Exact sequences of braid and mapping class groups

Jon Berrick:
University of Sydney

9 December, 2015
Artin’s pure braid group of \(n \) strands \(P_n(D^2) \); multiplication = concatenation of (isotopy classes of) braids.
versus
Artin’s pure braid group of n strands $P_n(D^2)$; multiplication = concatenation of (isotopy classes of) braids. For any manifold M,

$$P_n(M) = \pi_1(\text{Conf}_n(M))$$

where

$$\text{Conf}_n(M) = \{(x_0, \ldots, x_{n-1}) \in M^n \mid x_i \neq x_j \text{ if } i \neq j\}.$$
Artin’s pure braid group of n strands $P_n(D^2)$; multiplication = concatenation of (isotopy classes of) braids. For any manifold M,

$$P_n(M) = \pi_1(\text{Conf}_n(M))$$

where

$$\text{Conf}_n(M) = \{(x_0, \ldots, x_{n-1}) \in M^n \mid x_i \neq x_j \text{ if } i \neq j\}.$$

Cap the disk, to get

$$c : P_n(D^2) = \pi_1(\text{Conf}_n(D^2)) \longrightarrow \pi_1(\text{Conf}_n(S^2)) = P_n(S^2).$$
Theorem (B-Cohen-Wong-Wu)

Whenever \(k \geq 4 \), there is an exact sequence

\[
\text{Brun}(P_{k+2}(S^2)) \twoheadrightarrow \text{Brun}(P_{k+1}(D^2)) \xrightarrow{c} \text{Brun}(P_{k+1}(S^2)) \rightarrow \pi_k(S^2)
\]

\[
\text{Brun}(P_n(M)) = \text{subgroup of classes of braids that become trivial whenever any strand is removed.}
\]
Theorem (B-Cohen-Wong-Wu)
Whenever \(k \geq 4 \), there is an exact sequence

\[
\text{Brun}(P_{k+2}(S^2)) \hookrightarrow \text{Brun}(P_{k+1}(D^2)) \overset{c}{\rightarrow} \text{Brun}(P_{k+1}(S^2)) \twoheadrightarrow \pi_k(S^2)
\]

\[
\text{Brun}(P_n(M)) = \text{subgroup of classes of braids that become trivial whenever any strand is removed.}
\]

H. Brunn (1892), H. Debrunner (1961)
Theorem (B-Cohen-Wong-Wu)

Whenever \(k \geq 4 \), there is an exact sequence

\[
\text{Brun}(P_{k+2}(S^2)) \hookrightarrow \text{Brun}(P_{k+1}(D^2)) \xrightarrow{c} \text{Brun}(P_{k+1}(S^2)) \twoheadrightarrow \pi_k(S^2)
\]

\[
\text{Brun}(P_n(M)) = \quad \text{subgroup of classes of braids that become trivial whenever any strand is removed.}
\]

H. Brunn (1892), H. Debrunner (1961)

Motivating Questions

1. Does anything similar happen for more general surfaces?
Theorem (B-Cohen-Wong-Wu)

Whenever $k \geq 4$, there is an exact sequence

$$\text{Brun}(P_{k+2}(S^2)) \hookrightarrow \text{Brun}(P_{k+1}(D^2)) \xrightarrow{c} \text{Brun}(P_{k+1}(S^2)) \twoheadrightarrow \pi_k(S^2)$$

Brun($P_n(M)$) = subgroup of classes of braids that become trivial whenever any strand is removed.

H. Brunn (1892), H. Debrunner (1961)

Motivating Questions
1. Does anything similar happen for more general surfaces?
2. Does anything similar happen for mapping class groups?
Simplicial Structures

Δ-set: sets \(X = \{ X_0, X_1, \ldots \} \) with face maps \(d_i : X_k \to X_{k-1} \) \((i = 0, \ldots, k)\) such that

\[
d_jd_i = d_id_{j+1} \quad \text{whenever} \quad i \leq j.
\]
Simplicial Structures

Δ-set: sets $X = \{X_0, X_1, \ldots\}$ with *face maps* $d_i : X_k \to X_{k-1}$ ($i = 0, \ldots, k$) such that

$$d_j d_i = d_i d_{j+1} \text{ whenever } i \leq j.$$

Simplicial set: Δ-set with *degeneracies* $s_j : X_k \to X_{k+1}$ ($j = 0, \ldots, k$) such that also

$$s_is_j = s_{j+1}s_i \text{ whenever } i \leq j,$$

$$d_is_j = \begin{cases}
 s_{j-1}d_i & \text{whenever } i < j \\
 \text{id} & \text{whenever } i = j \text{ or } j + 1 \\
 s_jd_{i-1} & \text{whenever } i > j + 1.
\end{cases}$$
For category of groups, $\exists \Delta$-groups, simplicial groups.

