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Abstract. We study the restriction of the Saito-Kurokawa representations of SO5 to various sub-
groups SO4, giving a precise determination of which representations of SO4 occurs this restriciton.
Locally, the answer is determined by an epsilon factor condition, whereas globally it is controlled by
the non-vanishing of an L-function. This is the simplest example of an extension of the Gross-Prasad
conjecture from the setting of tempered L-packets to A-packets.

1. Introduction

In [GP], Gross and Prasad formulated a very precise conjecture describing the branching of an
irreducible representation of SOn when restricted to SOn−1 over a local field. Their conjecture,
however, assumes the local Langlands correspondence for special orthogonal groups and so can only
be checked in cases where one has (at least partially) such a correspondence. This is the case, for
example, in many low rank groups, or for certain tamely ramified Langlands parameters. Investigations
of the local Gross-Prasad conjecture can be found in a number of papers, such as [P1], [P2] and [GR].

In addition to the local conjecture, there is also a global Gross-Prasad conjecture regarding SOn−1-
periods of cusp forms on SOn × SOn−1. When there are no local obstructions, the non-vanishing of
the global period should be controlled by the non-vanishing of a relevant Rankin-Selberg L-function.
There have been much significant progress and refinements on this global conjecture recently; see for
example [GJR], [BFS] and [II].

The local conjecture of [GP] focuses on addressing the branching problem from SOn to SOn−1

as the representations involved vary over a tempered L-packet; the answer is governed by a condition
on epsilon factors. In view of global applications, it is natural to ask how the branching problem
would behave if the representations were to vary over a (non-tempered) Arthur packet. The goal of
this short paper is to investigate this for one of the best-understood non-tempered Arthur packets,
namely the Saito-Kurokawa packets for SO5.
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We shall recall the definition and construction of the Saito-Kurokawa packets in Section 2. At this
point, we simply note that each irreducible infinite dimensional representation π of PGL2 determines
a packet of (at most) two representations of the split group SO(3, 2), which will be denoted by η+(π)
and η−(π). We are interested in the restriction of ηǫ(π) to the subgroup SO(2, 2) ⊂ SO(3, 2). Since
GSO(2, 2) ∼= (GL2×GL2)/∆Gm, one sees that an L-packet on SO(2, 2) is indexed by a representation
τ1 ⊠ τ2 of GSO(2, 2). The elements of the L-packet are simply the irreducible constituents of the
restriction of τ1 ⊠ τ2 to SO(2, 2). With these notations in place, our main local theorem is:

Main Local Theorem

Over a non-archimedean local field of charateristic zero, we have:

(i) HomSO(2,2)(η
ǫ(π), τ1 ⊠ τ2) = 0 if τ1 6= τ∨2 .

(ii) HomSO(2,2)(η
ǫ(π), τ ⊠ τ∨) 6= 0 if and only if ǫ = ǫ(1/2, π ⊗ τ ⊗ τ∨), in which case the dimension

of the Hom space is 1.

After recalling some basic properties of the theta correspondence for similitude groups in Section
3, we give the proof of the main theorem in Section 4 and describe variants of the theorem for arbitrary
forms of SO5 and SO4 in Section 5. The restriction to SO(3, 1) is especially interesting, but the result
is too intricate to state precisely here. We should stress that all our results about epsilon dichotomy
have their roots in Prasad’s thesis [P1]; we have simply percolated his results to higher rank cases. In
Section 6, we discuss the archimedean analog of the main theorem which has been studied by Savin
[Sa], who has kindly provided us with an appendix. Using these local results, we shall prove in Section
7 a precise global analog relating the non-vanishing of SO(2, 2)-periods with the non-vanishing of a
suitable L-function:

Main Global Theorem

Let π be a cuspidal representation of PGL2 and τ a cuspidal representation of GL2. Let ǫv =
ǫ(1/2, πv ⊗ τv ⊗ τ∨v ) and let ηǫ(π) =

⊗
v η

ǫv(πv) be the corresponding representation in the global
Saito-Kurokawa packet associated to π. Then the following are equivalent:

(a) the representation ηǫ(π)⊗ (τ ⊗ τ∨) of SO(3, 2)×SO(2, 2) occurs in the discrete spectrum and has
non-vanishing period integral over the diagonal subgroup SO(2, 2);

(b) the following non-vanishing result holds:

L(1/2, π ×Ad(τ)) 6= 0.

For any other representation in the global Saito-Kurokawa packet, the period integral is zero.

We should mention that in [I], Ichino has given an explicit formula relating the special value of
the L-function to the square of the absolute value of the period integral above, when the cuspidal
representations involved are associated to holomorphic modular forms of level 1. It will be very
interesting to prove such a formula in general, in the style of the refinement of the global Gross-
Prasad conjecture given by Ichino-Ikeda in [II].

To see that the special L-value in the global theorem is indeed the one predicted by the global
Gross-Prasad conjecture, or rather its refinement given in [II], we recall that to an A-parameter ψ,
one can naturally associate an L-parameter φψ. If ψ is the A-parameter of the Saito-Kurokawa packet
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attached to a cuspidal representation π of PGL2, then the associated L-parameter is given by:

φψ = φπ ⊕ | − |1/2 ⊕ | − |−1/2,

where φπ is the L-parameter of π. According to [II], the L-value which should control the non-vanishing
of the period integral in the above global theorem is the value at s = 1/2 of:

P(s) =
L(s, φψ ⊗ φτ ⊗ φ∨τ )

L(s+ 1/2, Ad ◦ φψ) · L(s+ 1/2, Ad ◦ φτ ) · L(s+ 1/2, Ad ◦ φτ )
.

Expressing the L-functions occurring in P(s) in terms of automorphic L-functions and evaluating at
s = 1/2, we see after a short computation that

P(1/2) =
L(1/2, π ×Ad(τ))

ζF (2) · L(3/2, π) · L(1, Ad(π))
.

Since the denominator is harmless, we see that the non-vanishing of P(1/2) is equivalent to that of
L(1/2, π ×Ad(τ)).

Finally, we end the paper by resolving a couple of miscellaneous problems for the Saito-Kurokawa
representations, such as if their pullbacks to Spin5 = Sp4 remain irreducible and what are the local
Bessel models that they support.

Acknowledgments: We thank Dipendra Prasad for a number of useful discussions and email ex-
changes concerning the subject matter of this paper, Brooks Roberts for pointing out some inaccuracies
in an earlier version of the paper, and Gordan Savin for providing us with the appendix of the pa-
per. The first author is partially supported by NSF grant DMS-0500781 while the second author is
supported by a grant from the Israel Science Foundation.

2. Saito-Kurokawa Representations

Let F be a non-archimedean local field and fix a non-trivial additive character ψ of F . We begin
by recalling the definition and construction of the Saito-Kurokawa A-packets on PGSp4.

The Saito-Kurokawa packets are indexed by irreducible infinite dimensional (unitary) representa-

tions of PGL2(F ). Given such a representation π of PGL2, Waldspurger has associated a packet Ãπ
of irreducible genuine (unitary) representations of the metaplectic group S̃L2(F ). The local packet

Ãπ has two or one element, depending on whether π is a discrete series representation or not. Thus
Ãπ has the form

Ãπ =

{
{σ+, σ−}, if π is a discrete series representation,

{σ+} otherwise.

While the packets themselves are canonical, their parametrization by the representations of PGL2

depends on the choice of the additive character ψ. With ψ fixed, we shall write

π = Wdψ(σ) if σ ∈ Ãπ.

Moreover, if Z is the center of SL2, its inverse image Z̃ is the center of S̃L2 and the central character
ωσ of σ has the form

ωσ = χψ|Z̃ · ǫψ(σ)
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where χψ is a canonical genuine character (defined in [W1]) of the diagonal torus in S̃L2 and ǫψ(σ) is
a character of Z. We shall regard ǫψ(σ) as ±1, depending on whether this character is trivial or not.

If σǫ ∈ Ãπ, then

ǫψ(σǫ) = ǫ · ǫ(1/2, π).

Thus the representations in Ãπ can be distinguished by their central characters. Suppose that K is
an étale quadratic algebra, corresponding to aK ∈ F×/F×2, let ψK denote the additive character
ψK(x) = ψ(aKx). Then {

WdψK (σ) = Wdψ(σ) ⊗ χK

ǫψK (σ) = ǫψ(σ) · χK(−1).

The packet Ãπ is constructed by using the local theta lift (associated to ψ) furnished by the dual
pairs:

PGL2 × S̃L2 and PD× × S̃L2,

where D denotes the unique quaternion division algebra over F . Indeed, we have:

σ+ = θψ(π) and σ− = θψ(JL(π))

where JL(π) is the Jacquet-Langlands lift of π to PD×.

Now to construct the Saito-Kurokawa A-packet SK(π) of PGSp4
∼= SO5 associated to π, one

considers the theta correspondence furnished by the dual pair

S̃L2 × SO5 ⊂ S̃p10

and set

η+(π) = θψ(σ+) and η−(π) = θψ(σ−).

