Limit of functions

Definition 4.1.1 Let $A \subset \mathbb{R}$. A point $c \in \mathbb{R}$ is a cluster point of A if for every $\delta > 0$, there exists $x \in A$ such that $0 < |x - c| < \delta$ (or $x \in (V_\delta(c) \cap A) \setminus \{c\}$ the δ-deleted neighborhood of c in A.)

Equivalently, there exists a sequence $(x_n), x_n \in A \setminus \{c\}$ for all n (for simplicity, we will say (x_n) is a sequence in $A \setminus \{c\}$) such that $\lim(x_n) = c$. (Theorem 4.1.2).

Examples: $A = (0, 1); \mathbb{Q}; \{\sin n : n \in \mathbb{N}\}; \{1, 0\}; \mathbb{N}.$

Definition 4.1.4 Let $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$ and c is a cluster point of A. f is said to have a limit L at c if given any $\varepsilon > 0$, there exists $\varepsilon > 0$ such that

$$|f(x) - L| < \varepsilon, \text{ for all } x \in A \cap V_\delta(c) \setminus \{c\} = (A \setminus \{c\}) \cap (c - \delta, c + \delta)$$

(or $0 < |x - c| < \delta$ and $x \in A$.) We will write $\lim_{x \to c} f(x) = L$.

Theorem 4.1.8 $\lim_{x \to c} f(x) = L$ if and only if $\lim(f(x_n)) = L$ for all sequences (x_n) in $A \setminus \{c\}$ that converges to c.

Some examples

$$\lim_{x \to c} x = c, \quad \lim_{x \to c} x^2 = c^2, \quad \lim_{x \to c} |x|^{1/n} = |c|^{1/n}, \quad n \in \mathbb{N} \quad \lim_{x \to c} 1/x = 1/c \text{ where } c \neq 0.$$
$f(x) = \chi_Q(x) = 1$ if $x \in \mathbb{Q}$ and 0 otherwise.

$g : \mathbb{Q} \to \mathbb{R}$, $g(x) = 1$ for all $x \in \mathbb{Q}$.

Example where limit does not exist

$$\lim_{x \to 0} \sin(1/x), \lim_{x \to 0} 1/x, \lim_{x \to 0} x/|x|.$$

Remark: a convention. When dealing with an explicit algebraic function when domain is not specified, we always assume its domain to be the largest possible domain.

$$\sin(1/x), 1/x, \frac{(x + 1)}{(x^2 - 1)}, \frac{x^2 - 1}{x - 1}, \ln x, \sec x, \sqrt{x}$$

and rational function $p(x)/q(x)$, where $p(x)$ and $q(x)$ are polynomials.

Limit Theorems Similar to limit theorems for sequences we have

4.2.4 Suppose $\lim_{x \to c} f(x) = l_1$, $\lim_{x \to c} g(x) = l_2$. Then

$$\lim_{x \to c} f(x)g(x) = l_1l_2, \quad \text{and} \quad \lim_{x \to c} f(x) + g(x) = l_1 + l_2.$$

Furthermore, if $l_2 \neq 0$, then $\lim_{x \to c} f(x)/g(x) = l_1/l_2$.

Example Let \(p(x) \) and \(q(x) \) be polynomials. Then

\[
\lim_{x \to c} p(x) = p(c) \quad \text{and} \quad \lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)} \quad \text{if} \quad q(c) \neq 0.
\]

We also have comparison of limits and squeeze theorem.

An extension of 4.2.6 Let \(f, g : A \to \mathbb{R} \) and let \(c \) be a cluster point of \(A \). If \(f(x) \leq g(x) \) on a deleted neighborhood \(V_\delta(c) \cap A \setminus \{c\} \) of \(c \) in \(A \) and \(\lim_{x \to c} f(x) = l_1 \), \(\lim_{x \to c} g(x) = l_2 \), then \(l_1 \leq l_2 \).

4.2.7 Squeeze theorem

Let \(f, g, h : A \to \mathbb{R} \) and let \(c \) be a cluster point of \(A \). If \(f(x) \leq g(x) \leq h(x) \) on a deleted neighborhood \(V_\delta(c) \cap A \setminus \{c\} \) of \(c \) in \(A \) and \(\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = l \), then \(\lim_{x \to c} g(x) \) exists and equals to \(l \).