Theorem (BCWW, Gonçalves-Guaschi, B-Hanbury)

(a) $P(M) = \{P^k+1(M)\}_{k \geq 0}$ forms a Δ-group;

(b) $P(M)$ is a simplicial group iff $\partial M \neq \emptyset$ or $\chi(M) = 0$.

(s) $P_j = $ use vector field to shift slightly jth strand, to form $(j+1)$st, and relabel.

(b) gives semidirect product decomposition, normal form (e.g. Artin combing), solution to word problem.
For category of groups, ∃ Δ-groups, simplicial groups.

Theorem (BCWW, Gonçalves-Guaschi, B-Hanbury)

For any surface M:

(a) $P(M) = \{ P_{k+1}(M) \}_{k \geq 0}$ forms a Δ-group;

$P_i^P = \text{delete } i\text{th strand, and relabel.}$
For category of groups, \(\exists \ \Delta \)-groups, simplicial groups.

Theorem (BCWW, Gonçalves-Guaschi, B-Hanbury)

For any surface \(M \):

(a) \(\mathcal{P}(M) = \{ P_{k+1}(M) \}_{k \geq 0} \) forms a \(\Delta \)-group;

\(d_i^P = \text{delete } i \text{ th strand, and relabel.} \)

(b) \(\mathcal{P}(M) \) is a simplicial group iff \(\partial M \neq \emptyset \) or \(\chi(M) = 0 \).

\(s_j^P = \text{use vector field to shift slightly } j \text{ th strand, to form } \)

\((j + 1) \text{ st, and relabel.} \)
For category of groups, \exists Δ-groups, simplicial groups.

Theorem (BCWW, Gonçalves-Guaschi, B-Hanbury)

For any surface M:

(a) $P(M) = \{P_{k+1}(M)\}_{k \geq 0}$ forms a Δ-group;

$d_i^P = \text{delete } i\text{ th strand, and relabel.}$

(b) $P(M)$ is a simplicial group iff $[\partial M \neq \emptyset \text{ or } \chi(M) = 0]$.

$s_j^P = \text{use vector field to shift slightly } j\text{ th strand, to form }$ $\text{ } (j+1)\text{ st, and relabel.}$

(b) gives semidirect product decomposition, normal form (e.g. Artin combing), solution to word problem.
Let $G = \{G_k\}_{k \geq 0}$ be a Δ-group. We define

$$K_i(G_k) := \text{Ker}[d_i^G : G_k \to G_{k-1}] .$$
Let $G = \{ G_k \}_{k \geq 0}$ be a Δ-group. We define

$$K_i(G_k) := \text{Ker}[d_i^G : G_k \to G_{k-1}].$$

Moore chain complex $N(G)$ of G has kth group

$$N(G_k) := \bigcap_{i=1}^k \text{Ker}[d_i^G : G_k \to G_{k-1}] = \bigcap_{i=1}^k K_i(G_k),$$

differential $= d_0^G$.
Let \(G = \{ G_k \}_{k \geq 0} \) be a \(\Delta \)-group. We define
\[
K_i(G_k) := \text{Ker}[d_i^G : G_k \to G_{k-1}].
\]

Moore chain complex \(N(G) \) of \(G \) has \(k \)th group
\[
N(G_k) := \bigcap_{i=1}^{k} \text{Ker}[d_i^G : G_k \to G_{k-1}] = \bigcap_{i=1}^{k} K_i(G_k)
\]

differential = \(d_0^G \).
Face map identity \(\Rightarrow \)
\[
d_0^G(N(G_k)) \subseteq N(G_{k-1}) \quad \text{and} \quad (d_0^G)^2(N(G_k)) = 1.
\]
Group of cycles $\text{Brun}(G_k) := \bigcap_{i=0}^{k} K_i(G_k)$.