Then the Saito-Kurokawa packet (which is independent of ψ) is:

SK(π) = {η+(π), η−(π)}.

The following proposition describes these representations more precisely (cf. [G]):

Proposition 2.1. (i) Let P = MN be the Siegel parabolic of SO5, with Levi factor M = PGL2×
GL1. Let JP (π, 1/2) be the unique irreducible quotient of the normalized induced representation

IP (π, 1/2) = IndSO5

P π ⊠ | − |1/2.

Then we have

η+(π) = JP (π, 1/2).

(ii) Suppose that π = St is the Steinberg representation. Let Q be the other maximal parabolic of
SO5, with Levi factor L = GL2. Then η−(St) is the unique non-generic summand in the normalized
induced representation IQ(St) (which is semisimple with two summands).

(iii) When π is supercuspidal or a twisted Steinberg representation Stχ (with χ a nontrivial qua-
dratic character), η−(π) is supercuspidal.

The above proposition describes the representations in SK(π) except when π is supercuspidal or
twisted Steinberg, in which case it does not offer any information on η−(π) (other than supercusp-
idality). However, there is another way of constructing the packet SK(π). We shall describe this
alternative construction at the end of the next section.
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3. Theta Correspondences for Similitudes

In this section, we shall describe some basic properties of theta correspondences for similitudes;
in particular, we shall relate it to the usual theta correspondences for isometric groups. The definitive
reference for this material is the paper [Ro1] of B. Roberts.

Suppose that O(V ) × Sp(W ) is a dual pair; for simplicity, we have assumed that dimV is even.
For each non-trivial additive character ψ, let ωψ be the Weil representation for O(V ) × Sp(W ). If π
is an irreducible representation of O(V ) (resp. Sp(W )), the maximal π-isotypic quotient has the form

π ⊠ θψ,0(π)

for some smooth representations of Sp(W ) (resp. O(V )). It is known that θψ,0(π) is of finite length
and hence is admissible. Let θψ(π) be the maximal semisimple quotient of θψ,0(π). Then it was a
conjecture of Howe that

- θψ(π) is irreducible whenever θψ,0(π) is non-zero.
- the map π 7→ θψ(π) is injective on its domain.

This has been proved by Waldspurger when the residual characteristic of F is not 2, as well as for
all supercuspidal representations π. It can also be checked in many low-rank cases, regardless of the
residual characteristic of F . In particular, it holds in all cases considered in this paper. Henceforth,
we assume that the Howe conjecture for isometry groups holds.

Let λV and λW be the similitude factors of GO(V ) and GSp(W ) respectively. We shall consider
the group

R = GO(V ) ×GSp(W )+

where GSp(W )+ is the subgroup of GSp(W ) consisting of elements g such that λW (g) is in the image
of λV . The group R contains the subgroup

R0 = {(h, g) ∈ R : λV (h) · λW (g) = 1}.

The Weil representation ωψ extends naturally to the group R0. Now consider the (compactly) induced
representation

Ω = indRR0
ωψ.

As a representation of R, Ω depends only on the orbit of ψ under the evident action of ImλV ⊂ F×.
For example, if λV is surjective, then Ω is independent of ψ. For any irreducible representation π of
GO(V ) (resp. GSp(W )+), the maximal π-isotypic quotient of Ω has the form

π ⊗ θ0(π)

where θ0(π) is some smooth representation of GSp(W )+ (resp. GO(V )). Further, we let θ(π) be the
maximal semisimple quotient of θ0(π). The extended Howe conjecture for similitudes says that θ(π)
is irreducible whenever θ0(π) is non-zero, and the map π 7→ θ(π) is injective on its domain. It was
shown by Roberts [Ro1] that this essentially follows from the Howe conjecture for isometry groups.
In particular, we have the following lemma which relates the theta correspondence for isometries and
similitudes:

Lemma 3.1. Assume that the Howe conjecture for isometry groups holds.

(i) Suppose that

HomR(Ω, π1 ⊠ π2) 6= 0.

Then there is a bijection

f : {irreducible summands of π1|O(V )} −→ {irreducible summands of π2|Sp(W )}.
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such that for any irreducible summand τi in the restriction of πi to the relevant isometry group,

HomO(V )×Sp(W )(ωψ, τ1 ⊠ τ2) 6= 0

if and only if

τ2 = f(τ1).

(ii) If τ is a representation of GO(V ) (resp. GSp(W )+) and the restriction of τ to the relevant
isometry group is ⊕iτi, then as representations of Sp(W ) (resp. O(V )),

θ0(τ) ∼=
⊕

i

θψ,0(τi).

In particular, if θψ,0(τi) = θψ(τi) for each i, then

θ0(τ) = θ(τ)

is irreducible.

Proof. (i) This is essentially [Ro1, Lemma 4.2]. We include the proof for the convenience of the
reader. In [AP], it was shown that restrictions of irreducible representations from similitude groups
to isometry groups are multiplicity-free. Thus we can write

π1|O(V ) =
⊕

i

τi and π2|Sp(W ) =
⊕

j

σj .

Since HomR(Ω, π2 ⊗ π2) 6= 0, one sees by Frobenius reciprocity that

HomO(V )×Sp(W )(ωψ , π1 ⊠ π2) 6= 0.

Hence, there are two irreducible constituents, say τ1 and σ1, such that

HomO(V )×Sp(W )(ωψ, τ1 ⊠ σ1) 6= 0.

Now recall that the group R0 normalizes O(V, F ) ×µ2
Sp(W,F ) and the Weil representation ωψ

extends to R0. If r ∈ R0 and L is a non-zero element of HomO(V )×Sp(W )(ωψ, τ1 ⊠ σ1), then the map
v 7→ L(r · v) defines a non-zero element of HomO(V )×Sp(W )(ωψ, r(τ1 ⊠ σ1)).

Now the group R0 acts transitively on the irreducible constituents of π1|O(V ), as well as on those

of π2|Sp(W ), since the projections of R0 to GO(V ) and GSp(W )+ are surjective. Thus, for each τi,
there is a σi such that

HomO(V )×Sp(W )(ωψ, τi ⊠ σi) 6= 0,

and vice versa. Moreover, the equivalence classes of τi and σi determine each other by the Howe
conjecture for isometry groups. Thus we have the desired bijection.

(ii) By symmetry, let us suppose that τ is a representation of GSp(W )+. Then we have the
following sequence of O(V )-equivariant isomorphisms:

θ0(τ)
∗ ∼= HomGSp(W )+(Ω, τ)

∼= HomSp(W )(ωψ, τ |Sp(W )) (by Frobenius reciprocity)

∼=
⊕

i

HomSp(W )(ωψ, τi)

∼=
⊕

i

θψ,0(τi)
∗.
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Thus, we have an O(V )-equivariant isomorphism of smooth vectors

θ0(τ)
∨ ∼=

⊕

i

θψ,0(τi)
∨

and the desired result follows by taking contragredient (and using the fact that the θψ,0(τi)’s are
admissible).

Now if θψ,0(τi) = θψ(τi) is irreducible, then by (i), we see that any irreducible constituent π of
θ(τ) satisfies:

π|O(V ) =
⊕

i

θψ(τi).

In view of the above, we see that θ0(τ) = θ(τ) is irreducible. �

Now we consider the extension of the see-saw identity to similtiude groups. Asume for simplicity
that λV is surjective so that GSp(W )+ = GSp(W ). Suppose that W = W1 ⊕W2. Then one has the
see-saw diagram:

(GO(V ) ×GO(V ))0 GSp(W )

∆GO(V ) (GSp(W1) ×GSp(W2))
0

HHHHHHHHH���������

Here,

(GSp(W1) ×GSp(W2))
0 = {(g1, g2) : λW1

(g1) = λW2
(g2)}

and similarly for (GO(V )×GO(V ))0. The see-saw identity states that for irreducible representations
σ and τ of GO(V ) and (GSp(W1) ×GSp(W2))

0 respectively,

dimHomGO(V )(θ0(τ), σ) = dimHom(GSp(W1)×GSp(W2)0(θ0(σ), τ).

Now suppose we take an irreducible representation τ1 ⊠ τ2 of GSp(W1) ×GSp(W2) and consider
its restriction to (GSp(W1) ×GSp(W2))

0, say:

τ1 ⊠ τ2 =
⊕

i

πi.

For each πi, we have the representation θ0(πi) of (GO(V ) ×GO(V ))0.

Lemma 3.2. We have: ⊕

i

θ0(πi) ∼= θ0(τ1) ⊠ θ0(τ2)

as representations of (GO(V ) ×GO(V ))0.

Proof. This is similar to the proof of Lemma 3.1(ii). �

Corollary 3.3. In the setting of the lemma,

dimHom(GSp(W1)×GSp(W2))0(θ0(σ), τ1 ⊠ τ2) = dim HomGO(V )(θ0(τ1) ⊠ θ0(τ2), σ).
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Proof. This follows from the see-saw identity and the lemma above. �

Let us conclude this section with the alternative construction of the Saito-Kurokawa packets. For
this, one considers the theta correspondence for similitudes furnished by the dual pairs:

GSO(2, 2) ×GSp4
∼= (GL2 ×GL2)/∆Gm ×GSp4

and

GSO(4) ×GSp4
∼= (D× ×D×)/∆Gm ×GSp4.