By the squeeze theorem, we have,

\[
\lim_{x \to 0} x \sin \frac{1}{x} = 0.
\]

Besides all the trigonometric identities, we will assume the following is known.

\[
0 \leq \sin x \leq x \leq \tan x \quad \text{for all} \quad 0 \leq x \leq \pi/2.
\]

\[
\lim_{x \to c} \sin x = \sin c, \lim_{x \to c} \cos x = \cos c \quad \text{for all} \quad x.
\]

Then \(\lim_{x \to c} \tan x = \tan c \) for all \(c \in \mathbb{R} \) such that \(\cos c \neq 0 \) and

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1.
\]
One-sided limits

Right hand limit: \(\lim_{x \to c^+} f(x) = L \) if given any \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that
\[
|f(x) - L| < \varepsilon \text{ for all } 0 < x - c < \delta, x \in A
\]
(or for all \(x \in A \cap (c, c + \delta) \)).

Alternatively, one has
\[
\lim_{x \to c^+} f(x) = \lim_{x \to c} f(x) \quad \text{in} \quad A \cap (c, \infty)
\]
where \(\tilde{f} = f \bigg|_{A \cap (c, \infty)} \).

Similarly, we can define left hand limits: \(\lim_{x \to c^-} f(x) \).

4.3.2 \(\lim_{x \to c^+} f(x) = L \) if and only if \(\lim (f(x_n)) = L \) for all sequences \((x_n) \) in \(A \cap (c, \infty) \) that converges to \(c \).

4.3.3 \(\lim_{x \to c} f(x) = L \) if and only if \(\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) = L \).

Of course, one also has comparison theorem and squeeze theorem for one-sided limits.

Exercise: 4.1: 1-6, 9-12,14, \quad (4th ed: 11-16 becomes 12-17) 4.2: 2, 4-6,11,13 \quad (4th ed: 13-14 becomes 14-15)

Homework7 due 28/3 4.1: 7,8,9c,10b,13 4.2: 3,12, 14 (take note of the difference if you are using 4th ed.)
Infinite limits

One can also define infinite limits.

For example, we write \(\lim_{x \to c^+} f(x) = \infty \) if given any \(\alpha \in \mathbb{R} \), there exists \(\delta > 0 \) such that

\[
 f(x) > \alpha \quad \text{for all } x \in A \cap (c, c + \delta).
\]

Moreover, one can define \(\lim_{x \to \infty} f(x) = L \) if given any \(\varepsilon > 0 \), there exists \(N > 0 \) such that

\[
 |f(x) - L| < \varepsilon \quad \text{for all } x \in A \cap (N, \infty).
\]

Similarly, one can define \(\lim_{x \to -\infty} f(x) = \infty \).

Continuous functions

Let \(f : A \to \mathbb{R} \) and \(c \in A \). Then we say \(f \) is continuous at \(c \) if given any \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that

\[
 |f(x) - f(c)| < \varepsilon \quad \text{for all } x \in A \cap (c - \delta, c + \delta) \quad \text{i.e., } |x - c| < \varepsilon \quad \text{and } x \in A.
\]

Remark (1) In most cases, \(c \) is a cluster point of \(A \). Then \(f \) is continuous at \(c \) if and only if \(\lim_{x \to c} f(x) = f(c) \), that is, the limit \(\lim_{x \to c} f(x) \) exists and equals to \(f(c) \).

(2) Usually we are interested at the case where \(A \) is an interval, then every point in \(A \) is a cluster point.

5.1.3 Let \(f : A \to \mathbb{R} \) and \(c \in A \). Then \(f \) is continuous at \(c \) if and only if \(\lim(f(x_n)) = f(c) \) for all sequences \((x_n) \) in \(A \) that converges to \(c \). Note that here we allow \(x_n = c \). In particular \((f(x_n)) \) can be the constant sequence \((f(c)) \).
Definition 5.1.5 Let \(f : A \to \mathbb{R} \) and \(B \subset A \). We say that \(f \) is continuous on the set \(B \) if \(f \) is continuous at at every point of \(B \).

