Axial Maps with Further Structure

A. J. Berrick

Stable URL:
http://links.jstor.org/sici?sici=0002-9939%28197601%2954%3A1%3C413%3AAMWFS%3E2.0.CO%3B2-Z

Proceedings of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
AXIAL MAPS WITH FURTHER STRUCTURE

A. J. Berrick

ABSTRACT. For $F = R, C$ or H an F-axial map is defined to be an axial map $RP^m \times RP^m \to RP^{m+k}$ equivariant with respect to diagonal and trivial F^*-actions. Analogously to the real case, it is shown that C-axial maps correspond to immersions of CP^n in R^{2n+k} while (for $F = R$ and for $F = C$, k odd) embeddings induce F-symmaxial maps. Examples are thereby given of symmaxial maps not induced by embeddings of RP^n, and of R-axial maps which are not C-axial. Furthermore, the relationships which hold when $F = R, C$ are no longer valid for $F = H$.

Let F be one of the fields R, C or H of dimension d (= 1, 2, 4 respectively) over R, whose units F^* act on the right on $S(F^{n+1})$ to induce the projective space FP^n. Since the action of R^* extends to the action of F^*, we may regard F^* as acting also on RP^n and hence diagonally on $RP^m \times RP^n$, $n \equiv -1 (d)$. By way of generalisation of the usual definitions ($F = R$—see [2], [4], [12]), we say $f: RP^m \times RP^n \to RP^{m+k}$ is F-axial of type (n, k) if f restricts to homotopy essential maps on the axes of the product and is equivariant with respect to the above F^*-action on its domain and trivial F^*-action on its range. If further f is homotopy equivariant—through an F^*-equivariant homotopy—with respect to interchanging the factors of the domain and trivial Z_2-action on the range, f is F-symmaxial. (When $F = R$ it is sometimes omitted from the notation.) This note explores the relationship between F-axial (resp. F-symmaxial) maps and the existence of an immersion (resp. embedding) of FP^n in R^m, denoted $FP^n \subseteq (m)$ (resp. $FP^n \subseteq (m)$).

1. THEOREM. Let $F = R$ or C, with $N = n$ or $(2n + 1)$ respectively.
(a) If $FP^n \subseteq (dn + k)$, then there exists an F-axial map of type (N, k).
(b) If $FP^n \subseteq (dn + k)$, then there exists an F-symmaxial map of type (N, k), provided k is odd if $F = C$.
(c) If $FP^n \subseteq (dn + k)$, then the F-axial maps given by the constructions of (a) and (b) are homotopic through an F^*-equivariant homotopy.
(d) If there exists an F-axial map of type (N, k) with $2k \geq dn + 1$, then $FP^n \subseteq (dn + k)$.

PROOF. (a), (d). Let γ be the realisation of the Hopf line bundle, ϵ the trivial real line bundle, and τ the real tangent bundle over FP^n. In the following sequence of implications, † indicates the use of the condition $2k \geq dn + 1$.

Received by the editors December 30, 1974.

Key words and phrases. Axial map, embedding, immersion, projective space, skew map, symmaxial map, tangent bundle.

© American Mathematical Society 1976

413
$FP^n \subseteq (dn + k) \iff r$ is a subbundle of $(dn + k)e \{6\}$
\[\iff \tau \oplus de = (n + 1)\gamma^* \text{ is a subbundle of} \]
\[(dn + k + d)e \{7, p. 100\} \]
\[+ \iff \text{there exists a skew map} \]
\[(n + 1)\gamma^* \to (d(n + 1) + k)e \{5, (1.2)\} \]
\[\iff \text{there exists a map} S^N \times S^N \to S^{N+k} \text{ which induces} \]
\[\text{an} F\text{-axial map of type} (N, k). \]

(b) Let $f: F^P \to \mathbb{R}^{dn+k}$ be an embedding. (To use conventional matrix notation, we shall assume here that F^* acts on \mathbb{R}^d on the left.) Write $\mathbb{R}_0^m = \mathbb{R}^m \setminus \{0\}$; $\nu: \mathbb{R}_0^m \to S^{m-1}$, $x \mapsto x/\|x\|$; $\pi: S^N \to FP^N$, and set $\bar{\Delta} = \{(x,wx) \in \mathbb{R}_0^{N+1}; \ w \in F^*\}$, $\Delta' = \bar{\Delta} \cap (S^N \times S^N)$, $e = (1,0, \ldots, 0) \in \mathbb{R}^{N+1+k}$, and $j: \mathbb{R}^{dn+k} \to \mathbb{R}^d \oplus \mathbb{R}^{dn+k}$ for the inclusion of the orthogonal complement of Fe in \mathbb{R}^{N+1+k}. For $u,v \in S^N$, write $a = \langle v,u \rangle_F$; and define
\[G: (S^N \times S^N, S^N \times \Delta') \times I \to (\mathbb{R}^{N+1} \times \mathbb{R}^{N+1}, \mathbb{R}_0^{N+1} \times \mathbb{R}_0^{N+1} \setminus \bar{\Delta}), \]
\[g(u,v,t) = \begin{cases} \left[\begin{array}{c} 1 - |a|^2 t^2 \\ at \\ 1 \end{array}\right] \left[\begin{array}{c} u \\ -\bar{a}t \\ v - au \end{array}\right] \\ 0, \end{cases} \]
\[g(x,y) = \begin{cases} 1/\|x\| \cdot \|y\| \cdot \|f\nu(x) - f\nu(y)\| \cdot [f\nu(x + y) - f\nu(x - y)] \\ (x,y) \in \mathbb{R}_0^{N+1} \times \mathbb{R}_0^{N+1} \setminus \bar{\Delta}, \\ 0, \quad (x,y) \in (\mathbb{R}^{N+1} \cup \mathbb{R}^{N+1}) \cup \bar{\Delta}. \end{cases} \]

Hence, define
\[F: S^N \times S^N \times I \to S^{N+k}, \quad F(u,v,t) = v(\alpha e + jgG(u,v,t)). \]

The reader may verify that these maps behave as required, so that $F_0: S^N \times S^N \to S^{N+k}$ induces an F-symaxial map of type (N,k). (When $F = C$, the involution on $\mathbb{R}P^{2n+1+k}$ given by $\pm (\alpha e + j(z)) \mapsto \pm (\bar{a}e + j(z))$ is homotopic to the identity provided k is odd.)