These correspondences have been studied in detail by B. Roberts in [Ro2].

Given any representation π1 ⊠ π2 of GSO(V ) = GSO(2, 2) or GSO(4), let (π1 ⊠ π2)
+ denote

ind
GO(V )
GSO(V )(π1 ⊠ π2) if π1 6= π∨

2 . If π1 = π∨
2 , there will be two extensions of π1 ⊠ π2 to GO(V ),

but exactly one of them will participate in the theta correspondence with GSp4 (cf. [Ro2]). We
let (π1 ⊠ π2)

+ denote this unique extension of π1 ⊠ π2 to GO(V ) which participates in the theta
correspondence with GSp4.

Now one has the following result of R. Schmidt [Sch]:

Proposition 3.4. Let π be an irreducible infinite-dimensional representation of PGL2. We have:

η+(π) = θ((π ⊠ 1)+) and η−(π) = θD((JL(π) ⊠ 1D)+).

4. Proof of the Main Local Theorem

We are now ready to consider the restriction of the representations η±(π) to the subgroup

H = SO(2, 2) = (GL2 ×GL2)
0/∆Gm ⊂ SO5

and to give the proof of the main local theorem stated in the introduction. More precisely, given a
pair of irreducible infinite-dimensional representations τ1 and τ2 of GL2(F ) whose central characters
are inverses of each other, we would like to compute

dimHomH(η±(π), τ1 ⊠ τ2).

Note that the restriction of τ1 ⊠ τ2 from (GL2 × GL2)/∆Gm to H may be reducible. Indeed, the
irreducible components (which all occur with multiplicity one) make up a single L-packet of H indexed
by τ1 ⊠ τ2. Moreover, for any character χ,

(τ1 ⊗ χ) ⊠ (τ2 ⊗ χ−1) ∼= τ1 ⊠ τ2

as representations of H .

Consider the see-saw pair:

SL2 × S̃L2 O(3, 2)

S̃L2 O(2, 2) ×O(〈1〉)

HHHHH�����
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Suppose that on restriction to O(2, 2), (τ1 ⊠ τ2)
+ =

⊕
i τ

′
i . Then we have:

dimHomSO(2,2)(θψ,0(σ
ǫ), τ1 ⊠ τ2)

= dimHomO(2,2)(θψ,0(σ
ǫ), (τ1 ⊠ τ2)

+) (by Frobenius reciprocity)

=
∑

i

dimHomO(2,2)(θψ,0(σ
ǫ), τ ′i)

=
∑

i

dimHomS̃L2
(θψ,0(τ

′
i) ⊗ ωψ, σ

ǫ) (by see-saw identity)

= dimHomS̃L2
(θ0((τ1 ⊠ τ2)

+) ⊗ ωψ, σ
ǫ) (by Lemma 3.1(ii)).

Now the theta correspondence from GO(2, 2) to GL2 is well-understood (cf. [Ro2]). Indeed, one
has:

Lemma 4.1. Let D be a quaternion algebra (possibly split) and consider the theta lifting between
GL2 and GO(D,−ND) ∼= ((D× × D×)/∆Gm) ⋊ Z/2Z. Let τi be irreducible infinite-dimensional
representations of GL2 and denote by JLD(τi) the Jacquet-Langlands lift of τi to D×.

(i) (Lifting to GL2) If τ1 6= τ∨2 , then the induction (τ1 ⊠ τ∨2 )+ of τ1 ⊠ τ∨2 to GO(D,−ND) is
irreducible and

θ0((JLD(τ1) ⊠ JLD(τ2))
+) = 0.

On the other hand, of the two possible extensions of τ ⊠ τ∨ to GO(D,−ND), exactly one of them,
denoted by (τ ⊠ τ∨)+, participates in the theta correspondence and one has:

θ0((τ ⊠ τ∨)+) = θ((τ ⊠ τ∨)+) = τ.

(ii) (Lifting from GL2) Similarly, we have

θ0(τ) = θ(τ) = (JLD(τ) ⊠ JLD(τ)∨)+.

In particular, if D is non-split, then θ0(τ) = 0 if τ is a principal series.

Moreover, one also has:

Lemma 4.2. Consider the theta lift from S̃L2 to SO(3, 2). If σ is not equal to an even Weil
representation or the principal series π̃(| − |±3/2), then

θψ,0(σ) = θψ(σ).

Proof. If σ is supercuspidal, this follows from a general result of Kudla. Now consider a (possibly

reducible) principal series π̃(µ) of S̃L2. Let ωψ denote the Weil representation of S̃L2 ×SO(3, 2). An
easy computation using the Schrodinger model shows that

HomS̃L2
(ωψ, π̃(µ)) = IP (µ−1)∗ (full linear dual),

except possibly for µ = | − |3/2. If π̃(µ) is irreducible, so that µ 6= χK | − |±1/2 with χK a quadratic
character, then we conclude that

θψ,0(π̃(µ))∗ = IP (µ−1)∗

Thus, if further µ 6= | − |±3/2, we have

θψ,0(π̃(µ)) = θψ(π̃(µ)) = IP (µ−1) = IP (µ).

It remains to consider the case when σ = spχK is the special representation associated to the quadratic
character χK . From the above, we know that

θ0,ψ(spχK )∗ →֒ IP (χK | − |−1/2)∗.



10 WEE TECK GAN AND NADYA GUREVICH WITH AN APPENDIX BY GORDAN SAVIN

The latter degenerate principal series is of length 2 and thus we need to show

θ0,ψ(spχK ) 6= IP (χK | − |−1/2).

Suppose not. Then we have a surjective equivariant map

ωψ −→ spχK ⊠ IP (χK | − |−1/2),

and thus an injection

sp∗χK →֒ HomSO(3,2)(ωψ, IP (χK | − |−1/2).

An easy calculation, using a mixed model of the Weil representation, gives

HomSO(3,2)(ωψ, IP (µ)) = π̃(µ−1)∗

except for µ = | − |−1/2. Thus if χK is nontrivial, we would have

sp∗χK →֒ π̃(χK | − |1/2)∗

and deduce that there is a surjection

π̃(χK | − |1/2) ։ spχK

which is a contradiction. In the case when µ = | − |−1/2, one has a short exact sequence

0 −−−−→ π̃(| − |1/2)∗ −−−−→ HomSO(3,2)(ωψ, IP (| − |−1/2)) −−−−→ V ∗ −−−−→ 0

where

V ∗ →֒ π̃(| − |1/2)∗.

Considering smooth vectors, we thus have

0 −−−−→ π̃(| − |1/2)∨ −−−−→ HomSO(3,2)(ωψ, IP (| − |−1/2))∞ −−−−→ π̃(| − |1/2)∨,

and so we would have a surjection

π̃(| − |1/2) −→ sp

which is a contradiction. This completes the proof of the lemma. �

As a consequence of these two lemmas, we have:

Corollary 4.3. We have:

HomSO(2,2)(η
ǫ(π), τ1 ⊠ τ2) 6= 0 =⇒ τ1 = τ∨2 ,

and

dimHomSO(2,2)(η
ǫ(π), τ ⊠ τ∨) = dimHomS̃L2

(τ ⊗ ωψ, σ
ǫ) = dimHomSL2

(τ ⊗ σǫ∨ ⊗ ωψ,C).

Thus, our problem is transferred to that of studying the space of SL2-invariant trilinear forms on
τ ⊗ σǫ∨ ⊗ ωψ. For this, we consider the following see-saw pair:

S̃L2 ×µ2
S̃L2 O(D,−ND)

SL2 O(D0,−ND) ×O(〈−1〉)

HHHHHHH��������

Here,D is the unique (possibly split) quaternion algebra such that σǫ is the theta lift from SO(D0,−ND).
Indeed, we know that

θψ,0(JLD(π)) = θψ(JLD(π)) = σǫ.



RESTRICTIONS OF SAITO-KUROKAWA REPRESENTATIONS 11

So by the see-saw identity, Lemma 3.1(ii) and Lemma 4.1(ii), we get:

dimHomSL2
(τ∨⊗σǫ⊗ω∨

ψ ,C) = dimHomSL2
(σǫ⊗ω∨

ψ , τ) = dimHomPD×(JLD(τ)⊗JLD(τ)∨, JLD(π)).

By the main result of Prasad’s thesis,

dim HomPD×(JLD(τ) ⊗ JLD(τ)∨, JLD(π)) ≤ 1

and equality holds if and only if

ǫ(1/2, π ⊗ τ ⊗ τ∨) = ǫ.

So we have:

Proposition 4.4. Let σǫ ∈ Ãπ and let τ be an infinite-diimensional representation of GL2(F ).
Then

HomSL2
(τ∨ ⊗ σǫ ⊗ ω∨

ψ ,C) 6= 0 ⇐⇒ ǫ(1/2, π ⊗ τ ⊗ τ∨) = ǫ.

