Π^1_1 conservation theorems for COH

David Belanger

30 June 2015,
at CiE 2015 Bucharest

Department of Mathematics
Cornell University
A recent theorem of Chong, Slaman, and Yang:

Theorem

\[\text{COH is } \Pi^1_1 \text{ conservative over } \text{RCA}_0 + B\Sigma^0_2. \]

Proof is complicated and nonuniform: makes explicit use of nonstandard models.

Question

Is there an easier proof? Can theorems or techniques from classical recursion theory be brought to bear?

Question

Is \(\text{RCA}_0 \) the base system?
Argue using PA degrees that $\text{RCA}_0 \notmodels \text{WKL}_0$.

Argue using Low Basis Theorem that $\text{WKL}_0 \notmodels \text{ACA}_0$.

(etc.)

(Harrington) Show that any countable $\mathcal{M} \models \text{RCA}_0$ can be extended to an $\mathcal{N} \models \text{WKL}_0$. (Some care is needed.) Deduce a conservation result.
The basics

Language of second-order arithmetic: \((0, 1, +, \times, \in)\) with two sorts for first- and second-order objects.
First-order variables \(x, y, z, \ldots\); second-order variables \(X, Y, Z, \ldots\).

\(\mathcal{M} = (M, S)\) a model consisting of a first-order part \(M\) and a second-order part \(S\).

\(P^-\): Basic axioms such as commutativity of +.
\(I\Sigma_n\): If \(A \subseteq M\) is \(\Sigma_n^0\)-definable (with parameters from \(M\) and \(S\)), and \(0 \in A\), and \((\forall x)x \in A \rightarrow x + 1 \in A\), then \(A = M\).

\(B\Sigma_n^0\): If \(A \subseteq M\) is \(\Delta_n^0\)-definable (with parameters), then as above.
(Characterization due to Slaman; requires \(I\Sigma_0^0 + \text{exp}\).)

\(\Delta_1^0\) comprehension: If \(A\) is \(\Delta_1^0\)-definable (with parameters) from \(M\) and \(S\), then \(A \in S\).

\(\text{RCA}_0\): \(P^- + \Delta_1^0\) comprehension + \(I\Sigma_1^0\).
Weak König’s Lemma: Every infinite \(\Delta_1^0\) (with parameters) binary tree has an infinite \(\Delta_1^0\) (with parameters) path.

\(\text{WKL}_0\): \(\text{RCA}_0 + \text{Weak König’s Lemma}\).
Conservation theorems

Suppose T_0 and T_1 are theories, and Γ is a class of sentences. We say T_1 is Γ-conservative over T_0 if every $\phi \in \Gamma$ that is provable from $T_0 \cup T_1$ is already provable from T_0.

We know lots of examples:

(H. Friedman) RCA_0 is arith. conservative over $P^- + I\Sigma^0_1$.

(H. Friedman) ACA_0 is arith. conservative over PA.

(Simpson) WKL_0 is Π^0_2 conservative over PRA.

(Harrington) WKL_0 is Π^1_1 conservative over RCA_0.

(Simpson–Smith) WKL_0^* is Π^1_1 conservative over RCA_0^*.

(Cholak–Jockusch–Slaman) COH is Π^1_1 conservative over RCA_0 and over $\text{RCA}_0 + I\Sigma^0_2$.

(Chong–Slaman–Yang) COH is Π^1_1 conservative over $\text{RCA}_0 + B\Sigma^0_2$.

Cohesiveness

In recursion theory:
- *Cohesive sets* are a sort of naturally thin set.
- Cohesive sets played a role in the search for an intermediate r.e. degree.

In reverse math:
- A *cohesiveness principle* COH which is more strongly related to *p-cohesive sets* than to cohesive sets.
- Comes up in investigations of Ramsey’s theorem for pairs:
 \[RT^2_2 \leftrightarrow SRT^2_2 + COH. \]

Definition

COH: If \(\langle R_0, R_1, \ldots \rangle \) is a uniformly \(\Delta^0_1 \) sequence of sets, there is an infinite \(\Delta^0_1 \) set \(C \) such that for each \(k \), either

\[
(\forall^\infty x) \ x \in C \rightarrow x \in R_k
\]

or

\[
(\forall^\infty x) \ x \in C \rightarrow x \notin R_k
\]
Characterizations

Theorem (Friedman–Simpson–Smith)

TFAE over RCA$_0$:

1. **Weak König’s Lemma**
2. **Σ^0_1 separation:** If $A, B \subseteq \mathbb{N}$ are Σ^0_1 and disjoint, there is a Δ^0_1 set D s.t. $A \subseteq D \subseteq \overline{B}$.

