus if $C_0[\sigma_\nu]$ is \mathcal{M}-infinite, σ^*_ν is defined.

- Hence Y' decides recursively whether $C_0[\sigma_\nu]$ is \mathcal{M}-finite or σ^*_ν exists. $B\Sigma^0_1(Y')$ allows Y to choose an s_0 such that $lth(\sigma^*_\nu) \leq s_0$ whenever it is defined.
Let T_0 be the set of all σ^*_ν's (this is an \mathcal{M}-finite set).

Let σ^*_ν be defined. For $\mu \in 2^{g(1)}$ such that $\mu > \nu$, let $C_1[\sigma^*_\mu]$ be defined similar to $C_0[\sigma^*_\nu]$, but replacing ν by μ. C_1 is defined in the obvious way. We then get σ^*_μ for appropriate $\mu \in 2^{g(1)}$, an upper bound s_1 for all such σ^*_μ's, and T_1 each of whose elements extends some string in T_0 and forces $\Phi^G_e(e)$ for every $e \leq \text{Max}\{s_0, g(1)\}$ and every generic G.

Inductively get s_j, T_j and C_j. Let $J^* = \{j | T_j$ is defined\} (a $\Sigma^0_1(Y')$ cut). Let $T = \bigcup_{j \in J^*} T_j$.

T is Y'-recursive, \mathcal{M}-infinite and every \mathcal{M}-infinite path on T is R-cohesive.

Every \mathcal{M}-infinite path G in T is generalized Y-low by construction.
Let T_0 be the set of all σ^*_ν's (this is an \mathcal{M}-finite set).

Let σ^*_ν be defined. For $\mu \in 2^{g(1)}$ such that $\mu > \nu$, let $C_1[\sigma_\mu]$ be defined similar to $C_0[\sigma^*_\nu]$, but replacing ν by μ. C_1 is defined in the obvious way. We then get σ^*_μ for appropriate $\mu \in 2^{g(1)}$, an upper bound s_1 for all such σ^*_μ's, and T_1 each of whose elements extends some string in T_0 and forces $\Phi^G_G(e)$ for every $e \leq \text{Max}\{s_0, g(1)\}$ and every generic G.

Inductively get s_j, T_j and C_j. Let $J^* = \{j | T_j \text{ is defined}\}$ (a $\Sigma^0_1(Y')$ cut). Let $T = \bigcup_{j \in J^*} T_j$.

T is Y'-recursive, \mathcal{M}-infinite and every \mathcal{M}-infinite path on T is R-cohesive.

Every \mathcal{M}-infinite path G in T is generalized Y-low by construction.
Internal Forcing

- Let T_0 be the set of all σ^*_{ν}'s (this is an \mathcal{M}-finite set).
- Let σ^*_{ν} be defined. For $\mu \in 2^{g(1)}$ such that $\mu > \nu$, let $C_1[\sigma_{\mu}]$ be defined similar to $C_0[\sigma^*_{\nu}]$, but replacing ν by μ. C_1 is defined in the obvious way. We then get σ^*_{μ} for appropriate $\mu \in 2^{g(1)}$, an upper bound s_1 for all such σ^*_{μ}'s, and T_1 each of whose elements extends some string in T_0 and forces $\Phi^G_e(e)$ for every $e \leq \text{Max}\{s_0, g(1)\}$ and every generic G.
- Inductively get s_j, T_j and C_j. Let $J^* = \{j | T_j \text{ is defined}\}$ (a $\Sigma^0_1(Y')$ cut). Let $T = \bigcup_{j \in J^*} T_j$.
- T is Y'-recursive, \mathcal{M}-infinite and every \mathcal{M}-infinite path on T is R-cohesive.
- Every \mathcal{M}-infinite path G in T is generalized Y-low by construction.
Let T_0 be the set of all σ^*_ν’s (this is an \mathcal{M}-finite set).