Now suppose that τ and π (and hence σǫ) are all unitary. Then

HomSL2
(τ ⊗ σǫ∨ ⊗ ωψ,C) ∼= HomSL2

(τ∨ ⊗ σǫ ⊗ ω∨
ψ ,C)

via the map L 7→ L. The main local theorem then follows from Cor. 4.3 and Prop. 4.4.

We conclude this section by describing another proof of the main local theorem, using the al-
ternative construction of the Saito-Kurokawa representations given in Prop. 3.4. In [P2], D. Prasad
studied the restriction problem (among other things) for the discrete series representations of PGSp4

contained in certain tempered L-packets. These representations are theta lifts of
{

(π ⊠ St)+ of GO(2, 2);

(JL(π) ⊠ 1D)+ of GO(4)

with π supercuspidal. He made use of the following see-saw diagram:

(GO(V ) ×GO(V ))0 GSp4

∆GO(V ) (GL2 ×GL2)
0

HHHHHHH�������

Indeed, applying Cor. 3.3 to the representation σ = (π1 ⊠ π2)
+ of GO(V ), one has

dimHomH(θ0((π1 ⊠ π2)
+), τ1 ⊠ τ2)

= dimHomGO(V )(θ0(τ1) ⊠ θ0(τ2), (π1 ⊠ π2)
+)

= dimHomGSO(V )(θ0(τ1) ⊠ θ0(τ2), π1 ⊠ π2) (by Frobenius reciprocity).

Applying this to the special case π1 ⊠π2 = π⊠1 or JL(π)⊠1D and using Lemma 4.1, we obtain:

(4.1) dimHomH(θ0(π ⊠ 1)+, τ1 ⊠ τ2) = dimHomGL2
(τ1 ⊠ τ2, π) · dimHomGL2

(τ∨1 ⊠ τ∨2 ,1),

and

(4.2) dimHomH(θ0(JL(π) ⊠ 1D)+), τ1 ⊠ τ2)

= dimHomD×(JL(τ1) ⊠ JL(τ2), π) · dimHomD×(JL(τ1)
∨

⊠ JL(τ2)
∨,1D).
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These two equations would prove the theorem if one knows that θ0 = θ on the left-hand-side.
This is the case in (4.2), as well as for supercuspidal π in (4.1). However, we are not certain if it is
the case when π is a principal series or a special representation in (4.1). Though these two remaining
cases can be handled by some ad-hoc arguments, we shall not dwell on these here.

5. Consequences and Variants

In this section, we obtain some variants of the main local theorem for general forms of (SO5, SO4).
Before coming to that, it is useful to restate Prop. 4.4 in the following form, which makes its depen-
dence on the choice of the additive character ψ more transparent:

Theorem 5.1. Let τ be an infinite dimensional representation of GL2 and σ a representation of
S̃L2. Then for any nontrivial additive character ψ of F ,

HomSL2
(τ∨ ⊗ σ ⊗ ω∨

ψ ,C) 6= 0 ⇐⇒ ǫ(1/2, Ad(τ) ⊗Wdψ(σ)) = ǫψ(σ),

in which case the Hom space is 1-dimensional.

It is this result which is the key to all the restriction problems considered in this and the previous
section.

Now we come to the restriction problem for arbitrary forms of (SO5, SO4). Since the argument
is similar as in the split case, we shall be fairly brief. We do need, however, to introduce some more
notations in order to state the theorems.

The only inner form of SO(3, 2) is the rank one group SO(4, 1). In [G], the Saito-Kurokawa

packets of SO(4, 1) have been analyzed by means of theta lifting from S̃L2, in analogy with the split
case. We have the following analog of Lemma 4.2:

Lemma 5.2. Consider the theta lift from S̃L2 to SO(4, 1) and let σ be an irreducible unitary

representation of S̃L2. Then θψ,0(σ) 6= 0 iff σ is not an elementary Weil representation, in which
case θψ,0(σ) = θψ(σ) is irreducible.

Fix an infinite-dimensional unitary representation π of PGL2 with associated Waldspurger packet
Ãπ = {σ+, σ−}. Then, following [G], set

η+−(π) = θψ(σ+) and η−+(π) = θψ(σ−).

The set {η+−(π), η−+(π)} is the Saito-Kurokawa packet of SO(4, 1) attached to π. Note that it has
2 elements iff π is a discrete series but not the Steinberg representation. Indeed, if π = St, then
η+−(π) = 0 since σ+ is the odd Weil representation ω−

ψ .

Using the above lemma, the same argument as in the split case gives:

Theorem 5.3. Let τ1 and τ2 be discrete series representation of GL2 and let SO(4) denote the
anisotropic group (D× ×D×)0/∆Gm. Then

HomSO(4)(η
ǫ,−ǫ(π), JL(τ1) ⊠ JL(τ2)) 6= 0 =⇒ τ1 = τ∨2 ,

and

HomSO(4)(η
ǫ,−ǫ(π), JL(τ) ⊠ JL(τ)∨) 6= 0 ⇐⇒ ǫ = ǫ(1/2, π ⊗ τ ⊗ τ∨),

in which case the dimension of the Hom space is 1.
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In the rest of this section, we consider the restriction of Saito-Kurokawa representations to
SO(3, 1). The results here are slightly more intricate to state and we begin by introducing some
notations for the representations of SO(3, 1).

Given any étale quadratic algebra K, there are two quadratic spaces of rank 4 and discriminant
K. We denote them by:

V +
K = H ⊕ (K,NK/F ) and V −

K = H ⊕ (K, δ ·NK/F )

where H denote a hyperbolic plane and δ ∈ F× rNK/F (K×). The associated orthogonal groups are
isomorphic. In particular, we have:

GSO(V ǫK ) ∼= GL2(K) × F×/∆K×,

with K× embeded diagonally via:

a 7→ (diag(a, a), NK/F (a)−1).

A representation of GSO(V ǫK ) is thus of the form Σ ⊠ χ, where Σ is an irreducible representation of
GL2(K) whose central character ωΣ satisfies

ωΣ = χ ◦NK/F .

The subgroup SO(V ǫK) is isomorphic to GL2(K)0/F×, where

GL2(K)0 = {g ∈ GL2(K) : det(g) ∈ F×}.

The embedding GL2(K)0/F× →֒ GSO(V ǫK) is given by:

g 7→ (g, det(g)−1).

An L-packet of SO(V ǫK) is thus given by the constituents of the restriction of a representation of
GSO(V ǫK) (or equivalently, the restriction of a representation of GL2(K)/F×).

We have an embedding of quadratic spaces

V +
K →֒ H

2 ⊕ 〈1〉

and thus an embedding

SO(V +
K ) →֒ SO(3, 2).

On the other hand, V −
K does not embed into H2 ⊕ 〈1〉. Rather,

V −
K →֒ H ⊕ (D0,−ND)

and so we have

SO(V −
K ) →֒ SO(4, 1).

One may consider the theta correspondence for the similitude dual pair GL+
2 ×GO(V ǫK), which has

been studied in [Co] and [Ro2]. Recall that if τ is an irreducible infinite-dimensional representation
of GL2, then the restriction of τ to GL+

2 is reducible iff τ ⊗ χK ∼= τ , in which case there are two
constituents. We may label the two constituents by τ+ and τ−, so that τ ǫ occurs in the theta
correspondence with GO(V ǫK ) but not with GO(V −ǫ

K ). On the other hand, if τ is irreducible when

restricted to GL+
2 , then τ occurs in the theta correspondence with both GO(V ǫK ) and we simply set

τ+ = τ− = τ |GL+

2

.

Now one has the following analog of Lemma 4.1:
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Lemma 5.4. (i) Let τ be an irreducible infinite-dimensional unitary representation of GL2. Then
as a representation of GSO(V ǫK),

θ0(τ
ǫ) = θ(τ ǫ) = Στ := BCK(τ) ⊗ (ωτ · χK),

where BCK(τ) is the base change of τ to GL2(K) and ωτ is the central character of τ .

(ii) Let Σ be an infinite-dimensional unitary representation of GO(V ǫK), then

θ0(Σ) 6= 0 =⇒ Σ|GSO(V ǫ
K

) = Στ .

Moreover, of the two possible extensions of Στ to GO(V ǫK), exactly one of them, denoted by Σ†
τ ,

participates in the theta correspondence and one has:

θ0(Σ
†
τ ) = θ(Σ†

τ ) = τ ǫ.

A similar argument as in the split case now gives the following theorems:

Theorem 5.5. Consider the restriction of ηǫ(π) from SO(3, 2) to SO(V +
K ).

(i) For an infinite dimensional unitary representation Σ of GSO(V +
K ) = (GL2(K) × F×)/∆K×,

we have:
HomSO(V +

K
)(η

ǫ(π),Σ) 6= 0 =⇒ Σ = Στ

for some infinite dimensional unitary representation τ of GL2(F ).

