Question 1

If \(f \) is measurable and \(\lambda \) is any real number, \(f + \lambda \) and \(\lambda f \) are measurable.

Proof. Since \(\{ f > a - \lambda \} \) is measurable, \(\{ f + \lambda > a \} = \{ f > a - \lambda \} \) is measurable, then \(f + \lambda \) is measurable.

If \(\lambda = 0 \), then \(\lambda f = 0 \), of course is measurable. If \(\lambda > 0 \), then \(\{ \lambda f > a \} = \{ f > \frac{a}{\lambda} \} \), if \(\lambda < 0 \), \(\{ \lambda f > a \} = \{ f < \frac{a}{\lambda} \} \), these two sets are both measurable, so \(\lambda f \) is measurable.

Question 3

Theorem 4.3 can be used to define measurability for vector-valued (e.g, complex-valued) functions. Suppose, for example, that \(f \) and \(g \) are real-valued and defined in \(\mathbb{R}^n \), and let \(F(x) = (f(x), g(x)) \). Then \(F \) is said to be measurable if \(F^{-1}(G) \) is measurable for every open \(G \subseteq \mathbb{R}^2 \). Prove that \(F \) is measurable if and only if both \(f \) and \(g \) are measurable in \(\mathbb{R}^n \).

Proof. \((\iff)\) Since \(G \) is open, by **Theorem 1.11** we have \(G = \bigcup_{k=1}^{\infty} I_k \), \(I_k = \{ y : a_1^{(k)} \leq y_1 \leq b_1^{(k)}, i = 1, 2 \} \) are nonoverlapping intervals. \(F^{-1}(I_k) = \{ a_1^{(k)} \leq f \leq b_1^{(k)} \} \cap \{ a_2^{(k)} \leq g \leq b_2^{(k)} \} \), since \(f \) and \(g \) are measurable, \(F^{-1}(I_k) \) is measurable. \(F^{-1}(G) = \bigcup_{k=1}^{\infty} F^{-1}(I_k) \) is measurable, thus \(F \) is measurable.

\((\implies)\) For every finite \(a \), since \(F \) is measurable, \(F^{-1}((a, +\infty) \times \mathbb{R}) = \{ f > a \} \) is measurable, then \(f \) is measurable in \(\mathbb{R}^n \). Similarly we can get \(g \) is measurable in \(\mathbb{R}^n \).

Question 4

Let \(f \) be defined and measurable in \(\mathbb{R}^n \). If \(T \) is a nonsingular linear transformation of \(\mathbb{R}^n \), show that \(f(Tx) \) is measurable. [If \(E_1 = \{ x : f(x) > a \} \) and \(E_2 = \{ x : f(Tx) > a \} \), show that \(E_2 = T^{-1}E_1 \)].

Proof. \(E_2 = \{ x : f(Tx) > a \} = \{ x : Tx \in f^{-1}((a, +\infty)) \} = \{ x : Tx \in E_1 \} = \{ x : x \in T^{-1}E_1 \} = T^{-1}E_1 \). Since \(T \) is nonsingular, \(T^{-1} \) is a Lipschitz transformation. By **Theorem 3.33**, \(E_2 = T^{-1}E_1 \) is measurable, thus \(f(Tx) \) is measurable.
Question 5

Give an example to show that $\phi(f(x))$ may not be measurable if ϕ and f are measurable.

Example: Let F be the Cantor-Lebesgue function. Define $g : [0, 1] \to [0, 1]$ and $g = (F(x) + x)/2$, note that g is continuous and strictly increasing. Let C denote the Cantor set, then $|g(C)| = \frac{1}{2}$. By Corollary 3.39 we know there exists a nonmeasurable set $N \subset g(C)$. Put $f = g^{-1}$, then $f(N) \subset C$ and $|f(N)| = 0$ since $|C| = 0$. Put $Z = f(N)$ and ϕ is the characteristic function of Z. Consider $\{\phi(f(x)) > 0\}$, when $f(x) \in Z$, then we have $\{\phi(f(x)) > 0\} = N$ which is nonmeasurable, thus $\phi(f(x))$ is not measurable.

Lecturer’s REMARK It may not be clear that $|g(C)| > 0$. Thus I will prefer defining $F^{-1}(x) = \inf\{y : F(y) = x\}$ for $x \in [0, 1]$ and let $f = F^{-1}$.

Question 6

Let f and g be measurable functions on E.

