Since not all the matrices appearing in [1] Proposition 10.4 are intertwining matrices as claimed, we present a corrected version here. Moreover, with only a little extra work, we then generalize the result from quadratic to arbitrary number fields.

[1] Proposition 10.4. Let \(A \) be the ring of integers in the quadratic number field \(\mathbb{Q}(\sqrt{\delta}) \) of discriminant \(\delta \) \((\neq -3, -4)\). Suppose that there exist \(\alpha, b, n \in \mathbb{Z} \) \((b^2 > 1, \ n \geq 3)\) such that
\[
\delta = \alpha^2 - 4b^n \quad \text{and} \quad (\alpha, b) = 1.
\]

Thus we may define integers \(x_1, x_2, \ldots \) coprime to \(b \) by
\[
x_1 = 1, \ x_2 = \alpha, \ldots \ x_{k+1} = \alpha x_k - b^n x_{k-1}, \ldots
\]
and choose \(r_0, r_{n-1} \in \mathbb{Z} \) to satisfy
\[
r_0 x_n + r_{n-1} b^{n-1} = 1.
\]

Then, with \(u = (\alpha + \sqrt{\delta})/2 \),

(a) the matrix
\[
S_n = \begin{bmatrix}
 u & -b & 0 & \cdots & 0 & 0 \\
 0 & u & -b & \cdots & 0 & 0 \\
 0 & 0 & u & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & u & -b \\
 r_0 x_{n-1} b & r_{n-1} b & 0 & \cdots & 0 & r_0 u
\end{bmatrix}
\]
is an element of \(\text{Int}_n A \); and

(b) if further \(n \) is an odd integer, then the element of the ideal class group of \(A \) represented by \(S_n \) has order \(n \), provided that either:

(i) for every integer \(\beta \) and proper divisor \(m \) of \(n \) the number \(\delta \beta^2 \pm 4b^m \) is not a perfect square; or

(ii) \(n | \delta \), and that moreover when \(\delta > 0 \) then the fundamental unit \((\varepsilon_1 + \varepsilon_2 \sqrt{\delta})/2 \) of \(A \) has \(n | \varepsilon_2 \).

Proof. (a) From \(u(\alpha - u) = (\alpha^2 - \delta)/4 = b^n \), we obtain inductively that
\[
u^k = x_k u - x_{k-1} b^n.
\]
That S_n is an intertwiner with determinant u follows readily from the proof of [1] Theorem 9.1 (where $r_1 = r_2 = \cdots = r_{n-2} = 0$).

(b) In the specified cases it is shown in [2] Propositions 1.9, 2.8 that the class obtained in (a) maps under the isomorphism of our Corollary 9.6 (b) to an element of order n.

For determination of the order of the element of the ideal class group represented by an intertwining matrix, the following result is useful.

Lemma 1. Let A be a Dedekind domain, and suppose that $S \in \text{Int}_n(A)$. Let r be the greatest integer such that $\det(S)$ is associate in A to an rth power. Then the order of the element represented by S in the ideal class group of A is n/r.

Proof. Writing $u = \det(S)$, we deduce from [1] Theorem 3.2 that $Au = (A \langle S \rangle)^n$. By definition, the class of the ideal $A \langle S \rangle$ generated by the entries of S has order dividing s in the class group if and only if for some $w \in A$ we have $(A \langle S \rangle)^s = Aw$. By unique divisibility of ideals, this is equivalent to $Au = Aw^r$, where $n = rs$.

In order to generalize the proposition above, we recall the following notation from [2]. For a number field F with ring of integers A, let $l = [F : \mathbb{Q}]$, and for $u \in A$ let the characteristic equation for u over F be

$$(*) \quad \sum_{j=0}^{l} (-1)^{l-j}N_j(u)u^j = 0.$$

for some $N_0(u), \ldots, N_l(u) \in \mathbb{Z}$. (In fact, $N_0(u)$ is the norm of u.)

Theorem 2. Let A be a number ring.

(a) Suppose that there exists $u \in A$ such that:

(i) the integers $N_0(u), N_1(u)$ are coprime; and

(ii) $|N_0(u)|$ is a proper power (say, $|N_0(u)| = b^n$).

Then the $n \times n$ matrix S given by

$$S = \begin{bmatrix} u & -b & 0 & \cdots & \cdots & 0 \\ 0 & u & -b & \ddots & \ddots & \vdots \\ \vdots & 0 & u & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & u & -b \\ xb & yb & 0 & \cdots & 0 & zu \end{bmatrix}$$

(when $n = 2$; or, for $n > 2$:

$$S = \begin{bmatrix} u & -b & 0 & \cdots & \cdots & \cdots \\ 0 & u & -b & \ddots & \ddots & \vdots \\ \vdots & 0 & u & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & u & -b \\ xb & yb & 0 & \cdots & 0 & zu \end{bmatrix}$$

(where $x, y, z \in A$ are constructible from the proof) is an intertwining matrix of determinant u.}
(b) The element represented by \(S \) in the ideal class group has order \(n \) if and only if \(u \) is not associate in \(A \) to a proper power (of exponent dividing \(n \)).

Proof. (a) From hypotheses (i), (ii), we have, as ideals in \(A \),

\[A = Ab^n - 1 + AN_1(u), \]

while from (\(\ast \)) and (i)

\[AN_1(u)u \subseteq Ab^n + Au. \]

Then multiplying the former equality by \(u \) and combining gives

\[Au \subseteq Ab^n + Ab^{n-1}u + Au. \]

Iteration yields

\[Au \subseteq Ab^n + Ab^{n-1}u + Au^k \]

for all \(k \geq 2 \); and so, there are \(x, y, z \in A \) with

\[u = xb^n + yb^{n-1}u + zu^n. \]

Thus \(S \) has determinant \(u \), and that \(S \) is an intertwining matrix again follows from the proof of [1] Theorem 9.1.

(b) This is immediate from the lemma.

Note that the necessary and sufficient condition in (b) of the above theorem weakens that found in [2] (1.8) (namely, that no lesser power of \(b \) than \(b^n \) be the norm of an element). Thus, in \(\mathbb{Q}(\sqrt{-231}) \) for instance, the above theorem detects a nontrivial class of order 3 with \(u = (5 + \sqrt{-231})/2 \), of norm \(4^3 \); in \(\mathbb{Q}(\sqrt{-455}) \) the theorem detects a nontrivial class of order 5 with \(u = (1 + 3\sqrt{-455})/2 \), of norm \(4^5 \). However, in both cases, \(b = 4 = N(2) \).

References

Department of Mathematics, National University of Singapore, Singapore 117543, Republic of Singapore
E-mail address: berrick@math.nus.edu.sg

Department of Mathematics, McMaster University, Hamilton, Ontario, Canada
E-mail address: limmf@math.mcmaster.ca