Homotopy sets $\pi_k(G)$ of G are the homology sets $\text{Brun}(G_k)/d_0^G(N(G_{k+1}))$ of Moore chain complex $N(G)$.
Group of cycles $\text{Brun}(G_k) := \bigcap_{i=0}^{k} K_i(G_k)$.

Homotopy sets $\pi_k(G)$ of G are the homology sets $\text{Brun}(G_k)/d_0^G(\mathbb{N}(G_{k+1}))$ of Moore chain complex $\mathbb{N}(G)$.

Lemma (BCWW)

For any surface M and $k \geq 0$, the subgroup $d_0^P(\mathbb{N}(P_{k+2}(M))) \leq \text{Brun}(P_{k+1}(M))$ is normal, and so $\pi_k(P(M))$ is a group.
Basepoint $\mathbf{m}_k = (m_0, \ldots, m_{k-1}) \in \text{Conf}_k(M)$.
Basepoint $m_k = (m_0, \ldots, m_{k-1}) \in \text{Conf}_k(M)$.

Existence of a fibration

\[
M - m_k \xrightarrow{\iota_k} \text{Conf}_{k+1}(M) \xrightarrow{\tilde{d}_k} \text{Conf}_k(M)
\]

(1)

$\iota_k : x \mapsto (m_0, \ldots, m_{k-1}, x)$

$\tilde{d}_k : (x_0, \ldots, x_{k-1}, x_k) \mapsto (x_0, \ldots, x_{k-1})$.

Basepoint $m_k = (m_0, \ldots, m_{k-1}) \in \text{Conf}_k(M)$.

There exists a fibration

$$M - m_k \xrightarrow{\iota_k} \text{Conf}_{k+1}(M) \xrightarrow{\tilde{d}_k} \text{Conf}_k(M) \quad (1)$$

$\iota_k : x \mapsto (m_0, \ldots, m_{k-1}, x)$

$\tilde{d}_k : (x_0, \ldots, x_{k-1}, x_k) \mapsto (x_0, \ldots, x_{k-1})$.

$\pi_1 \Rightarrow$ exact

$$\pi_1(M - m_k) \xrightarrow{(\iota_k)_*} P_{k+1}(M) \xrightarrow{d^P_k} P_k(M).$$
With $\mathbf{m}_k^j = (m_0, \ldots, \hat{m}_j, \ldots, m_{k-1}) \in \text{Conf}_k(M)$,
\[
\text{inc} : M - m_k \hookrightarrow M - \mathbf{m}_k^j \text{ induces (after path-conjugation relabelling)}
\]
\[
d_j^\pi : \pi_1(M - m_k, m_k) \longrightarrow \pi_1(M - m_{k-1}, m_{k-1}).
\]
With \(m^j_k = (m_0, \ldots, \hat{m}_j, \ldots, m_{k-1}) \in \text{Conf}_k(M) \),
\[\text{inc} : M - m_k \hookrightarrow M - m^j_k \text{ induces} \]
(after path-conjugation relabelling)
\[d^\pi_j : \pi_1(M - m_k, m_k) \longrightarrow \pi_1(M - m_{k-1}, m_{k-1}). \]

Proposition (B-Hanbury-Wu)

(a) \(\pi(M) = \{ \pi_1(M - m_1), \pi_1(M - m_2), \ldots \} \) forms a \(\Delta \)-group.

(b) \(\exists \) isomorphism
\[
\text{Brun}(\pi_1(M - m_k)) \cong \text{Brun}(P_{k+1}(M)).
\]
Corollary

For $k \geq 1^*$

$\text{Brun}(P_{k+1}(M))$ is a free group, and of infinite rank when also $k \geq 2$.
Corollary

For $k \geq 1^*$

Brun($P_{k+1}(M)$) is a free group, and of infinite rank when also $k \geq 2$.

Theorem (Li-Wu)

For $J \subseteq \{0, 1, \ldots, k - 1\}^*$

$$\bigcap_{j \in J} K_j(\pi_1(M - m_k)) = [[K_j(\pi_1(M - m_k)) : j \in J]]$$

where $[[\cdots]]$ is the fat commutator subgroup.

