
REPRESENTATIONS OF METAPLECTIC GROUPS I:

EPSILON DICHOTOMY AND LOCAL LANGLANDS

CORRESPONDENCE

WEE TECK GAN AND GORDAN SAVIN

to Benedict H. Gross
our teacher, colleague and friend

on the occasion of his 60th birthday

Abstract. Using theta correspondence, we classify the irreducible representations of Mp2n

in terms of the irreducible representations of SO2n+1 and determine many properties of this
classification. This is a local Shimura correspondence which extends the well-known results
of Waldspurger for n = 1.

1. Introduction

Let k be a non-archimedean local field of characteristic zero and residual characteristic p.
In this introduction, we assume for simplicity that p is odd. Let (W, 〈−,−〉) be a symplectic
vector space of dimension 2n over k, with associated symplectic group Sp(W ). The group
Sp(W ) has a unique two-fold central extension Mp(W ) which is called the metaplectic group:

1 −−−−→ {±1} −−−−→ Mp(W ) −−−−→ Sp(W ) −−−−→ 1.

The purpose of this paper is to investigate the (genuine) representation theory of Mp(W ).
More precisely, we shall:

• obtain a local Langlands correspondence for Mp(W ) and establish some of its expected
properties;
• establish a result known as epsilon dichotomy, in which certain local root numbers

are shown to control the non-vanishing of certain theta lifts;

The prototype of our results is the work of Waldspurger who considered the case dimW =
2. If Irr(G) denotes the set of isomorphism clases of irreducible (genuine) representations of
G, then Waldspurger showed that, with respect to any fixed additive character ψ of k, there
is a natural bijection

Irr(Mp(W ))←→
⊔

V

Irr(SO(V ))

where the (disjoint) union of the RHS runs over the 3-dimensional quadratic spaces V of
discriminant 1 (there are two of these) and SO(V ) denotes the associated special orthogonal
group. By combining these results with the local Langlands corespondence for SO(V ) (with
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dimV = 3), one obtains a classification of Irr(Mp(W )) in terms of L-parameters. This
classification depends on the choice of ψ, but Waldspurger also determined how it changes
as one varies ψ. We shall recall these results more precisely in §5. At this point, it suffices
to note that Waldspurger’s results were obtained by a detailed study of the local theta
correspondence associated to the dual pairs Mp(W )× SO(V ). Moreover, he was the first to
realize the connection between local root numbers and theta correspondence, establishing the
aforementioned result on epsilon dichotmy.

Subsequently, extensions of essentially all of Waldspurger’s results mentioned above to the
case of general W ’s were obtained in the archimedean case, by the work of Adams-Barbasch
[AB1,2] and Adams [Ad]. In this paper, we shall complete this (local) story by establishing the
analogous results for p-adic fields. We note that the method of proof used in the archimedean
case relies crucially on the detailed analysis of harmonic K-types, and thus does not work in
the p-adic setting.

More precisely, one has the following theorem, whose proof was sketched in [GGP] based
on a key result of Kudla-Rallis [KR2]. We shall give a detailed proof here.

Theorem 1.1. For each non-trivial additive character ψ : k → C
×, there is a bijection

Θψ : Irr(Mp(W ))←→ Irr(SO(V +)) ⊔ Irr(SO(V −)),

where V + (respectively V −) is the split (resp. non-split) quadratic space of discriminant 1
and dimension 2n+1. This bijection is given by the theta correspondence (with respect to ψ)
for the group Mp(W )× SO(V ±).

Corollary 1.2. Assume the local Langlands correspondence for SO(V ±). Then one obtains
a local Langlands correspondence for Mp(W ), i.e. a bijection (depending on ψ)

Lψ : Irr(Mp(W ))←→ Φ(Mp(W ))

where Φ(Mp(W )) is the set of pairs (φ, η) such that

• φ : WDk −→ Sp2n(C) is a 2n-dimensional symplectic representation of the Weil-
Deligne group WDk of k;

• η is an irreducible representation of the (finite) component group

Aφ = π0(ZSp2n(C)(φ)).

Since the local Langlands correspondence for SO(V ±) is known for dimV = 5 (by [GT]
and [GTW]), the statement of the corollary is unconditional in this case. The general case
should follow by combining the results of the recently released book [A] of Arthur and the
results of Jiang-Soudry [JS].