(ii) If τ ⊗ χK 6= τ , then

HomSO(V +

K
)(η

ǫ(π),Στ ) 6= 0 ⇐⇒ ǫψK (σǫ) = ǫ(1/2, Ad(τ) ⊗ (π ⊗ χK))

or equivalently

ǫ = ǫ(1/2, (π ⊗ χK) ⊗ τ ⊗ τ∨) ·

(
χK(−1) · ǫ(1/2, π ⊗ χK)

ǫ(1/2, π)

)
,

in which case the Hom space has dimension 1.

(iii) If τ ⊗ χK = τ , then
HomSO(V +

K
)(η

−(π),Στ ) = 0

whereas

HomSO(V +

K
)(η

+(π),Στ ) 6= 0 ⇐⇒ ǫ(1/2, (π ⊗ χK) ⊗Ad(τ)) · χK(−1) · ǫ(1/2, π) = 1,

in which case the Hom space has dimension 1.

Proof. We give a sketch of the proof, so as to illustrate why the extra complexity in (iii) occurs.
Suppose that K corresponds to aK ∈ F×/F×2. By using the see-saw

SL2 × S̃L2 O(3, 2)

S̃L2 O(V +
K ) ×O1(〈aK〉)

HHHHHH������

and Lemma 5.4, one deduces (i) immediately. Moreover, if Σ = Στ , then

HomSO(V +

K
)(η

ǫ(π),Στ ) 6= 0 ⇐⇒ HomSL2
(τ+∨

⊗ σǫ ⊗ ω∨
ψK ,C) 6= 0.

If τ ⊗χK 6= τ , then τ+ = τ and so (ii) follows from Thm. 5.1. Finally, if τ ⊗χK = τ , then one cannot
use Thm. 5.1 directly. Instead, consider the two companion see-saws
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S̃L2 ×µ2
S̃L2 O(V −

K )

SL2 O(3) ×O1(〈−aK〉)

HHHHHH������
S̃L2 ×µ2

S̃L2 O(V +
K )

SL2 O(2, 1) ×O1(〈−aK〉)

HHHHHHH�������

Since the theta lift of τ+ to GO(V −
K ) is zero, the first see-saw gives

HomSL2
(τ+∨

⊗ σ− ⊗ ω∨
ψK ,C) = 0

which implies the vanishing result of (iii). Similarly, the second see-saw allows one to conclude that

HomSL2
(τ−

∨
⊗ σ+ ⊗ ω∨

ψK ,C) = 0,

so that

HomSL2
(τ∨ ⊗ σ+ ⊗ ω∨

ψK ,C) = HomSL2
(τ+∨

⊗ σ+ ⊗ ω∨
ψK ,C).

Together with Thm. 5.1, this implies the second part of (iii). �

Theorem 5.6. Consider the restriction of ηǫ,−ǫ(π) from SO(4, 1) to SO(V −
K ).

(i) For an infinite dimensional unitary representation Σ of GSO(V −
K ) = (GL2(K) × F×)/∆K×,

we have:

HomSO(V −

K
)(η

ǫ,−ǫ(π),Σ) 6= 0 =⇒ Σ = Στ

for some infinite dimensional unitary representation τ of GL2(F ).

(ii) If τ ⊗ χK 6= τ , then

HomSO(V −

K
)(η

ǫ,−ǫ(π),Στ ) 6= 0 ⇐⇒ ǫψK (σǫ) = ǫ(1/2, Ad(τ) ⊗ (π ⊗ χK))

or equivalently

ǫ = ǫ(1/2, (π ⊗ χK) ⊗ τ ⊗ τ∨) ·

(
χK(−1) · ǫ(1/2, π ⊗ χK)

ǫ(1/2, π)

)
,

in which case the Hom space has dimension 1.

(iii) If τ ⊗ χK = τ , then

HomSO(V −

K
)(η

+−(π),Στ ) = 0

whereas

HomSO(V −

K
)(η

−+(π),Στ ) 6= 0 ⇐⇒ ǫ(1/2, (π ⊗ χK) ⊗Ad(τ)) · χK(−1) · ǫ(1/2, π) = −1,

in which case the Hom space has dimension 1.

Remarks: Consider the case when π = St is the Steinberg representation. The representation η+−(π)
is zero and so Thm. 5.6 had better predict that the space HomSO(V −

K
)(η

+−(π),Στ ) is zero for any τ .

Let us check that this is the case. If τ 6= τ ⊗ χK , then one knows that

χK(−1) · ǫ(1/2, St⊗ χK)

ǫ(1/2, π)
= −1 and ǫ(1/2, (St⊗ χK) ⊗ τ ⊗ τ∨) = 1.

Hence the RHS of the condition on epsilon factors in (ii) is −1, as required. On the other hand, if
τ = τ ⊗ χK , then the desired vanishing of the above Hom space is affirmed by (iii).
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We conclude this section with the following theorem which follows from Thm. 5.1 and the two
companion see-saws in the proof of Thm. 5.5:

Theorem 5.7. Consider the representation Στ of GSO(V ǫK) and let π be an infinite dimensional
representation of SO(2, 1) ∼= PGL2. Then

dim HomPGL2
(Στ , π) + dimHomPD×(Στ , JLD(π)) = 1

and
HomPGL2

(Στ , π) 6= 0 ⇐⇒ ǫ(1/2, (π ⊗ χK) ⊗Ad(τ)) · χK(−1) · ǫ(1/2, π) = 1.

This result is a special case of the extension of Prasad’s thesis [P1] to the case of GL2(F )-invariant
forms on GL2(F )×GL2(K). Such an extension was given in [P2], but the epsilon factor condition was
only shown for non-supercuspidal representations. In a recent paper [PSP], the complete extension
was finally obtained by Prasad and Schulze-Pillot using a global-to-local argument, starting from the
generalization of Jacquet’s conjecture to an arbitrary étale cubic algebra.

6. Archimedean Restriction

In this section, assume that F = R or C. We shall discuss the results of Savin [Sa] on the
archimedean analog of our main theorem. Savin’s paper, which has not been published before, appears
as an appendix to this paper.

Suppose first that π = π(χ, χ−1) is a unitary principal series of PGL2(F ). The associated Saito-
Kurokawa packet contains a single representation η+(π) = IP (χ). In this case, we know by [KR]
that

HomH(IP (χ), τ ⊗ τ∨) 6= 0

for any irreducible representation τ of GL2(F ). A nonzero element of this Hom space is given by the
leading term in the Laurent expansion of the local zeta integral arising from the doubling Rankin-
Selberg integral of Piatetski-Shapiro and Rallis (for the groups SL2 × SL2 ⊂ Sp4).

Henceforth, we focus on the case when F = R and π = π2k is the discrete series (sl2, O(2))-module
of extremal weights ±2k, with k ≥ 1. The two representations in the Saito-Kurokawa packet are best
described in terms of derived functor modules:

η+(π2k) = Aq1,1
(λk) and η−(π2k) = Aq2,0

(λk) ⊕Aq0,2
(λk).

Here q1,1 (resp. q2,0) is a θ-stable Siegel parabolic subalgebra whose Levi subalgebra corresponds to
the group U(1, 1) (resp. U(2, 0)) and λk = detk−2. Note that Aq2,0

(λk) and Aq0,2
(λk) are irreducible

(so5, SO(3)× SO(2))-modules but their sum extends to an irreducible (so5, S(O(3)×O(2)))-module.

Because η−(π2k) is a lowest/highest weight module, it is easy to determine its restriction to
SO(2, 2) by K-type considerations. One has:

η−(π2k) =
⊕

r≥k+1

πr ⊗ πr.

From this, the following proposition follows:

Proposition 6.1. We have:

HomSO(2,2)(η
−(π2k), τ ⊗ τ∨) 6= 0 ⇔ ǫ(1/2, π2k ⊗ τ ⊗ τ∨) = −1,

in which case the dimension of the Hom space is 1.

On the other hand, for η+(π2k), one has the following result of Savin [Sa]:
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Theorem 6.2. Suppose that Π⊗Θ occurs as a quotient of η+(π2k), where Π and Θ are (sl2, O(2))-
modules.

(i) If Π = πr with 0 < r ≤ k, then the possible wieghts of Θ are ±r,±(r + 2),±(r + 4), . . ., which
are precisely the weights of πr.

(ii) If Π = πr with k+ 1 ≤ r, then there are no possible weights for Θ. In particular, πr does not
appear in the correspondence.

As an immediate corollary of this and the case of principal series discussed at the beginning of
this section, we have:

Corollary 6.3. If F = R or C, we have:

HomSO(2,2)(η
+(π), τ ⊗ τ∨) 6= 0 =⇒ ǫ(1/2, π ⊗ τ ⊗ τ∨) = 1.

The converse holds if π is a unitary principal series representation.

We do not know how to show the converse in general and so the result is less complete than the
non-archimedean case.

7. Proof of the Main Global Theorem

In this section, we shall investigate the analogous global restriction problem.

Suppose in the section that F is a number field with adele ring A and π = ⊗πv is a cuspidal
representation of PGL2(A). As described in [G], there is a global Saito-Kurokawa packet associated
to π. A representation in this packet has the form

ηǫ(π) = ⊗vη
ǫv(πv).