(a) If f and g are finite a.e. in E, show that $f + g$ is measurable no matter how we define it at the points when it has the form $+\infty + (-\infty)$ or $-\infty + \infty$.

(b) Show that fg is measurable without restriction on the finiteness of f and g. Show that $f + g$ is measurable if it is defined to have the same value at every point where it has the form $+\infty + (-\infty)$ or $-\infty + \infty$.

Proof. (a) Put $Z_1 = \{x \in E : f = \pm\infty\}$ and $Z_2 = \{x \in E : g = \pm\infty\}$, $|Z_1| = 0$, $|Z_2| = 0$, then $|Z_1 \cap Z_2| = 0$. Put $Z = \{x \in E : (f(x) = +\infty$ and $g(x) = -\infty$) or $(f(x) = -\infty$ and $g(x) = +\infty)\} \subset Z_1 \cup Z_2$, then $|Z| = 0$. Let

$$
\overline{f}(x) = \begin{cases}
 f(x) & x \in E - Z \\
 0 & x \in Z
\end{cases}
$$

$$
\overline{g}(x) = \begin{cases}
 g(x) & x \in E - Z \\
 0 & x \in Z
\end{cases}
$$

Since $\overline{f} = f$ a.e and $\overline{g} = g$ a.e., $\overline{f}, \overline{g}$ are measurable. By Theorem 4.9, $\overline{f} + \overline{g}$ is measurable on $E \setminus Z$ and hence measurable on E. Since $\overline{f} + \overline{g} = f + g$ a.e. no matter how we define the value of $f + g$ on Z, we conclude that $f + g$ is measurable on E.

2
(b) First, for any measurable set D, we will let $\mathcal{M}_{\mathcal{F}}(D)$ be the set of all measurable functions on D.

Define $E_i, i = 1, \ldots, 6$:

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
<th>E_5</th>
<th>E_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>∞</td>
<td>$-\infty$</td>
<td>0</td>
<td>0</td>
<td>$\pm \infty$</td>
<td>$\neq 0$</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>$-\infty$</td>
<td>$\neq 0$</td>
<td>$\pm \infty$</td>
</tr>
<tr>
<td>fg</td>
<td>β_1</td>
<td>β_2</td>
<td>β_3</td>
<td>β_4</td>
<td>$\pm \infty$</td>
<td>$\pm \infty$</td>
</tr>
</tbody>
</table>

Since $f, g \in \mathcal{M}_{\mathcal{F}}(E)$, we have $f, g \in \mathcal{M}_{\mathcal{F}}(E_i), i = 1, \ldots, 6$ and $f, g \in \mathcal{M}_{\mathcal{F}}(E \cup E_i)$, then $fg \in \mathcal{M}_{\mathcal{F}}(E_i), i = 1, \ldots, 6$ and $fg \in \mathcal{M}_{\mathcal{F}}(E \cup E_i)$. Thus, $fg \in \mathcal{M}_{\mathcal{F}}(E)$ without restriction on the finiteness of f and g.

We now define $E_i, i = 1, \ldots, 4$:

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>∞</td>
<td>$-\infty$</td>
<td>∞</td>
<td>$-\infty$</td>
</tr>
<tr>
<td>g</td>
<td>$-\infty$</td>
<td>∞</td>
<td>∞</td>
<td>$-\infty$</td>
</tr>
<tr>
<td>$f+g$</td>
<td>β_1</td>
<td>β_2</td>
<td>∞</td>
<td>$-\infty$</td>
</tr>
</tbody>
</table>

Since $f, g \in \mathcal{M}_{\mathcal{F}}(E)$, we have $f, g \in \mathcal{M}_{\mathcal{F}}(E_i), i = 1, \ldots, 4$ and $f, g \in \mathcal{M}_{\mathcal{F}}(E \cup E_i)$, then $f + g \in \mathcal{M}_{\mathcal{F}}(E_i), i = 1, \ldots, 4$ and $f + g \in \mathcal{M}_{\mathcal{F}}(E \cup E_i)$. Hence, $f + g \in \mathcal{M}_{\mathcal{F}}(E)$.

Question 7

Let f be usc and less than $+\infty$ on a compact set E. Show that f is bounded above on E. Show also that f assumes its maximum on E, i.e., that there exists $x_0 \in E$ such that $f(x_0) \geq f(x)$ for all $x \in E$.