One may ask if the local Langlands correspondence given in Corollary 1.2 satisfies certain
typical properties. For example, for a representation σ of Mp(W ) with L-parameter φ, one
would expect that σ is a discrete series representation if and only if φ does not factor through
any proper Levi subgroup. As another example, one would expect certain natural invariants,
such as L-factors and ǫ-factors, to be preserved under the correspondence. To a large extent,
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such questions amount to whether the bijection Θψ satisfies the analogous properties. We
have:

Theorem 1.3. Suppose that π ∈ Irr(SO(V )) and σ ∈ Irr(Mp(W )) correspond under Θψ.
Then we have:

(i) π is a discrete series representation if and only if σ is a discrete series representation.

(ii) π is tempered if and only if σ is tempered. Moreover, suppose that

π ⊂ IQ(τ1, ..., τr, π0),

where Q is a parabolic subgroup of SO(V ) with Levi subgroup GLn1
× ... × GLnr

× SO(V0),
the τi’s are unitary discrete series representations of GLni

, and π0 is a discrete series repre-
sentation of SO(V0). Then

σ ⊂ IP̃ (τ1, ..., τr,Θψ(π0)),

where P̃ is the parabolic subgroup of Mp(W ) with Levi subgroup G̃Ln1
×µ2

... ×µ2
G̃Lnr

×
Mp(W0). In particular, Θψ gives a bijection between the (isomorphism classes of) irreducible
constituents of IQ(τ1, ..., τr, π0) and IP̃ (τ1, ..., τr ,Θψ(π0)).

(iii) In general, suppose that

π = JQ(τ1|det |s1 , ..., τr|det |sr , π0), s1 > s2 > .... > sr > 0

is a Langlands quotient of SO(V ), where Q is as in (ii), the τi’s are unitary tempered repre-
sentations of GLni

, and π0 is a tempered representation of SO(V0). Then

σ = JP̃ (τ1|det |s1, ..., τr |det |sr ,Θψ(π0))

where P̃ is as in (ii).

(iv) If π and σ are discrete series representations, then

deg(π) = deg(σ),

where deg denotes the formal degree with respect to the Haar measures giving

- the Iwahori subgroup of SO(V +) volume 1,

- the Iwahori subgroup of SO(V −) volume 2 · q+1
q−1 (with q = the size of the residue field

of k),
- the preimage in Mp(W ) of the Iwahori subgroup of Sp(W ) volume 1.

(v) If π is a generic representation of SO(V +), then σ is a ψ-generic representation of
Mp(W ). If σ is ψ-generic and tempered, then π is generic.

(vi) If π is an irreducible representation of SO(V ) and ρ is an irreducible representation of
GLr, then one has a Plancherel measure µ(s, π×ρ, ψ) associated to the induced representation
IP (s, π ⊠ ρ). If σ = Θψ(π), then one has

µ(s, π × ρ, ψ) = µ(s, σ × ρ, ψ).
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(vii) If χ is a 1-dimensional character of GL1, then one has
{
L(s, π × χ) = Lψ(s, σ × χ)

ǫ(s, π × χ,ψ) = ǫ(s, σ × χ,ψ)

where the local factors in question are those defined by Lapid-Rallis [LR] using the doubling
method of Piatetski-Shapiro and Rallis [PSR].

(viii) Assume that π is generic, so that σ is ψ-generic. Then for any irreducible representation
ρ of GLr, one has the equalities

{
L(s, π × ρ) = Lψ(s, σ × ρ)

ǫ(s, π × ρ, ψ) = ǫ(s, σ × ρ, ψ).

Here the factors on the LHS are those defined by Shahidi [Sh], and those on the RHS are
defined by Szpruch [Sz].

In the paper [GI] of the first author with A. Ichino, several of the results in Theorem 1.3
were established for the local theta correspondences for general dual pairs of arbitrary sizes.
In fact, Theorem 1.3(iv) is one of the main results of [GI]; we do not make use of (iv) in this
paper, nor will we discuss its proof.