This representation occurs in the space of square-integrable automorphic forms of PGSp4 iff

|ǫ| :=
∏

v

ǫv = ǫ(1/2, π).

We are interested in characterizing the cuspidal representations τ1 ⊠ τ2 of SO(2, 2) = (GL2 ×
GL2)

0/∆Gm such that the period integral

PH,ǫ : (f, ϕ1, ϕ2) 7→

∫

SO(2,2)(F )\SO(2,2)(A)

f(h) · ϕ1(h) · ϕ2(h) dh

defines a non-zero linear form on ηǫ(π) ⊗ τ1 ⊗ τ2.

Theorem 7.1. (i) If the linear form PH,ǫ is non-zero, then τ1 = τ∨2 .

(ii) Assume that τ1 = τ∨2 = τ . There is at most one ǫ for which the linear form PH,ǫ can be
non-zero. This distinguished ǫ is characterized by the requirement that

ǫv = ǫ(1/2, πv ⊗ τv ⊗ τ∨v ) for all v.

The associated representation occurs in the discrete spectrum iff ǫ(1/2, π ⊗Ad(τ)) = 1.

(iii) The distinguished representation in (ii) occurs in the discrete spectrum and the corresponding
linear form PH,ǫ is non-zero if and only if

L(1/2, π ×Ad(τ)) 6= 0.
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Proof. Parts (i) and (ii) follow immediately from our main (local) theorem and the strong
multiplicity-one theorem for GL2. For (iii), note that the non-vanishing of L(1/2, π ×Ad(τ)) implies
by (ii) that the distinguished representation in (ii) occurs in the discrete spectrum. Thus, to prove
(iii), we may assume that the distinguished representation in (ii) occurs in the discrete spectrum and
show the equivalence of the non-vanishing of PH,ǫ and L(1/2, π ×Ad(τ)).

In this case, the distinguished representation ηǫ(π) can be obtained as the global theta lift of a

cuspidal representation σ of S̃L2 in the global Waldspurger packet associated to π. By making use of
the see-saw diagram

SL2 × S̃L2 O(3, 2)

S̃L2 O(2, 2) ×O(1)

HHHHH�����

we deduce that the linear form PH,ǫ is non-zero iff
∫

SL2(F )\SL2(A)(F )\SL2(F )\SL2(A)(A)

ϕ(g) · ϕσ(g) · θψ(φ)(g) dg

for some ϕ ∈ τ , ϕσ ∈ σ and some theta function θψ(φ) in the Weil representation ωψ of S̃L2.

Now there exists a quadratic field K such that

- σ possesses a nonzero ψK-Whittaker-Fourier coefficient.
- τ is not dihedral with respect to K.

Indeed, there are only finitely many K’s with respect to which τ is dihedral whereas by results of
Friedberg-Hoffstein [FH] and Waldspurger [W1], there are infinitely many K’s such that σ has nonzero
ψK-Fourier coefficient. For a quadratic K chosen as above, one then has (cf. [W1]):

L(1/2, π ⊗ χK) 6= 0 and σ = ΘψK (π ⊗ χK).

Moreover, we have the see-saw diagram

S̃L2 ×µ2
S̃L2 SO(V +

K )

SL2 SO(2, 1) × SO(〈−aK〉)

HHHHHHH�������

and we may consider the global see-saw identity arising from the global theta lift with respect to the
character ψK . One has the following lemma:

Lemma 7.2. Consider the global theta lift from GL+
2 to GSO(V +

K ) with respect to ψK . If τ is a
cuspidal representation of GL2 which is not dihedral with respect to K, then the global theta lift Θ(τ)
is nonzero cuspidal and is equal to Στ on Στ = BCK(τ) ⊠ (ωτχK).

One proves this lemma by computing the constant term and the non-trivial Whittaker-Fourier
coefficient of the theta lift Θ(τ). We omit the details.
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Using the see-saw identity and the above lemma, we deduce that PH,ǫ is non-zero iff the global
period integral of the cuspidal representationBC(τ)⊗(π⊗χ−1

τ ) of GL2(K)×GL2(F ) over the diagonal
subgroup GL2(F ) is non-zero.

Now Harris and Kudla has proved the Jacquet conjecture relating global trilinear period integral
and the triple product L-function. In the recent paper [PSP], Prasad and Schulze-Pillot has extended
the proof of Harris-Kudla [HK] to the case of GL2(F )-period integral on GL2(E), where E is an étale
cubic algebra. We consider the case E = F ×K. Then [PSP, Thm. 1.1] says that

L(1/2, π ⊗ χK) · L(1/2, π ⊗Ad(τ)) 6= 0

if and only if there is a quaternion algebra D (possible split) with

D× →֒ GL2(K)

such that the cuspidal representation BC(τ) ⊗ JLD(π ⊗ χ−1
τ ) of GL2(K) ×D× has non-zero period

integral over the diagonal subgroup D×.

However, Thm. 5.7 (applied to Στv and πv ⊗ χKv ) tells us that for each place v,

HomGL2(Fv)(BC(τv), πv ⊗ χτv) 6= 0

whereas

HomD×

v
(BC(τv), JLDv (πv ⊗ χτv)) = 0,

where Dv is the quaternion division algebra here. This shows that in [PSP, Thm. 1.1] described
above, the only possible non-vanishing period integral is the one over the split group GL2.

Hence we conclude that PH,ǫ is nonzero if and only if

L(1/2, π ⊗ χK) · L(1/2, π ×Ad(τ)) 6= 0

or equivalently

L(1/2, π ×Ad(τ)) 6= 0.

�

When the representations involved correspond to holomorphic modular forms of level 1, Ichino
has given in [I] a refinement of part (iii) of the theorem by proving an exact formula expressing the
value L(1/2, π ⊗Ad(τ)) in terms of the period PH,ǫ evaluated at an explicit test vector.

8. Restricting from GSp4 to Sp4

We shall conclude the paper with a couple of miscellaneous questions concerning restrictions
of Saito-Kurokawa representations. Ginzburg has raised the question of how the Saito-Kurokawa
representations behave when restricted from GSp4 to Sp4. We shall answer this question in this
section. Assume first that F is a p-adic field.

Theorem 8.1. If ηǫ(π) is a Saito-Kurokawa representation, then ηǫ(π) remains irreducible when
restricted to Sp4 unless π = StχK with χK a non-trival quadratic character and ǫ = −, in which case
it is the sum of two irreducible representations.

Proof. Let us realize ηǫ(π) as a theta lift from GSO(2, 2) or GSO(4):

η+(π) = θ((π ⊠ 1)+) and η−(π) = θD((JL(π) ⊠ 1D)+).
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By Lemma 3.1, η+(π) is irreducible when restricted to Sp4 iff (π ⊠ 1)+ is irreducible when restricted
to O(2, 2). But as a representation of O(2, 2),

(π ⊠ 1)+ = ind
O(2,2)
SO(2,2)(π ⊠ 1)|SO(2,2).

This is irreducible iff as irreducible representations of SO(2, 2),

π ⊠ 1 6= 1 ⊠ π.

Since this is always the case (as π is infinite-dimensional), we see that η+(π) is always irreducible
when restricted to Sp4.

Similarly, for η−(π), we need to examine when (JL(π) ⊠ 1D)+ is reducible when restricted to
O(4). If π = St so that JL(π) = 1D, then (JL(π) ⊠ 1D)+ is the trivial representation and thus
remians irreducible when restricted to O(4). Hence η−(St) is irreducible when restricted to Sp4. Now
assume that JL(π) is non-trivial. Then as a representation of O(4),

(JL(π) ⊠ 1D)+ = ind
O(4)
SO(4)(JL(π) ⊠ 1D)|SO(4)

which is irreducible iff as representations of SO(4),

JL(π) ⊠ 1D 6= 1D ⊠ JL(π).

But this holds precisely when JL(π) is not a 1-dimensional character of D×. This proves the theorem.
�

In fact, one can deduce the theorem for η+(π) using the explicit description of η+(π) in Prop. 2.1.
Indeed, the natural map Sp4 −→ PGSp4 induces a map on the Levi factors of the Siegel parabolics:

p : M ′ = GL2 −→ GL1 × PGL2

given by

p(g) = (det(g), [g]).

From this, one sees that

IP (π, 1/2)|Sp4 = IP ′(π · | det |1/2)

which still has a unique irreducible quotient. Since η+(π) = JP (π, 1/2), we conclude that η+(π) is
irreducible when restricted to Sp4.

How can we distinguish between the two irreducible constituents in the restriction of η−(StχK )?
This can be done by examining the local analog of their Fourier coefficients. Recall that the M(F )-
orbits of generic unitary characters of N are naturally parametrized by étale quadratic algebras, which
are in turn classified by F×/F×2. If E is a quadratic algebra, we let ψE denote a character in the
orbit indexed by E. On the other hand, for the group Sp4, the M ′(F )-orbits of generic unitary
characters of N ′ are parametrized by nondegenerate quadratic spaces of rank 2, which are indexed by
their discriminants in F×/F×2 and their Hasse-Witt invariants in {±1}. In other words, when E is
a quadratic field, the M(F )-orbit of ψE breaks up into two M ′(F )-orbit. We denote representatives
of these two orbits by ψE,+ and ψE,−.