Let σ^*_ν be defined. For $\mu \in 2^{g(1)}$ such that $\mu > \nu$, let $C_1[\sigma_\mu]$ be defined similar to $C_0[\sigma^*_\nu]$, but replacing ν by μ. C_1 is defined in the obvious way. We then get σ^*_μ for appropriate $\mu \in 2^{g(1)}$, an upper bound s_1 for all such σ^*_μ’s, and T_1 each of whose elements extends some string in T_0 and forces $\Phi^G_e(e)$ for every $e \leq \text{Max}\{s_0, g(1)\}$ and every generic G.

Inductively get s_j, T_j and C_j. Let $J^* = \{j \mid T_j \text{ is defined}\}$ (a $\Sigma^0_1(Y')$ cut). Let $T = \bigcup_{j \in J^*} T_j$.

T is Y'-recursive, \mathcal{M}-infinite and every \mathcal{M}-infinite path on T is R-cohesive.

Every \mathcal{M}-infinite path G in T is generalized Y-low by construction.
Let T_0 be the set of all σ^*_ν’s (this is an \mathcal{M}-finite set).

Let σ^*_ν be defined. For $\mu \in 2^{g(1)}$ such that $\mu > \nu$, let $C_1[\sigma_\mu]$ be defined similar to $C_0[\sigma^*_\nu]$, but replacing ν by μ. C_1 is defined in the obvious way. We then get σ^*_μ for appropriate $\mu \in 2^{g(1)}$, an upper bound s_1 for all such σ^*_μ’s, and T_1 each of whose elements extends some string in T_0 and forces $\Phi^G_e(e)$ for every $e \leq \text{Max}\{s_0, g(1)\}$ and every generic G.

Inductively get s_j, T_j and C_j. Let $J^* = \{j | T_j$ is defined} (a $\Sigma^0_1(Y’)$ cut). Let $T = \bigcup_{j \in J^*} T_j$.

T is $Y’$-recursive, \mathcal{M}-infinite and every \mathcal{M}-infinite path on T is R-cohesive.

Every \mathcal{M}-infinite path G in T is generalized Y-low by construction.
Lemma (6.2)

Let \(\mathcal{M} \) be countable \(B\Sigma^0_2 \) model and \(T \) an \(\mathcal{M} \)-infinite \(Y' \)-recursive tree in which every \(\mathcal{M} \)-infinite path \(G \) satisfies \(G' \leq_T G \oplus Y' \). Then \(T \) has an \(\mathcal{M} \)-infinite path such that \(\mathcal{M}[G] \models B\Sigma^0_2 \).

Proof. Let \(\langle \exists x \varphi_n \rangle_{n \in \omega} \) be a countable list of \(\Sigma^0_1 \) formulas with parameters, where \(\varphi_n \) is \(\Delta^0_0 \). Let \(\langle D_n \rangle_{n \in \omega} \) be a list of \(\mathcal{M} \)-finite sets. Define a nested sequence of trees \(U_n \) as follows:

- For \(c \in D_0 \), consider
 \[
 X_{c,0} = \{ \sigma \in T | \forall x \leq \text{lth}(\sigma) \neg \varphi_0(x, c, \sigma \oplus Y') \}.
 \]
Lemma (6.2)

Let \mathcal{M} be countable $B\Sigma^0_2$ model and T an \mathcal{M}-infinite Y'-recursive tree in which every \mathcal{M}-infinite path G satisfies $G' \leq^T G \oplus Y'$. Then T has an \mathcal{M}-infinite path such that $\mathcal{M}[G] \models B\Sigma^0_2$.

Proof. Let $\langle \exists x \varphi_n \rangle_{n \in \omega}$ be a countable list of Σ^0_1 formulas with parameters, where φ_n is Δ^0_0. Let $\langle D_n \rangle_{n \in \omega}$ be a list of \mathcal{M}-finite sets. Define a nested sequence of trees U_n as follows:

- For $c \in D_0$, consider

 $$X_{c,0} = \{ \sigma \in T | \forall x \leq \text{lh}(\sigma) \neg \varphi_0(x, c, \sigma \oplus Y') \}.$$
Lemma (6.2)

Let \mathcal{M} be countable $\mathsf{B}\Sigma^0_2$ model and T an \mathcal{M}-infinite Y'-recursive tree in which every \mathcal{M}-infinite path G satisfies $G' \leq_T G \oplus Y'$. Then T has an \mathcal{M}-infinite path such that $\mathcal{M}[G] \models B\Sigma^0_2$.