It is not difficult to see that the bijection Θψ (or Lψ) is determined by the properties of
the above theorem, at least on the level of L-packets. It has also come to our attention that
Moeglin [Mo2] has given a definition of local L-packets (indeed local A-packets) of Mp(W )
using reducibilities of generalized principal series representations, extending her approach for
the linear classical groups. It follows from Theorem 1.3(i), (ii), (iii) and (vi) that our local
L-packets agree with hers. Since we will not recall her intricate results, we do not elaborate
on this point here.

Let us return to Theorem 1.1. The key steps in the proof of Theorem 1.1 are the following
two statements:

(a) given an irreducible representation π of SO(V ), exactly one extension of π to O(V ) =
SO(V )× {±1} has nonzero theta lift to Mp(W );

(b) given an irreducible representation σ of Mp(W ), σ has nonzero theta lift to O(V ) for
exactly one V .

Now one may ask if it is possible to specify, in the context of (a), which extension π± of π
participates in the theta correspondence with Mp(W ). Analogously, given a representation σ
in the context of (b), one may ask to which O(V ) is the theta lift of σ nonzero. To describe
the answers, we need to introduce some more notations.

First, let us write

ǫ(V ) =

{
+1, if V = V +;

−1, if V = V −.

Further, observe that the sign ǫ in πǫ simply encodes the central character of πǫ:

ǫ = πǫ(−1).
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On the other hand, for an irreducible genuine representation σ of Mp(W ), one may consider

its central character ωσ , which is a genuine character of Z̃ (the preimage in Mp(W ) of the
center Z of Sp(W )). Now using the additive character ψ, one can define a genuine character

χψ of Z̃ (see 2.4). We define the central sign zψ(σ) of σ by

zψ(σ) = ωσ(−1)/χψ(−1) ∈ {±1},

where we note that the quotient above is independent of the choice of the preimage in Z̃ of
−1 ∈ Z.

Now we have:

Theorem 1.4. (i) Let π be an irreducible representation of SO(V ). Then πǫ participates in
theta correspondence (with respect to ψ) with Mp(W ) if and only if

ǫ = ǫ(V ) · ǫ(1/2, π).

Here ǫ(s, π, ψ) is the standard epsilon factor defined by Lapid-Rallis [LR] using the doubling
method; its value at s = 1/2 is independent of ψ.

(ii) Let σ be an irreducible representation of Mp(W ). Then σ has nonzero theta lift (with
respect to ψ) to O(V ) if and only if the central character of σ satisfies:

zψ(σ) = ǫ(V ) · ǫ(1/2, σ, ψ) = ǫ(V ) · ǫ(1/2,Θψ(σ)).

We should mention that the analogous theorem in the context of theta correspondence for
unitary groups was shown by Harris-Kudla-Sweet [HKS], at least for “most” representations.

Finally, we investigate how the local Langlands correspondence Lψ depends on ψ. For
this, we shall of course assume the local Langlands correspondence for SO(V ±) so that
Corollary 1.2 makes sense. In addition, we assume that the local Langlands correspondence
for SO(V ±) satisfies certain expected properties in relation with the theory of endoscopy;
these are detailed in §12. To state the result, we recall that φ : WDk −→ Sp2n(C) is a
symplectic representation of WDk, and if we write φ =

⊕
i ni ·φi as a direct sum of irreducible

representations φi with some multiplicities ni, then the component group Aφ is given by

Aφ =
∏

i:φi symplectic

Z/2Zai,

so that Aφ is a vector space over Z/2Z with a canonical basis. Now we have:

Theorem 1.5. For σ ∈ Irr(Mp(W )) and c ∈ k×, let

Lψ(σ) = (φ, η) and Lψc
(σ) = (φc, ηc).

Then:

(i) φc = φ⊗ χc, where χc is the quadratic character associated to c ∈ k×/k×2.

It follows by (i) that we have canonical identification of component groups:

Aφ = Aφc
= ⊕iZ/2Zai,

so that it makes sense to compare η and ηc.
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(ii) the characters η and ηc are related by:

ηc(ai)/η(ai) = ǫ(1/2, φi) · ǫ(1/2, φi ⊗ χc) · χc(−1)
1

2
dimφi ∈ {±}.

It is interesting to note that the proof of this last theorem makes use of the Gross-
Prasad conjecture for tempered representations of special orthogonal groups, which is recently
demonstrated by Waldspurger in a remarkable series of articles [W5-8].