Now the representation η−(StχK ) is a distinguished representation, in the sense that

dim HomN (η−(StχK ),CψE ) =

{
1, if E = K;

0, if E 6= K.
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Since every infinite dimensional representation σ of Sp4 must have non-zero HomN ′(σ,Cψ) for some
generic ψ, we can label the two constituents as follows:

η−(StχK ) = Ξ+
K ⊕ Ξ−

K

where

dimHomN ′(ΞǫK ,CψK ,ǫ′) = δǫ ǫ′ .

In fact, it is not difficult to see that Ξ±
K is the theta lift of the sign character of O(V ±

K ), where V ±
K is

the rank 2 quadratic space with discrimiant K and Hasse-Witt invariant ±1.

Remarks: The archimedean situation is similar to the p-adic one. Namely, η+(π) remains irreducible
when restricted to Sp4, whereas if π is a discrete series representation, η−(π) decomposes into the
sum of a highest weight module and a lowest weight module unless π has extremal weights ±2.

Now we turn to the global situation so that F is now a number field. If

ηǫ(π) ⊂ L2
disc(PGSp4(F )\PGSp4(A))

is a Saito-Kurokawa representation associated to a cuspidal representation π of PGL2, then we may
restrict the automorphic functions in ηǫ(π) to Sp4(A). This gives a nonzero Sp4-equivariant map

Res : ηǫ(π) −→ L2
disc(Sp4(F )\Sp4(A)).

We have:

Theorem 8.2. The Sp4-equivariant map Res is injective.

Proof. Clearly, if ηǫ(π) is irreducible as an abstract representation of Sp4(A), then the theorem
is obvious. In general, let S be the finite set of places where πv = StχKv for some quadratic field Kv

and ǫv = −. Then we know by the previous theorem that as an abstract representation of Sp4(A),
ηǫ(π) is the sum of 2#S irreducible representations

Ξα =

(
⊗

v/∈S

ηǫv (πv)

)
⊗

(
⊗

v∈S

ΞαvKv

)

where αv = ±. Moreover, these 2#S abstract representations can be distinguished by the abstract
(N ′, ψ)-equivariant linear functionals they support.

Now choose a quadratic field E such that ηǫ(π) has a nonzero (N,ψE)-Fourier coefficient. In other
words, the linear functional on ηǫ(π) given by

LψE : f 7→

∫

N(F )\N(A)

f(n) · ψE(n) dn

is nonzero. Then there is a unique summand Ξα0
on which LψE is non-zero; namely for each v ∈ S,

ψE has to lie in the M ′(Fv)-orbit of ψE,α0,v
. Now for any element

m = (λ, g) ∈M(F ) = GL1(F ) × PGL2(F ),

the global Fourier coefficient Lm·ψE is also nonzero since

Lm·ψE(f) = LψE (m−1f).
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Moreover, for each v ∈ S, the character m ·ψE lies in the M ′(Fv)-orbit of ψE,α0λ̄ where λ̄ is the image

of λ in F×
v /NEv/Fv (E

×
v ) ∼= {±1}. Thus, to see that Res(Ξα) 6= 0 for any α, it suffices to note that

the natural map

F× −→
∏

v∈S

F×
v /NEv/Fv(E

×
v )

is surjective, which follows since F× is dense in
∏
v∈S F

×
v . �

9. Fourier coefficients and Bessel models

In this final section, we address a question raised by D. Prasad, concerning the Fourier coefficients
(or rather the local analogs) of Saito-Kurokawa representations.

We have seen in the previous section that each étale quadratic algebra E determines an M(F )-
orbit of generic characters ψE of N . If η = ηǫ(π) = θψ(σǫ), then we may consider the twisted Jacquet
module ηN,ψE . This is naturally a representation for the stabilizer MψE (F ) of ψE in M(F ), and we
are interested in determining this MψE -module.

In the first place, one knows from [W2] that

ηN,ψE 6= 0 ⇐⇒ σǫU,ψE 6= 0 ⇐⇒ ǫ(1/2, π ⊗ χE) = ǫ · χE(−1) · ǫ(1/2, π),

in which case ηN,ψE is 1-dimensional. Naturally, we assume that the above conditions hold.

The action of M = GL1 × SO3 on Hom(N,Ga) ∼= G3
a is given by the standard representation of

GL1 × SO3, so that GL1 acts by scalar multiplication. If VE is the line spanned by a vector whose
norm defines E, then we have:

MψE = S(O(1) ×O(VE) ×O(V ⊥
E )) ⊂ GL1 × SO3.

Thus, MψE
∼= O(V ⊥

E ) and there is a natural projection

det : MψE −→ {±1}

whose kernel is SO(1) × SO(VE) × SO(V ⊥
E ).

Theorem 9.1. The action of MψE on ηǫ(π)N,ψE factors through O(V ⊥
E )/SO(V ⊥

E ) ∼= {±1}, which
acts by ǫψ(σǫ) = ǫ · ǫ(1/2, π).

Proof. This is proved by a standard computation which we will sketch. We realize the Weil
representation ωψ of S̃L2 × SO(V5) using the mixed model relative to the decomposition

V5 = X ⊕ V3 ⊕X∗

where X is a 1-dimensional isotropic space. The precise description of this mixed model can be found
in [GG], where the action of S̃L2 × P (X∗) is explicitly described. Here, P = P (X∗) is the parabolic
subgroup stabilizing X∗ and is a Siegel parabolic. Its Levi factor is M = SO(V3) ×GL(X∗) and its
unipotent radical is N = V3 ⊗X . We shall freely use the formulas described in [GG].

Using the mixed model, one sees that as a representation of S̃L2 × P , ωψ sits in a short exacct
sequence:

0 −−−−→ indS̃L2×P

(B̃×GL1)0SO(V3)N
C∞
c (V3) −−−−→ ωψ −−−−→ C∞

c (V3) −−−−→ 0.

Here, in the third nonzero term of the short exact sequence, N acts trivially and so this term is
irrelevant for the computation of the twisted Jacquet module. In the first term of the short exact
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sequence, (B̃ ×GL1)
0 is the subgroup of B̃ ×GL1 consisiting of those elements of the form

(
t ∗

t−1

)
× t.

Moreover, SO(V3) acts on C∞
c (V3) geometrically and n ∈ N acts by

(nf)(v) = ψ(〈v, n〉) · f(v).

In particular, we see that the natural map C∞
c (V3) −→ C∞

c (V3)N,ψE is given by evaluating functions
at a nonzero vector in VE .

This observation allows one to calculate the twisted Jacquet module (ωψ)N,ψE as a representation

of S̃L2 ×MψE . One obtains:

(ωψ)N,ψE
∼= ind

S̃L2×MψE

(Z̃×MψE
)0U

χψ ⊠ ψE

where

• Z̃ is the inverse image in S̃L2 of the center Z of SL2; it is a finite group of order 4,
• (Z̃ ×MψE)0 is the index-2 subgroup of Z̃ ×MψE consisting of those elements of the form

(det(m), ǫ) ×m.

• U is the unipotent radical of the Borel subgroup B̃ of S̃L2,
• χψ is the standard genuine character of Z̃; note that there are two genuine characters of Z̃,
• ψE is a character of a generic character of U in the orbit indexed by E.

By first inducing to Z̃U ×MψE before going all the way to S̃L2 ×MψE , one obtains:

(ωψ)N,ψE
∼= ind

S̃L2×MψE

Z̃U×MψE

(χψ ⊗ ψE) ⊠ 1)
⊕

ind
S̃L2×MψE

Z̃U×MψE

(sgn · χψ ⊗ ψE) ⊠ sgn(det))

where sgn denotes the nontrivial character of {±1}. Thus, MψE acts trivially on the first summand
and acts via the sign character in the second summand.

Now σǫ occurs uniquely as a quotient of exactly one of the two summands above. It occurs in
the first summand iff its central character is χψ|Z̃ , which in turn holds iff ǫψ(σǫ) = ǫ · ǫ(1/2, π) = 1.
Thus the action of MψE on ηN,ψE = θψ(σǫ)N,ψE factors through det(MψE ) = {±1} which acts by
ǫψ(σǫ) = ǫ · ǫ(1/2, π), as desired. �
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Appendix A. RESTRICTING SMALL REPRESENTATIONS OF Sp4(R)
TO SL2(R) × SL2(R)

By GORDAN SAVIN

1. Introduction

Much interest in the oscillator representation of Sp2n(R) lies in the fact that its restriction to
Howe dual pairs yields correspondences of representations. On the other hand, the group Sp2n(R)
also contains the dual pairs Sp2k(R)×Sp2(n−k)(R). However, these dual pair are not interesting from
the point of view of the oscillator representation. Indeed, the restriction of the oscillator representation
to the dual pair Sp2k(R) × Sp2(n−k)(R) is simply the tensor product of the corresponding oscillator
representations. In particular, this shows that the oscillator representation is too small, and that we
should consider larger representations of Sp2n(R), when restricting to Sp2k(R) × Sp2(n−k)(R). This
point of view has been taken in the recent work of David Ginzburg [Gi], as well as in the work of Lee
and Loke ([LL] and its sequel dealing with Sp(p, q)). Finally, a rather general construction of small
representations of p-adic groups has been given by Weissman in [We].