Proof. Since f is usc on E, then $\{x \in E : f(x) < k\}$ is open for $k = 1, 2, \ldots$. Since f is less than $+\infty$, $\bigcup_{k=1}^{\infty} \{x \in E : f(x) < k\}$ is an open cover of E. Since E is compact, then there exist a finite subcover, that is $\exists N \in \mathbb{N}$ such that $\bigcup_{k=1}^{N} \{x \in E : f(x) < k\} \supset E$, this means $f(x) < N$, so f is bounded above on E. Put $M = \sup_{x \in E} f(x)$, then $M < N$, for each $k = 1, 2, \ldots$, there exists $x_k \in E$ such that $f(x_k) > M - \frac{1}{k}$. Since E is compact, there exists a subsequence x_{n_k} of x_k which converges to a point x_0 of E. $f(x_{n_k}) > M - \frac{1}{n_k}$, let $k \to \infty$, we have $f(x_0) \geq M$, since $f(x_0) \leq M$, then $f(x_0) = M$. Thus, f assumes its maximum on E.

3
Question 8

(a) Let f and g be two functions which are usc at x_0. Show that $f + g$ is usc at x_0. Is $f - g$ usc at x_0? When is fg usc at x_0?

Proof. If $f(x_0) = +\infty$ or $g(x_0) = +\infty$, then $f(x_0) + g(x_0) = +\infty$, so $f + g$ is usc at x_0. If $f(x_0) < +\infty$ and $g(x_0) < +\infty$, since f is usc at x_0, given $M_1 > f(x_0)$, there exists $\delta_1 > 0$ such that $f(x) < M_1$ for all $x \in E$ which lie in the ball $|x - x_0| < \delta_1$. Since g is also usc at x_0, given $M_2 > f(x_0)$, there exists $\delta_2 > 0$ such that $g(x) < M_2$ for all $x \in E$ which lie in the ball $|x - x_0| < \delta_2$. Put $\delta = \min(\delta_1, \delta_2)$, then $f(x) + g(x) < M_1 + M_2$ for all $x \in E$ which lie in the ball $|x - x_0| < \delta$, thus $f + g$ is usc at x_0.

$f - g$ is not usc at x_0. Since g is usc at x_0, $-g$ is lsc at x_0, put $f = 0$, then $f - g = -g$ is lsc at x_0.

When $f \geq 0$ and $g \geq 0$, fg is usc at x_0. If $f(x_0) = +\infty$ or $g(x_0) = +\infty$, obviously fg is usc at x_0. Otherwise, by the above proof, put $\delta = \min(\delta_1, \delta_2)$, then $f(x)g(x) < M_1M_2$ for all $x \in E$ which lie in the ball $|x - x_0| < \delta$, thus fg is usc at x_0.

(b) If $\{f_k\}$ is a sequence of functions which are usc at x_0. Show that $\inf_k f_k(x)$ is usc at x_0.

Proof. Since f_k is usc at x_0, given $\varepsilon > 0$, $f_k(x_0) + \varepsilon > f_k(x_0)$, then $\exists \delta_k > 0$ such that $f_k(x) < f_k(x_0) + \varepsilon$ for $x \in E_k = (\{x : |x - x_0| < \delta_k\} \cap E)$. When $x \in \cap E_k$, $\inf_k f_k(x) < \inf_k f_k(x_0) + \varepsilon$, so $\inf_k f_k(x)$ is usc at x_0.

(c) If $\{f_k\}$ is a sequence of functions which are usc at x_0 and which converge uniformly near x_0, show that $\lim f_k$ is usc at x_0.

Proof. Since f_k is usc at x_0, given $\varepsilon > 0$, there exists $\delta_k > 0$ such that $f_k(x) < f_k(x_0) + \frac{\varepsilon}{2}$ for all $x \in E$ which lie in the ball $|x - x_0| < \delta_k$. Since f_k converge uniformly near x_0, there exists K, when $k > K$ and $x \in \{x : |x - x_0| < \delta_k\} \cap E$, $|\lim f_k(x) - f_k(x)| < \frac{\varepsilon}{2}$, then $\lim f_k(x) < f_k(x) + \frac{\varepsilon}{2} < f_k(x_0) + \varepsilon$, $\lim f_k(x) < \lim f_k(x_0) + \varepsilon$, thus $\lim f_k$ is usc at x_0.

Question 9

Show that the limit of a decreasing (increasing) sequence of functions usc (lsc) at x_0 is usc (lsc) at x_0. In particular, the limit of a decreasing (increasing) sequence of functions continuous at x_0 is usc (lsc) at x_0.