(Σ^0_n and Δ^0_n always with parameters.)

Theorem (B., after Jockusch–Stephan and Fr–Si–Sm)

TFAE over RCA$_0 + B\Sigma^0_2$:

1. **Every infinite Δ^0_2 binary tree has an infinite Δ^0_2 path.**
2. **Σ^0_2 separation:** If $A, B \subseteq \mathbb{N}$ are Σ^0_2 and disjoint, there is a Δ^0_2 set D s.t. $A \subseteq D \subseteq \overline{B}$.
3. **COH**
Form a *Scott set* of degrees:

1. Start with a countable model $\mathcal{M}_0 = (\omega, S_0)$ with a top degree, i.e., $S_0 = \{ X : \deg(X) \leq a_0 \}$.

2. Take a PA(a_0) degree a_1—i.e., one that computes a path for any infinite a_0-recursive binary tree—and adjoin to get

 $$\mathcal{M}_1 = \mathcal{M}_0[a_1] := (M, \{ X : \deg(X) \leq a_1 \}).$$

3. Repeat: find a PA(a_1) degree a_2 and get $\mathcal{M}_2 = \mathcal{M}_1[a_2]$, etc.

4. The limit $\mathcal{M} = \mathcal{M}_0[a_1][a_2] \cdots$ is the desired model.
Theorem: \(\text{WKL}_0 \) is \(\Pi^1_1 \) conservative over \(\text{RCA}_0 \)

Proof (Harrington).

Suppose for contradiction \(\text{WKL}_0 \vdash \forall X \phi \) and \(\text{RCA}_0 \nvdash \forall X \phi \).

1. Fix a countable model \(\mathcal{M}_0 = (M, S_0) \) of \(\text{RCA}_0 + \exists X \neg \phi \) with \(\mathcal{M}_0 \models \neg \phi(A_0) \). Assume all sets in \(S_0 \) are \(\Delta^0_1(A_0) \).

2. Take the first infinite binary tree \(T \in S_0 \) and find a path \(A_1 \) such that

\[
\mathcal{M}_0[A_1] = (M, X: \{X \text{ is } \Delta^0_1(A_1)\})
\]

is a model of \(I \Sigma^0_1 \) and hence of \(\text{RCA}_0 \). Let \(\mathcal{M}_1 = \mathcal{M}_0[A_1] \).

3. Repeat.

4. In the limit, \(\mathcal{M} \models \text{WKL}_0 \).

But \(\mathcal{M} \) still contains \(A \), so \(\mathcal{M} \models \exists X \neg \phi \). Contradiction. \(\square \)
To build an \(\omega\)-model of COH, form a Jockusch–Stephan set:

1. Start with an \(\mathcal{M}_0\) as before.
2. Find a degree \(a_1\) such that \(a'_1\) is \(\text{PA}(a'_0)\), and let \(\mathcal{M}_1 = \mathcal{M}_0[a_1]\).
3. Repeat: Find degree \(a_2 \geq a_1\) such that \(a'_2\) is \(\text{PA}(a'_1)\), and let \(\mathcal{M}_2 = \mathcal{M}_1[a_2]\), etc.
4. The limit \(\mathcal{M} = \mathcal{M}_0[a_1][a_2] \cdots\) is the desired model.
Theorem: \(\text{COH} \) is \(\Pi^1_1 \) conservative over \(\text{RCA}_0 + B\Sigma^0_2 \)

This is a theorem of Chong, Slaman, and Yang. Our proof is new:

Proof outline.

Suppose for contradiction \(\text{RCA}_0 + B\Sigma^0_2 + \text{COH} \models \forall X \phi \) and \(\text{RCA}_0 + B\Sigma^0_2 \not\models \forall X \phi \).

1. Fix a countable model \(\mathcal{M}_0 = (M, S_0) \) of \(\text{RCA}_0 + B\Sigma^0_2 + \exists X \neg \phi \) with \(\mathcal{M}_0 \models \neg \phi(A_0) \). Assume all sets in \(S_0 \) are \(\Delta^0_1(A_0) \).

2. Take the first infinite binary tree \(T \Delta^0_2 \) in \(S_0 \) and find a path \(P \) and a second set \(A_1 \geq_T A_0 \) such that
 - (i) \(\mathcal{M}_0[A_1] \) is a model of \(B\Sigma^0_2 \);
 - (ii) \(P \) is \(\Delta^0_2(A_1) \).