(c) Clearly it suffices to establish that the tangent bundle monomorphism
\[\tau(f): \tau FP^n \to \tau \mathbb{R}^{dn+k} = \mathbb{R}^{dn+k} \times \mathbb{R}^{dn+k} \]
is fibre-homotopic to
\[g'(x,y), F^* = (f\nu(x), g(x,y)) \]
(f, g as in (b)), since the F-axial maps of both (a) and (b) come from composition with $G_0: S^N \times S^N \to \pi^* \tau FP^n$ specified in (b).

But this is evident from the following homotopy (cf. [5, Lemma 2.2]):
\[H: \tau FP^n \times I \to \mathbb{R}^{dn+k} \times \mathbb{R}^{dn+k}, \]
\[H([x,y], F^*, t) = (f\nu(x), \{f\nu(x + (1 - t)y) - f\nu(x - (1 - t)y)\} / (1 - t^2)). \]
(Note that, as $t \to 1$, $1 - t^2 = 2(1 - t) + O(1 - t^2)$.)

By [2], the numerical condition of 1(d) is satisfied when $n > 7$ if $F = C$ and may be omitted if $F = R$. Thus 1(a),(d) yield that $CP^n \subseteq (2n + k)$ implies
$\mathbb{R}P^{2n+1} \subseteq (2n + k + 1)$—cf. [12, (5.2)]. When $F = \mathbb{R}$, 1(b),(c) answer affirmatively a question raised in [2] (for which, I understand, Professors Feder and Gitler also have a proof); we now show the converse is not true.

2. Example. Let n be a power of 2. Then by [8], $\mathbb{C}P^n \subset (4n - 1)$; 1(b) now implies the existence of a C-symmaxial (and so R-symmaxial) map of type $(2n + 1, 2n - 1)$. But [9], [10] $\mathbb{R}P^{2n+1} \not\subset (4n)$, so that the existence of a symmaxial map of type (n,k) does not imply $\mathbb{R}P^n \subset (n + k)$.

The next result is perhaps more predictable. Nevertheless, it illustrates the falsity of the converse to [12, (5.2)].

3. Example. Let $n + 1 = 2^r$, where $r \equiv 2, 3 (4)$. Then by [4] $\mathbb{R}P^{2n+1} \subseteq (4n - 2r)$; so by [11] there exists an R-axial map of type $(2n + 1, 2n - 2r - 1)$. However, by [13], $\mathbb{C}P^n \not\subseteq (4n - 2r - 1)$, whence, from 1(c), the existence of an R-axial map of type $(2n + 1, k)$ does not imply the existence of a C-axial map of type $(2n + 1, k)$.

Since 1 shows that the situation for $\mathbb{R}P^n$ largely carries over to $\mathbb{C}P^n$, one might naively hope that a comparable result holds for $\mathbb{H}P^n$. However, [3, §4] casts doubt upon, and 5 below puts paid to, such hopes.

4. Lemma. If there exists an H-axial (resp. H-symmaxial) map f of type $(4n + 3, k)$, then there exists a C-axial (resp. C-symmaxial) map g of type $(4n + 3, k)$.

Proof. Write $\mathbb{R}^{4n+4} = \mathbb{C}^{2n+2} \oplus \mathbb{C}^{2n+2}$ which we identify with \mathbb{H}^{n+1} as $\mathbb{C}^{2n+2} \oplus \mathbb{C}^{2n+2}$. For $x_i, y_i \in \mathbb{C}^{2n+2}, i = 1, 2$, f induces g by setting

$$g(\pm (x_1, x_2), \pm (y_1, y_2)) = f(\pm (x_1 + x_2j), \pm (y_1 + y_2j)),$$

since $(x_1a + (x_2a))j = (x_1 + x_2j)a$ for $a \in \mathbb{C}^*$. If f is symmaxial then clearly g is too.

5. Example. Let n be a power of 2. From [8], $\mathbb{H}P^n \subset (8n - 3)$. But if there were an H-symmaxial—or even H-axial—map of type $(4n + 3, 4n - 3)$, then by 4 above there would exist a C-axial map of type $(4n + 3, 4n - 3)$. So by 1(c) $\mathbb{C}P^{2n+1} \subseteq (8n - 1)$, which is contradicted by [1], [13]. Hence, $\mathbb{H}P^n \subset (4n + k)$ does not imply the existence of an H-axial map of type $(4n + 3, k)$.

As for positive results in the quaternionic case, we must content ourselves with the following observation.

6. Note. If there exists an H-axial map of type $(4n + 3, k)$ with $2k \geq 4n + 1$, then $\mathbb{H}P^n \subset (4n + 3 + k)$. The proof is as for 1(c) above, save that one uses the characterisation of the tangent bundle given in [3, §4].

References

ST. JOHN'S COLLEGE, OXFORD OX13JP, ENGLAND