Proof. Let $\{f_k\}$ be the decreasing sequences usc at x_0, since f_k is decreasing, we have $f = \lim_{k \to \infty} f_k = \inf_k f_k$, by Question 8(b) we know that $\inf_k f_k$ is usc at x_0, then
\[f = \lim_{x \to \infty} f_k \] is usc at \(x_0 \).

Question 10

(a) If \(f \) is defined and continuous on \(E \), show that \(\{a < f < b\} \) is relatively open, and that \(\{a \leq f \leq b\} \) and \(\{f = a\} \) are relatively closed.

(b) If \(f \) is a finite function on \(\mathbb{R}^n \). Show that \(f \) is continuous on \(\mathbb{R}^n \) if and only if \(f^{-1}(G) \) is open for every open \(G \) in \(\mathbb{R}^1 \), or if and only if \(f^{-1}(F) \) is closed for every closed \(F \) in \(\mathbb{R}^1 \).

Proof. (a) For each \(x_k \in \{a < f < b\} \), since \(a < f(x_k) < b \) and \(f \) is continuous on \(E \), there exists \(\delta_1, \delta_2 > 0 \) such that \(f(x) < b \) when \(x \in B(x_k, \delta_1) \cap E \) and \(f(x) > a \) when \(x \in B(x_k, \delta_2) \cap E \), put \(\delta_k = \min(\delta_1, \delta_2) \), we have \(a < f(x) < b \) when \(x \in B(x_k, \delta_k) \cap E \).

Then \(\cup B(x_k, \delta_k) \cap E = \{a < f < b\} \), since \(\cup B(x_k, \delta_k) \) is open, \(\{a < f < b\} \) is relatively open.

We prove the complement of \(\{a \leq f \leq b\} \) is relatively open, the complement of \(\{a \leq f \leq b\} \) is \(\{f > b\} \cup \{f < a\} \). From the above proof we know \(\{f > b\} \) and \(\{f < a\} \) are relatively open, then \(\{f > b\} \cup \{f < a\} \) is relatively open, so \(\{a \leq f \leq b\} \) is relatively closed. Put \(b = a \), \(\{f = a\} \) is also relatively closed.

(b) \(\Rightarrow \) If \(f \) is continuous, put \(f^{-1}(G) \neq \emptyset \). For \(x_0 \in f^{-1}(G) \), then \(f(x_0) \in G \). Since \(G \) is open, there exists \(\varepsilon > 0 \) such that \((f(x_0) - \varepsilon, f(x_0) + \varepsilon) \subset G \). Since \(f \) is continuous, for the above \(\varepsilon \), \(\exists \delta > 0 \) such that \(-\varepsilon < f(x) - f(x_0) < \varepsilon \) when \(x \in (x_0 - \delta, x_0 + \delta) \), so when \(x \in (x_0 - \delta, x_0 + \delta) \), \(f(x) \in G \), then \((x_0 - \delta, x_0 + \delta) \subset f^{-1}(G) \). This means \(x_0 \) is the interior point of \(f^{-1}(G) \), so \(f^{-1}(G) \) is open.

(\(\Leftarrow \)) Since \(f^{-1}(G) \) is open for every open \(G \) in \(\mathbb{R}^1 \), for each \(x_0 \) and \(\varepsilon > 0 \), the pre-image \(U \) of \((f(x_0) - \varepsilon, f(x_0) + \varepsilon) \) is open. Since \(x_0 \in U \), then \(\exists \delta > 0 \) such that \((x_0 - \delta, x_0 + \delta) \subset U \). So when \(x \in (x_0 - \delta, x_0 + \delta) \), we have \(f(x) \in (f(x_0) - \varepsilon, f(x_0) + \varepsilon) \), this means \(f \) is continuous at \(x_0 \). Thus \(f \) is continuous.