Example of continuous functions:

1. All polynomials are continuous on \(\mathbb{R} \).
2. All rational functions are continuous on their (largest possible) domains.
3. Algebraic functions (such as \(x^r, r \in \mathbb{Q} \)) are also continuous on their (largest possible) domains.
4. Trigonometric functions are continuous on their domains.
5. Exponential functions are continuous on \(\mathbb{R} \), logarithm functions are continuous on their domains.
6. Absolute value function \((f(x) = |x|) \) is continuous on \(\mathbb{R} \).
7. Compositions of continuous functions are continuous. That is, if \(f : A \to B \), \(g : B \to \mathbb{R} \) are continuous functions, then \(g \circ f : A \to \mathbb{R} \) is also continuous. In particular if \(f \) is continuous at \(c \) (\(c \in A \)) and \(g \) is continuous at \(f(c) \) (\(f(c) \in B \)), then \(g \circ f \) is continuous at \(c \). (See Theorems 5.2.6 & 5.2.7).

Remark 5.1.7 Suppose \(f : A \to \mathbb{R} \) and \(c \notin A \) but \(c \) is a cluster point of \(A \). Since \(f \) is not defined at \(c \), \(f \) cannot be continuous at \(c \). However, if \(\lim_{x \to c} f(x) = L \) exists, one can extend the function to \(A \cup \{c\} \) such that the new function is continuous at \(c \).

Example 5.1.8 The function \(x \sin(1/x) \) is only defined for \(x \neq 0 \). However, if we define \(f(0) = 0 \) and \(f(x) = x \sin(1/x) \) otherwise, then \(f \) is an extension of \(x \sin(1/x) \) such that \(f \) is continuous at 0.
Trigonometric functions \(\sin x, \cos x \) are continuous on \(\mathbb{R} \). Other trigonometric functions such as \(\tan x, \cot x, \sec x, \csc x \), are continuous on their largest possible domains. We will only show that \(\sin x \) is continuous. Indeed it suffices to note that

\[
|\sin x - \sin x_0| = 2|\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2}| \leq |x - x_0|.
\]

Exercise: 4.3: 3-9, 5.1: 3-7,9-13 (4.3 & 5.1: 4th ed is the same as 3rd ed).

Homework8: 4/4 4.3: 6,10,13, 5.1:1,2,8,14,15

5.2.1 & 5.2.2 Suppose \(f, g : A \to \mathbb{R} \). If both \(f \) and \(g \) are continuous at \(c \in A \), then the functions \(f + g, fg \) are both continuous at \(c \). In addition, if \(g(c) \neq 0 \), then \(f/g \) is continuous at \(c \). Consequently, if both \(f \) and \(g \) are continuous on a subset \(B \) of \(A \), then both functions \(f + g \) and \(fg \) are continuous on \(B \). Moreover, \(f/g \) is continuous on \(\{x \in B : g(x) \neq 0 \} \).

Theorems 5.2.6 & 5.2.7 Compositions of continuous functions are continuous. That is, if \(f : A \to B \subset \mathbb{R}, g : B \to \mathbb{R} \) are continuous functions, then \(g \circ f : A \to \mathbb{R} \) is also continuous. In particular if \(f \) is continuous at \(c \ (c \in A) \) and \(g \) is continuous at \(f(c) \ (f(c) \in B) \), then \(g \circ f \) is continuous at \(c \).

It follows from the above theorems that if \(f : A \to \mathbb{R} \) is continuous on \(A \), then \(|f(x)| \) and \(\sqrt{|f(x)|} \) are continuous (recall that \(\sqrt{x} \) is continuous on its domain).
Unfortunately, there are many instances we need to deal with composite of functions that may not be continuous. Let us state a easy fact here.

Fact: If \(g \) is a continuous function at \(c \) and \(\lim_{x \to a} f(x) = c \), then \(\lim_{x \to a} g(f(x)) = g(c) = g(\lim_{x \to a} f(x)) \).

For example, \(\lim_{x \to 0} \frac{\sin^2 x}{x^2} = 1 = \lim_{x \to 0} \cos(\sin x/x) \).

Moreover, note that in the above, \(a \) could be infinite. For example, \(\lim_{x \to \infty} \cos(1/x) = 1 \).

Question: what about \(\lim_{x \to \infty} x \sin(1/x) \)?

Continuous functions on intervals

There are special properties of a continuous function on an interval \(I = [c, d], (c, d), [c, d], (c, d] \). (Note that they are all "connected").