3. Repeat.

4. In the limit, \(\mathcal{M} \models \text{COH} \).

Contradiction as before, but we need a way to produce \(P, A_{n+1} \).
Suppose $\mathcal{M}_n = \mathcal{M}_0[A_1] \cdots [A_n]$, and T is a tree Δ^0_2 definable in A_n. Normally, this means T is Δ^0_1 definable in A'_n.

Naïve approach:

- Expand our model to $\mathcal{M}_n[A'_n]$.
- Apply Harrington’s trick to get a path P such that $\mathcal{M}_n[A'_n][P] \models I\Sigma^0_1$.
- Apply Friedberg Jump Theorem to get $A_{n+1} \geq_T A_n$ with $A_{n+1} \equiv_T P$.

Problem 1: If $\mathcal{M} \models B\Sigma^0_2$, can only guarantee $\mathcal{M}[0'] \models B\Sigma^0_1$.

Problem 2: Need a formal-enough version of the jump theorem to get $B\Sigma^0_2$ in the end.
Working in RCA_0^*

Problem 1: If $M \models B\Sigma^0_2$, can only guarantee $M[0'] \models B\Sigma^0_1$.

RCA_0: $P^- + \Delta^0_1$ comprehension + $I\Sigma^0_1$.

RCA_0^*: $P^- + \Delta^0_1$ comprehension + $B\Sigma^0_1$. (+ exp)

Lemma (Simpson–Smith)

If $\mathcal{N} \models \text{RCA}_0^*$ is countable with a top degree and T is an infinite binary tree, there is an infinite path P such that $\mathcal{N}[P] \models \text{RCA}_0^*$.

In particular, Weak König’s Lemma is Π^1_1 conservative over RCA_0^*.

This solves our first problem.
Problem 2: Need a formal-enough version of the jump theorem to get $B\Sigma^0_2$ back.

Lemma (B.; Friedberg Jump Theorem for $B\Sigma^0_2$)

Suppose $\mathcal{M} \models B\Sigma^0_2$ and $P \geq_T 0'$ is such that $\mathcal{M}[P] \models B\Sigma^0_1$. Then there is A such that $\mathcal{M}[A] \models B\Sigma^0_2$ and $P \leq_T A'$.

Proof similar to the original, plus a requirement to preserve induction, plus Shore blocking. Lemma generalizes as one would expect.

Cf.

Theorem (Towsner 2015)

Suppose $\mathcal{M} \models I\Sigma^0_n$ and P is any set. Then there is a B such that $\mathcal{M}[B] \models I\Sigma^0_n$, and P is Δ^0_{n+1}-definable in B.
Extending the method

<table>
<thead>
<tr>
<th>Lemma (Simpson–Smith)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\mathcal{N} \models RCA^_0$ is countable with a top degree and T is an infinite binary tree, there is an infinite path P such that $\mathcal{N}[P] \models RCA^_0$. In particular, Weak König’s Lemma is Π^1_1 conservative over $RCA^_0$.***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lemma (Harrington)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\mathcal{N} \models RCA_0$...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lemma (Hajek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\mathcal{N} \models RCA_0 + B\Sigma^0_n$ or $\mathcal{N} \models RCA_0 + I\Sigma^0_n, n \geq 2...</td>
</tr>
</tbody>
</table>

Get a similar conservation result for COH in each of these cases. Do not, however, get one over RCA_0 alone. Instead, it seems the original Mathias-forcing proof in CJS is optimal.
Questions

Question

Is RCA$_0$ *the* base system?

Question

If WKL$_0$ *is* Σ^0_1 separation and COH *is* Σ^0_2 separation, then what *is* Σ^0_3 separation?

Question

Can you define principles of Σ^0_n separation, *prove mutual independence, and prove conservation theorems for them?*

Yes. But why would you want to do that?

Question

Is there a use for principles such as: Every Δ^0_1 2-colouring of triples *has an infinite* Δ^0_2 homogeneous set?*
<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is RCA$_0$ the base system?</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>If WKL$_0$ is Σ^0_1 separation and COH is Σ^0_2 separation, then what is Σ^0_3 separation?</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>Can you define principles of Σ^0_n separation, prove mutual independence, and prove conservation theorems for them?</td>
</tr>
</tbody>
</table>

Yes. But why would you want to do that?

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a use for principles such as: Every Δ^0_1 2-colouring of triples has an infinite Δ^0_2 homogeneous set?</td>
</tr>
</tbody>
</table>
Homework

Worry about ‘A is Δ^0_1 in B’ versus $A \leq_T B$. Worry about Δ^0_2 vs $\leq_T 0'$ in models of $B\Sigma^0_2$. Worry about transitivity of \leq_T in models of $B\Sigma^0_1$.