Question 11

Let \(f \) be defined on \(\mathbb{R}^n \) and let \(B(x) \) denote the open ball \(\{y : |x - y| < r\} \) with center \(x \) and fixed radius \(r \). Show that the function \(g(x) = \sup\{f(y) : y \in B(x)\} \) is lsc and that the function \(h(x) = \inf\{f(y) : y \in B(x)\} \) is usc on \(\mathbb{R}^n \). Is the same true for the closed ball \(\{y : |x - y| \leq r\} \)?
Proof. For any \(x_0 \in \mathbb{R}^n \), \(g(x_0) = \sup\{ f(y) : y \in B(x_0) \} \), then \(\forall y \in B(x_0), f(y) \leq g(x_0) \). Moreover, \(\forall \varepsilon > 0 \), there exists \(x_\varepsilon \in B(x_0, 1) \) such that \(f(x_\varepsilon) > g(x_0) - \varepsilon \). Choose \(r_\varepsilon < 1 \) such that \(|x_0 - x_\varepsilon| < r_\varepsilon \). Since \(x_\varepsilon \in B(z, r) \) if \(z \in B(x_0, r - r_\varepsilon) \) and \(g(x) = \sup\{ f(y) : y \in B(z) \} \), we have \(g(x) \geq f(x_\varepsilon) > g(x_0) - \varepsilon \) when \(x \in B(x_0, r - r_\varepsilon) \), so \(g(x) \) is lsc at \(x_0 \). Thus, \(g(x) \) is lsc on \(\mathbb{R}^n \). We can use the similar way to prove \(h(x) = \inf\{ f(y) : y \in B(x) \} \) is usc on \(\mathbb{R}^n \).

It is not the same for the closed ball \(\{ y : |x - y| \leq r \} \), for example, let \(f(0) = 1 \) and \(f(x) = 0 \) for \(x \neq 0 \), it is clear that \(h(x) = \sup\{ f(y) : y \in B(y, 1) \} \) is not lsc.

Question 12

If \(f(x), x \in \mathbb{R}^1 \), is continuous at almost every point of an interval \([a, b]\), show that \(f \) is measurable on \([a, b]\).

Proof. Put \(Z = \{ f \text{ is not continuous} \} \), then \(|Z| = 0\). Put \(E = [a, b] - Z \), then \(f \) is continuous relative to \(E \). \(\{ f > \alpha \} = \{ x \in E : f > \alpha \} \cup \{ x \in Z : f > \alpha \} \). Since \(f \) is continuous on \(E \), \(\{ x \in E : f > \alpha \} \) is measurable. \(|\{ x \in Z : f > \alpha \}| \leq |z| = 0 \), then \(\{ x \in Z : f > \alpha \} \) is measurable. Thus, \(f \) is measurable on \([a, b]\).

Question 15

Let \(\{ f_k \} \) be a sequence of measurable functions defined on a measurable \(E \) with \(|E| < +\infty \). If \(|f_k(x)| \leq M_x < +\infty \) for all \(k \) for each \(x \in E \), show that given \(\varepsilon > 0 \), there is a closed \(F \subset E \) and a finite \(M \) such that \(|E - F| < \varepsilon \) and \(|f_k(x)| \leq M \) for all \(k \) and all \(x \in F \).

Proof. Fix \(\varepsilon > 0 \), for each \(n \), let \(E_n = \{ x \in E : M_x \leq n \} \). Then \(E_n \) is measurable. Clearly \(E_n \subset E_{n+1} \) and \(E_n \rightarrow E \). Hence, \(|E_n| \rightarrow |E|\). Since \(|E| < +\infty\), it follows that \(|E - E_n| \rightarrow 0\). Choose \(n_0 \) such that \(|E - E_{n_0}| < \frac{\varepsilon}{2}\), and let \(F \) be a closed subset of \(E_{n_0} \) with \(|E_{n_0} - F| < \frac{\varepsilon}{2}\). Then \(|E - F| < \varepsilon\) and \(|f_k(x)| \leq n_0 \) for all \(k \) and all \(x \in F \).

Remark Unfortunately, we do not know why \(E_n \) in the above is measurable (unless we are given that the function \(g(x) = M_x \) is measurable. Thus, it is better to consider

\[
F_n = \{ x \in E : \sup_k |f_k(x)| \leq n \}.
\]
Question 17

Suppose that \(f_k \xrightarrow{m} f \) and \(g_k \xrightarrow{m} g \) on \(E \). Show that \(f_k + g_k \xrightarrow{m} f + g \) on \(E \) and, if \(|E| < +\infty \), that \(f_kg_k \xrightarrow{m} fg \) on \(E \). If, in addition, \(g_k \xrightarrow{m} g \) on \(E \), \(g \neq 0 \) a.e., and \(|E| < +\infty \), show that \(f_k/g_k \xrightarrow{m} f/g \) on \(E \).