Following a suggestion of Wee Teck Gan, in this paper we consider the simplest possible case. More
precisely, Adams and Johnson [AJ] constructed (Arthur) packets {V 2,0

k , V 1,1
k , V 0,2

k } of representations
of Sp4(R). A detailed description of these representations is given in Section 2. In the same section,

we restrict V 2,0
k and V 0,2

k to SL2(R) × SL2(R). Since V 2,0
k and V 0,2

k are highest and lowest weight
representations, respectively, the restriction is discrete and rather easy to calculate. An important
consequence, however, is that the matching of infinitesimal characters of the two SL2(R) holds for

V 1,1
k as well. In Section 3 we restrict V 1,1

k to SL2(R) × SL2(R). Using a result of Vogan [V] we
can control the correspondence for highest and lowest weight representations of SL2(R) (Proposition
A.3). Combined with the matching of infinitesimal characters, Proposition A.3 gives a rather complete

picture of the restriction of V 1,1
k (Corollary A.4).

2. Preliminaries

Let g = sp4(C) be the complexified Lie algebra of Sp4(R). We shall use the standard realization
of the root system of the type C2 in R2, such that ±(1,−1) are the compact roots. Following Adams
and Johnson [AJ], for each integer k ≥ 0, define an A-packet of (g,K)-modules (K = GL2(C)),

{V 2,0
k , V 1,1

k , V 0,2
k }

as follows. Let q = l+u, be a θ-stable parabolic subalgebra such that l0 ∼= u(p, q), where l0 = l∩sp4(R).
Define V p,qk to be the Aq(λ)-module, where

λ =





(k, k) if (p, q) = (2, 0)

(k,−k) if (p, q) = (1, 1)

(−k,−k) if (p, q) = (0, 2).

The multiplicities of K-types in Aq(λ) are given as follows. A K-type will be denoted by Λa,b where
(a, b) with a ≥ b is the highest weight. Since the K-types of representations in the A-packet satisfy
the congruence a ≡ b (mod 2), it will be convenient to picture them using integer coordinates

{
n = (a− b)/2

m = (a+ b)/2

Then (this picture is modeled after k = 0):
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Here the middle cone with vertex (0, k+2) represents the K-types of V 1,1
k . The left and the right

cones with vertices (0,−k − 3) and (0, k + 3) represent the K-types of V 0,2
k and V 2,0

k , respectively.
The restriction of the last two representations to sl(2) × sl(2) is easy to obtain:

Proposition A.1. For any positive integer r, let Dr and D−r be the representations of sl(2) with
the lowest weight r and the highest weight −r, respectively. Then

{
V 2,0
k = ⊕r≥k+3Dr ⊗Dr

V 0,2
k = ⊕r≥k+3D−r ⊗D−r.

Corollary A.2. Let Jk be the annihilator of V 1,1
k in the universal enveloping algebra of sp(4).

Let ΩL and ΩR be the Casimir operators of the two sl(2). Then

ΩL ≡ ΩR (mod Jk).

Proof. Note that all three modules in the packet have the same annihilator. Thus, in order to
prove the congruence, it suffices to show that ΩL = ΩR on V 2,0

k . This is follows from Proposition A.2.
The corollary is proved. �

Case of V 1,1
k

Let Π a representation of the first sl(2), and Θ a representation of the second sl(2) such that

Π ⊗ Θ appears as a quotient of V 1,1
k . In this section we shall give an upper bound on Θ when Π is a

highest or a lowest weight module.

Proposition A.3. Let Fr denote the irreducible, finite dimensional representation with the highest
weight r, and Dr be the holomorphic discrete series with weights r, r + 2, r + 4 . . ..

• if Π = Fr, and 0 ≤ r ≤ k, then the possible weights of Θ are −r,−r + 2, . . . r, which are
precisely the weights of Fr.

• if Π = Fr, and k + 1 ≤ r, then there is no restriction on the weights of Θ, except they have
the same parity as r.

• if Π = Dr, and 0 < r ≤ k+2, then the possible weights of Θ are −r,−r−2,−r−4, . . . which
are precisely the weights of D−r.

• if Π = Dr, and k + 3 ≤ r, then there are no possible weights of Θ. In particular, Dr does
not appear in the correspondence.

Moreover, in all cases the possible weights are of multiplicity one.
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Proof. The idea of the proof is as follows. Assume that r is the lowest weight of Π, and that s
is a weight of Θ. Let V (r, s) be the subspace of Vk such that the maximal compact subgroups of the
two sl(2) act by the indicated weights. Let E1 be the weight raising member of the sl(2)-triple in the
first sl(2). Then

E1 : V (r − 2, s) → V (r, s)

is injective [V; Lemma 3.4], but not surjective, since the image is contained in the kernel of the
projection on Π ⊗ Θ. In particular, if for some s the map E1 is bijective, then s cannot be a weight
in Θ.

The apply this idea, we need to figure out which K-types of Vk contribute to V (r, s). Note that
the weights of Λa,b are

(a, b), (a− 1, b+ 1), . . . (b, a).

In particular, if Λa,b contributes to V (r, s), then for some integer l such that 0 ≤ l ≤ a − b = 2n we
have {

a− l = r

b+ l = s.

Summing up this two equations, and dividing by 2, this gives m = p where p = (r + s)/2. Similarly,
subtracting the two equations, and dividing by 2, gives n− l = q where q = (r−s)/2. Since |n− l| ≤ n,
and q = r − p, we see that Λa,b contributes to V (r, s) if and only

{
m = p and

|m− r| ≤ n.

Note that the second condition is independent of s. The graph of |m− r| = n is ∨-shaped with vertex
at r. If k + 3 ≤ r then we have the following picture.
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Here the black dots on the lines m = p− 1 and m = p represent the K-types which contribute to
V (r − 2, s) and V (r, s), respectively. The arrows represent the action of E1. Indeed, by a variant of
Clebsh-Gordan,

p+ ⊗ Λa,b = Λa+2,b ⊕ Λa+1,b+1 ⊕ Λa,b+2.

In particular, if a K-type corresponds to a point (m,n), then acting by E1 on it will end up in K-
types parameterized by (m + 1, n+ 1) and (m + 1, n− 1). It follows that E1 maps the contribution
to V (r − 2, s) at the point (m,n) to the contribution to V (r, s) at the points (m + 1, n + 1) and



28 WEE TECK GAN AND NADYA GUREVICH WITH AN APPENDIX BY GORDAN SAVIN

(m + 1, n− 1), as claimed. Since E1 is injection, it restricts to an isomorphism between V (r − 2, s)
and V (r, s) (we have a non-degenerate upper-triangular system of equations). In particular, there is
no weight s appearing here. Next, consider the case −k ≤ r < k + 3. Then
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Here we cannot conclude that E1 is a a bijection unless the line m = p is right of the n axis. This
means that s ≤ −r. Finally, consider the case r ≤ −k − 1. Then
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Here we can never conclude that E1 is a bijection, and we cannot derive any restrictions on the
type s.

Clearly, we can perform analogous calculations if Π is a highest weight module. Proposition is
proved. �

We summarize our results with the following corollary. It is interesting to note that the represen-
tations appearing in the restriction of V 2,0

k and V 0,2
k are precisely those that we have eliminated for

V 1,1
k .
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Corollary A.4. Let ΠL ⊗ ΠR be an irreducible sl(2) × sl(2) quotient of V 1,1
k . Then ΠL

∼= ΠR,
unless ΠL

∼= Dr or D−r with r = 1, . . . k + 2. In that case ΠR
∼= D−r or Dr, respectively. Finally,

ΠL can never be isomorphic to Dr or D−r with r ≥ k + 3.

Proof. Note that the correspondence preserves the parity of the weights for the two sl(2). In
particular, the statement for irreducible principal series representations follows from Corollary A.2.
Other statements follow from Proposition A.3. �

Acknowledgments

The author would like to thank Wee Teck Gan for providing valuable information. This work has
been supported by NSF grant DMS-0138604.

References

[AJ] J. Adams, J. Johnson, Endoscopic groups and packets of non-tempered representations, Compositio Math. 64

(1987), 271-309.

[Gi] D. Ginzburg, A construction of CAP representations in classical groups, Int. Math. Res. Not. 20 (2003), 1123–1140.
[LL] S. T. Lee, H. Y. Loke, Degenerate principal series for U(p, q) and SO(p, q) Compositio Math. 132 (2003), 311-348.
[V] D. Vogan, Singular Unitary Representations, Lecture Notes in Mathematics 880 (1981), 508-535.
[We] M. Weissman, The Fourier-Jacoby map and small representations, Representation Theory 7 (2003), 275-299.

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, U.S.A.

E-mail address: savin@math.utah.edu