This allows a description of normal generators for Brun($P_{k+1}(M)$) ...
Figure: The braid $a_{j,k}$.

\[
\text{inc}_* : \quad P_{k+1}(D^2) \quad \longrightarrow \quad P_{k+1}(M) \\
\quad a_{j,k} \quad \longmapsto \quad A_{j,k}
\]
Mapping class groups

\(\text{Diff}(M, m_k) = \text{group of diffeomorphisms } M \to M \text{ that fix each } m_i \in m_k \text{ and each point of } \partial M \) (orientation-preserving if \(M \) oriented).
Mapping class groups

\[\text{Diff}(M, m_k) = \text{group of diffeomorphisms } M \to M \text{ that fix each } m_i \in m_k \text{ and each point of } \partial M \]
(orientation-preserving if \(M \) oriented).

\(k \) th pure mapping class group of \(M \) is

\[\Gamma^k(M) = \pi_0(\text{Diff}(M, m_k)); \]

\[\Gamma(M) = \Gamma^0(M). \]
Mapping class groups

\[\text{Diff}(M, m_k) = \text{group of diffeomorphisms } M \to M \text{ that fix each } m_i \in m_k \text{ and each point of } \partial M \] (orientation-preserving if \(M \) oriented).

\(k \) th pure mapping class group of \(M \) is

\[\Gamma^k(M) = \pi_0(\text{Diff}(M, m_k)); \]

\[\Gamma(M) = \Gamma^0(M). \]

Define \(\underline{\Gamma}(M) = \{ \Gamma^1(M), \Gamma^2(M), \ldots \} \).

Form face maps \(d_i^{\Gamma} : \Gamma^{k+1}(M) \to \Gamma^k(M) \) (\(i = 0, \ldots, k \)) by forgetting the \(i \) th marked point, and applying a “correction” diffeomorphism.
Theorem (BHW, BH)

(a) \(\Gamma(M) \) forms a \(\Delta \)-group.
(b) If \(\partial M \neq \emptyset \), then \(\Gamma(M) \) forms a simplicial group.
Theorem (BHW, BH)

(a) \(\Gamma(M) \) forms a \(\Delta \)-group.
(b) If \(\partial M \neq \emptyset \), then \(\Gamma(M) \) forms a simplicial group.

For (b), the degeneracy maps arise because each diffeomorphism is the identity on a collar of the boundary. So, locate the extra marked point in the collar.
\exists \text{ fibration}

\[
(Diff(M, m_{k+1}), \text{id}) \longrightarrow (Diff(M, m_k), \text{id}) \xrightarrow{ev_{m_k}} (M - m_k, m_k),
\]

and so, a connecting homomorphism

\[
\partial^\pi : \pi_1(M - m_k, m_k) \longrightarrow \Gamma^{k+1}(M).
\]
∃ fibration

\[(\text{Diff}(M, m_{k+1}), \text{id}) \longrightarrow (\text{Diff}(M, m_k), \text{id}) \xrightarrow{\text{ev}_{m_k}} (M - m_k, m_k), \quad (2)\]

and so, a connecting homomorphism

\[\partial^{\pi} : \pi_1(M - m_k, m_k) \longrightarrow \Gamma^{k+1}(M).\]

Thus, we can compare \(\pi(M)\) and \(\Gamma(M)\).
Theorem (BHW)

Suppose that \(M \neq S^2, \mathbb{R}P^2 \).

(a) \(\pi_k(\underline{P}(M)) = 1 \) for all \(k \geq 1 \).
Theorem (BHW)

Suppose that $M \neq S^2, \mathbb{R}P^2$.

(a) $\pi_k(P(M)) = 1$ for all $k \geq 1$.

(b) $\pi_k(\Gamma(M)) = 1$ for all $k \geq \begin{cases} 2 & \text{if } M = T, K, \\ 1 & \text{otherwise.} \end{cases}$
Theorem (BHW)

Suppose that $M \neq S^2, \mathbb{RP}^2$.
(a) $\pi_k(P(M)) = 1$ for all $k \geq 1$.
(b) $\pi_k(\Gamma(M)) = 1$ for all $k \geq \begin{cases} 2 & \text{if } M = T, K, \\ 1 & \text{otherwise.} \end{cases}$
(c) $\pi_0(\Gamma(M)) \cong \Gamma(M)$.
Exceptions

Theorem

\((S^2)\) \(\pi_k(\Gamma(S^2)) = 1\) for \(k = 0, 1, 2\) and
\(\pi_3(\Gamma(S^2)) \cong F_2 / [[F_2, F_2], F_2].\)

For \(k \geq 4\), \(\pi_k(\Gamma(S^2)) \cong \pi_k(S^2).\)
Exceptions

Theorem

(\(S^2\)) \(\pi_k(\Gamma(S^2)) = 1\) for \(k = 0, 1, 2\) and
\(\pi_3(\Gamma(S^2)) \cong F_2 / [[F_2, F_2], F_2]\).
For \(k \geq 4\), \(\pi_k(\Gamma(S^2)) \cong \pi_k(S^2)\).