Proof. Let $\langle \exists x \varphi_n \rangle_{n \in \omega}$ be a countable list of Σ^0_1 formulas with parameters, where φ_n is Δ^0_0. Let $\langle D_n \rangle_{n \in \omega}$ be a list of \mathcal{M}-finite sets. Define a nested sequence of trees U_n as follows:

- For $c \in D_0$, consider

$$X_{c,0} = \{ \sigma \in T | \forall x \leq \text{lth}(\sigma) \neg \varphi_0(x, c, \sigma \oplus Y') \}.$$
If $X_{c,0}$ is \mathcal{M}-infinite for some $c \in D_0$, let U_0 be one such $X_{c,0}$ and set $\sigma_0 = \emptyset$. Then $B\Sigma_1^0(G')$ fails for $\exists x \varphi_0$ on D_0, for any G that is a path in U_0.

Otherwise, by $B\Sigma_2^0$ in \mathcal{M}, there is an s_0 where for all $c \in D_0$ and all $\tau \in T$ of length at least s_0, $\exists x \varphi_0(x, c, \tau \oplus Y')$ holds. Let σ_0 be a string of length at least s_0 so that $T[\sigma_0] = \{\tau \in T|\tau \geq \sigma_0\}$ is \mathcal{M}-infinite. Let $U_0 = T[\sigma_0]$.

Define $\sigma_{n+1} \geq \sigma_n$ and U_{n+1} from U_n similarly, replacing T by U_n and φ_0 by φ_{n+1} in the respective definitions.

Let $G = \bigcup_n \sigma_n$. Then $\mathcal{M}[G] \models B\Sigma_1^0[G \oplus Y']$, hence $B\Sigma_1^0[G']$ since $G' \leq_T G \oplus Y'$. Thus $\mathcal{M}[G] \models B\Sigma_2^0$.

An iteration of Lemmas 6.1 and 6.2 yields Theorem 6.2 and therefore Theorem 6.1.
If $X_{c,0}$ is \mathcal{M}-infinite for some $c \in D_0$, let U_0 be one such $X_{c,0}$ and set $\sigma_0 = \emptyset$. Then $\text{B}\Sigma^0_1(G')$ fails for $\exists x \varphi_0$ on D_0, for any G that is a path in U_0.

Otherwise, by $\text{B}\Sigma^0_2$ in \mathcal{M}, there is an s_0 where for all $c \in D_0$ and all $\tau \in T$ of length at least s_0, $\exists x \varphi_0(x, c, \tau \oplus Y')$ holds. Let σ_0 be a string of length at least s_0 so that $T[\sigma_0] = \{\tau \in T | \tau \geq \sigma_0\}$ is \mathcal{M}-infinite. Let $U_0 = T[\sigma_0]$.

Define $\sigma_{n+1} \geq \sigma_n$ and U_{n+1} from U_n similarly, replacing T by U_n and φ_0 by φ_{n+1} in the respective definitions.

Let $G = \bigcup_n \sigma_n$. Then $\mathcal{M}[G] \models \text{B}\Sigma^0_1[G \oplus Y']$, hence $\text{B}\Sigma^0_1[G']$ since $G' \leq_T G \oplus Y'$. Thus $\mathcal{M}[G] \models \text{B}\Sigma^0_2$.

An iteration of Lemmas 6.1 and 6.2 yields Theorem 6.2 and therefore Theorem 6.1.
If $X_{c,0}$ is \mathcal{M}-infinite for some $c \in D_0$, let U_0 be one such $X_{c,0}$ and set $\sigma_0 = \emptyset$. Then $B\Sigma^0_1(G')$ fails for $\exists x \varphi_0$ on D_0, for any G that is a path in U_0.