Proof. (1) \(\{x \in E : |f + g - (f_k + g_k)| > \varepsilon\} \subset \{x \in E : |f - f_k| > \frac{\varepsilon}{2}\} \cup \{x \in E : |g - g_k| > \frac{\varepsilon}{2}\} \), since \(\lim_{k \to \infty} \{x \in E : |f - f_k| > \frac{\varepsilon}{2}\} = 0 \) and \(\lim_{k \to \infty} \{x \in E : |g - g_k| > \frac{\varepsilon}{2}\} = 0 \), then \(\lim_{k \to \infty} \{x \in E : |f + g - (f_k + g_k)| > \varepsilon\} = 0 \), \(f_k + g_k \xrightarrow{m} f + g \) on \(E \).

(2) Since \(f_kg_k - fg = (f_k-f)(g_k-g)+f(g_k-g)+g(f_k-f), \{x \in E : |f_kg_k-fg| > \varepsilon\} \subset \{x \in E : |(f_k-f)(g_k-g)| > \frac{\varepsilon}{3}\} \cup \{x \in E : |f(g_k-g)| > \frac{\varepsilon}{3}\} \cup \{x \in E : |g(f_k-f)| > \frac{\varepsilon}{3}\} \).

\(\{x \in E : |(f_k-f)(g_k-g)| > \frac{\varepsilon}{3}\} \subset \{x \in E : |f_k-f| > \frac{\varepsilon}{3\sqrt{3}}\} \cup \{x \in E : |g_k-g| > \frac{\varepsilon}{3\sqrt{3}}\} \).

Since \(f \) is the limit (in measure) of a sequence of functions, it must be finite on \(E \).

Since \(|E| < +\infty \), for any \(\eta > 0 \), there exists \(Z_1, Z_2 \subset E, |Z_1|, |Z_2| < \eta \) such that \(f \) is bounded on \(E - Z_1 \) and \(g \) is bounded on \(E - Z_2 \), and . Put \(|f| \leq M_1 \) on \(E - Z_1 \) and \(|g| \leq M_2 \) on \(E - Z_2 \). So \(\{x \in E : |g_k-g| > \frac{\varepsilon}{3}\} \subset \{x \in E : |g_k-g| > \frac{\varepsilon}{3M_2}\} \cup Z_1, \{x \in E : |g(f_k-f)| > \frac{\varepsilon}{3}\} \subset \{x \in E : |f_k-f| > \frac{\varepsilon}{3M_2}\} \cup Z_2, \) since \(f_k \xrightarrow{m} f \) and \(g_k \xrightarrow{m} g \) on \(E \) and \(|Z_1|, |Z_2| < \eta \), we have \(|\{x \in E : |f_kg_k-fg| > \varepsilon\}| < 5\eta \) if \(k \) is sufficiently large.

Hence \(f_kg_k \xrightarrow{m} fg \) on \(E \).

(3) First, since \(g \neq 0 \) a.e., we have \(1/g \) is finite a.e.. Hence given any \(\eta > 0 \), since \(|E| < \infty \), there exists \(Z \subset E \) such that \(|Z| < \eta \) and \(|1/g| \leq M \) on \(E \setminus Z \) for some constant \(M > 0 \).

Since \(g_k \xrightarrow{m} g, \exists K \) such that \(|E_k| = |\{|g_k-g| > 1/(2M)\}| < \eta \) when \(k \geq K \). Note that \(|g_k| \geq |g| - |g_k - g| \geq 1/(2M) \) on \(E \setminus (Z \cup E_k) \).

Now observe that

\[
\frac{1}{g_k} - \frac{1}{g} = \frac{g_k - g}{g_k g} = \frac{1}{|g_k g|} |g_k - g|.
\]

Note that \(|g_k g| \geq 1/(2M^2) \) on \(E \setminus (Z \cup E_k) \). Since \(g_k \xrightarrow{m} g \), for any \(\varepsilon > 0 \), there exists \(K' \) such that \(|\{|g_k-g| > \varepsilon/(2M^2)\}| < \eta \) for \(k \geq K' \). It is now clear that \(|\{|1/g_k - 1/g| > \varepsilon\}| < 2\eta \) when \(k \geq \max\{K, K'\} \).

Thus \(\frac{1}{g_k} \xrightarrow{m} \frac{1}{g} \) on \(E \). By the conclusion of (2), we have \(f_k/g_k \xrightarrow{m} f/g \) on \(E \).