(\(\mathbb{RP}^2\)) \(\pi_k(\Gamma(\mathbb{RP}^2)) = 1\) for \(k = 0, 1\) and
\(\pi_2(\Gamma(\mathbb{RP}^2)) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}\).
For \(k \geq 3\), \(\pi_k(\Gamma(\mathbb{RP}^2)) \cong \pi_k(S^2)\).
Exceptions

Theorem

(S^2) \(\pi_k(\Gamma(S^2)) = 1 \) for \(k = 0, 1, 2 \) and
\(\pi_3(\Gamma(S^2)) \cong F_2 / [[F_2, F_2], F_2] \).
\[\text{For } k \geq 4, \pi_k(\Gamma(S^2)) \cong \pi_k(S^2). \]

(\(\mathbb{R}P^2 \)) \(\pi_k(\Gamma(\mathbb{R}P^2)) = 1 \) for \(k = 0, 1 \) and
\(\pi_2(\Gamma(\mathbb{R}P^2)) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}. \)
\[\text{For } k \geq 3, \pi_k(\Gamma(\mathbb{R}P^2)) \cong \pi_k(S^2). \]

(T) \(\pi_1(\Gamma(T)) \cong \mathbb{Z} \oplus \mathbb{Z}. \)
Exceptions

Theorem

\((S^2)\) \(\pi_k(\Gamma(S^2)) = 1\) for \(k = 0, 1, 2\) and
\(\pi_3(\Gamma(S^2)) \cong F_2 / [[F_2, F_2], F_2]\).
For \(k \geq 4\), \(\pi_k(\Gamma(S^2)) \cong \pi_k(S^2)\).

\((\mathbb{R}P^2)\) \(\pi_k(\Gamma(\mathbb{R}P^2)) = 1\) for \(k = 0, 1\) and
\(\pi_2(\Gamma(\mathbb{R}P^2)) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}\).
For \(k \geq 3\), \(\pi_k(\Gamma(\mathbb{R}P^2)) \cong \pi_k(S^2)\).

\((T)\) \(\pi_1(\Gamma(T)) \cong \mathbb{Z} \oplus \mathbb{Z}\).

\((K)\) \(\pi_1(\Gamma(K)) \cong \mathbb{Z}\).
Comparison of braids and mapping class groups \exists

evaluation fibration

\[
\text{Diff}(M, m_k) \longrightarrow \text{Diff}(M) \xrightarrow{\text{ev}_{m_k}} \text{Conf}_k(M). \quad (3)
\]
Comparison of braids and mapping class groups

Evaluation fibration

$$\text{Diff}(M, m_k) \longrightarrow \text{Diff}(M) \xrightarrow{\text{ev}_{m_k}} \text{Conf}_k(M). \quad (3)$$

The three fibrations fit together to give the commuting diagram
Comparison of disk mapping class groups

Proposition (B-Duzhin-Wu)

We have the following commutative diagram of groups and group homomorphisms:

\[
\begin{array}{cccccc}
1 & \rightarrow & \mathbb{Z}^n & \rightarrow & \text{DF}_n & \rightarrow & \text{PF}_n & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
1 & \rightarrow & \mathbb{Z}^n & \rightarrow & \text{DP}_n & \rightarrow & \text{PP}_n & \rightarrow & 1,
\end{array}
\]

whose rows and columns are exact sequences.
Moreover, the first row is a trivial group extension; that is,

$$DF_n \cong PF_n \times \mathbb{Z}^n \cong P_n \times \mathbb{Z}^n \cong \text{framed braids on } n \text{ strands}.$$

For the second row, we have only a semidirect product

$$DP_n \cong PP_n \rtimes \mathbb{Z}^n.$$