Otherwise, by $B\Sigma^0_2$ in \mathcal{M}, there is an s_0 where for all $c \in D_0$ and all $\tau \in T$ of length at least s_0, $\exists x \varphi_0(x, c, \tau \oplus Y')$ holds. Let σ_0 be a string of length at least s_0 so that $T[\sigma_0] = \{\tau \in T|\tau \geq \sigma_0\}$ is \mathcal{M}-infinite. Let $U_0 = T[\sigma_0]$.

Define $\sigma_{n+1} \geq \sigma_n$ and U_{n+1} from U_n similarly, replacing T by U_n and φ_0 by φ_{n+1} in the respective definitions.

Let $G = \bigcup_n \sigma_n$. Then $\mathcal{M}[G] \models B\Sigma^0_1[G \oplus Y']$, hence $B\Sigma^0_1[G']$ since $G' \leq_T G \oplus Y'$. Thus $\mathcal{M}[G] \models B\Sigma^0_2$.

An iteration of Lemmas 6.1 and 6.2 yields Theorem 6.2 and therefore Theorem 6.1.
If $X_{c,0}$ is \mathcal{M}-infinite for some $c \in D_0$, let U_0 be one such $X_{c,0}$ and set $\sigma_0 = \emptyset$. Then $\Sigma^0_1(G')$ fails for $\exists x \varphi_0$ on D_0, for any G that is a path in U_0.

Otherwise, by Σ^0_2 in \mathcal{M}, there is an s_0 where for all $c \in D_0$ and all $\tau \in T$ of length at least s_0, $\exists x \varphi_0(x, c, \tau \oplus Y')$ holds. Let σ_0 be a string of length at least s_0 so that $T[\sigma_0] = \{\tau \in T | \tau \geq \sigma_0\}$ is \mathcal{M}-infinite. Let $U_0 = T[\sigma_0]$.

Define $\sigma_{n+1} \geq \sigma_n$ and U_{n+1} from U_n similarly, replacing T by U_n and φ_0 by φ_{n+1} in the respective definitions.

Let $G = \bigcup_n \sigma_n$. Then $\mathcal{M}[G] \models \Sigma^0_1[G \oplus Y']$, hence $\Sigma^0_1[G']$ since $G' \leq_T G \oplus Y'$. Thus $\mathcal{M}[G] \models \Sigma^0_2$.

An iteration of Lemmas 6.1 and 6.2 yields Theorem 6.2 and therefore Theorem 6.1.
External Forcing

- If $X_{c,0}$ is \mathcal{M}-infinite for some $c \in D_0$, let U_0 be one such $X_{c,0}$ and set $\sigma_0 = \emptyset$. Then $B\Sigma_1^0(G')$ fails for $\exists x \varphi_0$ on D_0, for any G that is a path in U_0.

- Otherwise, by $B\Sigma_2^0$ in \mathcal{M}, there is an s_0 where for all $c \in D_0$ and all $\tau \in T$ of length at least s_0, $\exists x \varphi_0(x, c, \tau \oplus Y')$ holds. Let σ_0 be a string of length at least s_0 so that $T[\sigma_0] = \{\tau \in T | \tau \geq \sigma_0\}$ is \mathcal{M}-infinite. Let $U_0 = T[\sigma_0]$.

- Define $\sigma_{n+1} \geq \sigma_n$ and U_{n+1} from U_n similarly, replacing T by U_n and φ_0 by φ_{n+1} in the respective definitions.

- Let $G = \bigcup_n \sigma_n$. Then $\mathcal{M}[G] \models B\Sigma_1^0[G \oplus Y']$, hence $B\Sigma_1^0[G']$ since $G' \leq_T G \oplus Y'$. Thus $\mathcal{M}[G] \models B\Sigma_2^0$.

An iteration of Lemmas 6.1 and 6.2 yields Theorem 6.2 and therefore Theorem 6.1.
Session VI:

L’estremità