Question 18

If \(f \) is measurable on \(E \), define \(\omega_f(a) = |\{f > a\}| \) for \(-\infty < a < +\infty \). If \(f_k \searrow f \), show that \(\omega_{f_k} \searrow \omega_f \). If \(f_k \xrightarrow{m} f \), show that \(\omega_{f_k} \xrightarrow{m} \omega_f \) at each point of continuity of \(\omega_f \).
Proof. Put \(E_k = \{ f_k > a \} \), since \(f_k \not\nearrow f \), we have \(E_k \subset E_{k+1} \) and \(E_k \to E = \{ f > a \} \), by Theorem 3.26 we have \(|E_k| \to |E| \), then \(\omega_{f_k} \not\nearrow \omega_f \).

Let \(a \) be a continuous point of \(\omega_f \), then \(\forall \eta > 0, \exists \delta > 0 \), when \(|b-a| \leq \delta \), \(|\omega_f(b) - \omega_f(a)| < \eta \). Let \(E_k = \{ x : |f - f_k| > \delta \} \). Then there exists \(N \in \mathbb{N} \) such that \(|E_k| < \eta \) for \(k \geq N \). Since \(f_k = (f_k - f) + f \), \(\{ f_k > a \} \subset E_k \cup \{ f > a - \delta \} \), then \(\omega_{f_k} \leq \eta + \omega_f(a - \delta) < \eta + \omega_f(a) + \eta \) for \(k \geq N \). Next, since \(f = (f - f_k) + f_k \), we have \(\{ f > a + \delta \} \subset (E_k \cup \{ f_k > a \}) \), then \(\omega_{f_k} \geq \omega_f(a + \delta) - \eta \), so \(|\omega_{f_k}(a) - \omega_f(a)| < 2\eta \). Thus \(\omega_{f_k}(a) \to \omega_f(a) \).

Question 19

Let \(f(x,y) \) be a function defined on the unit square \(0 \leq x \leq 1, 0 \leq y \leq 1 \) which is continuous in each variable separately. Show that \(f \) is a measurable function of \((x,y)\).

Proof. Divide \([0,1]\) into \(n \) equal subintervals, put \(f_n(x,y) = f(x, \frac{k}{n}) \) when \(\frac{k}{n} \leq y < \frac{k+1}{n} \). Clearly for any fixed \((x,y)\), \(f_n(x,y) \to f(x,y) \). \(\{ f_n(x,y) > a \} = \bigcup_{k=1}^{n-1} \{ x \in [0,1] : f(x, \frac{k}{n}) > a \} \times [\frac{k}{n}, \frac{k+1}{n}) \}, \) since \(f \) is continuous in each variable separately, so \(\{ f_n(x,y) > a \} \) is measurable. Since \(f_n(x,y) \to f(x,y) \), \(f \) is a measurable function of \((x,y)\).

Question 20

If \(f \) is measurable and finite a.e. on \([a,b]\), show that given \(\varepsilon > 0 \), there is a continuous \(g \) on \([a,b]\) such that \(|\{x : f(x) \neq g(x)\}| < \varepsilon \).

Proof. By Lusin’s Theorem we have \(\forall \varepsilon > 0 \), there exists a closed set \(F \subset E \) such that \(|E - F| < \varepsilon \) and \(f \) is continuous relative to \(F \). Put \(G = \overline{F} F \), then \(G \) is open, then \(G = \bigcup_{k=1}^{\infty} (a_k, b_k), (a_k, b_k) \) are disjoint. When \(x \in F \), Let \(g(x) = f(x) \). When \(x \notin F \), define \(g(x) \) is a linear on each open interval \((a_k, b_k)\) and let \(g(x) \) be continuous at the endpoint of the interval. When \(x \in (a_k, b_k) \) which is a finite interval, \(g(x) = f(a_k) \frac{x-a_k}{b_k-a_k} + f(b_k) \frac{x-b_k}{b_k-a_k} \). When some open interval is infinite, if \(x \in (c, +\infty) \), \(g(x) = f(c) \), when \(x \in (-\infty, d) \), \(g(x) = f(d) \). So \(g \) is well-defined on \(\mathbb{R} \), and obviously \(|\{ f \neq g \}| \leq |E - F| < \varepsilon \). From the above construction of \(g \), we have \(g \) is continuous at the endpoint of the open interval, so \(g \) is continuous on \(R \), of course \(g \) is continuous on \([a,b]\).