1. **Intermediate value theorem (5.3.7) (IVT)** If \(f(a) > 0 \) and \(f(b) < 0 \) and \(f \) is continuous on \([a, b] \), then there exists \(x_0 \in (a, b) \) such that \(f(x_0) = 0 \). Consequently, if \(f \) is continuous on \([a, b] \) and \(\alpha \) is a value between \(f(a) \) and \(f(b) \), then there exists \(x^* \) between \(a \) and \(b \) such that \(f(x^*) = \alpha \). (If \(\alpha \) is strictly between \(f(a) \) and \(f(b) \), then \(x_\alpha \) will also strictly between \(a \) and \(b \).)
Some examples: (i) for all \(c \geq 0 \) and \(k \in \mathbb{N} \), there exists \(a \in \mathbb{R} \) such that \(a^k = c \).
(ii) There exists \(c \in [0, 2] \) such that \(c^3 - c = 1 \).
(iii) Let \(a, b, c, d > 0 \). Then there exists \(x \in (0, \infty) \) such that \(a + bx = c + d/x \).

2. **Extreme value theorem (5.3.4) (EVT)** If \(f \) is continuous on \([a, b]\) (a close and bounded interval), then there exist \(x^*, x_* \in [a, b] \) such that \(f(x^*) \leq f(x) \leq f(x_*) \) for all \(x \in [a, b] \).

Some consequences of the above theorems.

a. If \(f \) is a continuous function on an interval, then its image is also an interval. In addition, if that interval is closed and bounded, then its image will be also a closed and bounded interval.

b. If \(f : I \to I \) is continuous and \(I \) is a closed and bounded interval, then \(f \) has a fixed point, i.e., a point \(x_0 \in [a, b] \) such that \(f(x_0) = x_0 \).

Indeed, continuous function on a closed and bounded interval also has one more interesting property:

(3) If \(f \) is continuous on \([a, b]\), then it is also uniformly continuous on \([a, b]\), that is, given any \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that

\[
|f(x) - f(y)| < \varepsilon \quad \text{for all } x, y \in [a, b], |x - y| < \delta.
\]
A function f is said to be uniformly continuous on a set A if given any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \varepsilon \quad \text{for all } x, y \in A, |x - y| < \delta.$$

Fact A uniformly continuous function on a bounded set is bounded.

5.4.2 (nonuniform continuity criteria) A function f is not uniformly continuous on A if and only there exists $\varepsilon > 0$ such that for all $n \in \mathbb{N}$, there exists $x_n, y_n \in A$, $|x_n - y_n| < 1/n$ and $|f(x_n) - f(y_n)| \geq \varepsilon$.

5.4.3 If $f : [a, b] \to \mathbb{R}$ is continuous on $[a, b]$, then f is uniformly continuous on $[a, b]$.

5.4.8 Continuous extension theorem A function f is uniformly continuous on an interval (a, b) if and only if it can be defined on both endpoints a and b such that the extended function is continuous on $[a, b]$.

Exercise: 5.2: 1, 4, 5, 6, 10, 11, 5.3: 2-6, 17, 5.4: 4-8, 12. (all the same as 4th ed).

Homework 9 11/4, 5.2: 8, 12, 13, 5.3: 1, 13, 5.4: 2, 9, 14.
(A) If \(f : (0, \infty) \to (0, \infty) \) is continuous and such that \(f(\sqrt{x}) = f(x) \) for all \(x \in (0, \infty) \), what can you say about the function \(f \)?

Monotone and inverse functions

If a function is either increasing or decreasing on a set \(A \), we say that it is monotone on \(A \). If it is strictly increasing or strictly decreasing on \(A \), we say that \(f \) is strictly monotone on \(A \).

5.6.1 Let \(f \) be a monotone function on an interval \(I \). Let \(c \in I \) and \(c \) is not an end point of \(I \). Then both \(\lim_{x \to c^+} f(x) \) and \(\lim_{x \to c^-} f(x) \) exist.

5.6.2 Let \(f \) be a monotone function on an interval \(I \). Then the set of points at which \(f \) is discontinuous is a countable set.

5.6.5 **Continuous Inverse Theorem** Let \(f \) be a strictly monotone and continuous function on an interval. Then it has an inverse \(g : f(I) \to I \) which is strictly monotone and continuous on the interval \(f(I) \).

Exercise: 5.6:4-13. (the same as 4th ed)