In a sequel to this paper, we shall investigate the relation of the representation theories of
SO(V ±) and Mp(W ) from the point of view of Hecke algebra isomorphisms.

Acknowledgments: W.T.G. is partially supported by NSF grant DMS-0801071. G.S. is
partially supported by NSF grant DMS-0852429. We take this opportunity to thank Dick
Gross for his continued inspiration over the years. It is a privilege to have studied under and
collaborated with him, and this paper is dedicated to him on his 60th birthday.

2. Metaplectic and Orthogonal Groups

In this section, we establish some notations for the groups of interest in this paper. Recall
that k is a non-archimedean local field of characteristic zero and residual characteristic p.
Let Ok be the ring of integers of k with residue field κ = Fq.

2.1. Symplectic Group. Let W be a 2n-dimensional vector space over k equipped with a
nondegenerate skew-symmetric form 〈−,−〉W and let Sp(W ) be the associated symplectic
group. We may fix a Witt basis of W , consisting of vectors

e1, ......, en, e
∗
n, ...., e

∗
1

satisfying

〈ei, ej〉W = 〈e∗i , e
∗
j 〉W = 0 and 〈ei, e

∗
j 〉W = δij .

For any 1 ≤ k ≤ n, let

Xk = Span(e1, ..., ek) and X∗
k = Span(e∗1, ..., e

∗
k),

so that W = Xn ⊕X
∗
n. We also set

Wn−k = Span(ek+1, ....., en, e
∗
n, ....., e

∗
k+1)

so that
W = Xk ⊕Wn−k ⊕X

∗
k .

2.2. Parabolic Subgroups. We now describe the parabolic subgroups of Sp(W ) up to con-
jugacy. Consider the flag of isotropic subspaces

Xk1 ⊂ Xk1+k2 ⊂ ... ⊂ Xk1+...+kr
⊂W.

The stabilizer of such a flag is a parabolic subgroup P whose Levi factor M is given by

M ∼= GL(k1)× .....GL(kr)× Sp(Wn−k1−...−kr
),

where GL(ki) is the group of invertible linear maps on Span(eki+1, ....eki+1
). In particular,

the maximal parabolic subgroups of Sp(W ) are simply the stabilizers P (Xk) of the isotropic
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spaces Xk (1 ≤ k ≤ n). For a given k, the choice of the complementary space X∗
k gives a

Levi subgroup of P (Xk)

M(Xk) = GL(Xk)× Sp(Wn−k),

with GL(Xk) acting naturally on X∗
k by functoriality. Moreover, the unipotent radical N(Xk)

sits in a short exact sequence

1 −−−−→ Z(Xk) −−−−→ N(Xk) −−−−→ Hom(Wn−k,Xk) −−−−→ 1

where Z(Xk) ∼= Sym2Xk is isomorphic to the space of symmetric bilinear form on Yk. When
k = n, N(Xk) = Z(Xk) is abelian and P (Xn) is called the Siegel parabolic subgroup.

2.3. Metaplectic Group. The group Sp(W ) has a unique two-fold cover Mp(W ). As a set,
we may write

Mp(W ) = Sp(W )× {±1}

with group law given by

(g1, ǫ1) · (g2, ǫ2) = (g1g2, ǫ1ǫ2 · c(g1, g2))

for some 2-cocycle c on Sp(W ) valued in {±1}. Without describing c explicitly, let us describe
the restriction of this double cover over a maximal parabolic subgroup P (Xk) of Sp(W ).

The covering splits uniquely over the unipotent radical N(Xk) of P (Xk). Thus, we may
regard N(Xk) canonically as a subgroup of Mp(W ) and one has a Levi decomposition

P̃ (Xk) = M̃ (Xk) ·N(Xk)

We need to describe the covering over M(Xk) ∼= GL(Xk)× Sp(Wn−k).

Not surprisingly, the restriction of the covering to Sp(Wn−k) is nothing but the unique two-
fold cover Mp(Wn−k) of Sp(Wn−k). The covering over GL(Xk) can be described as follows.
Consider the set

GL(Xk)× {±1}

with multiplication law

(g1, ǫ1) · (g2, ǫ2) = (g1g2, ǫ1ǫ2 · (det g1,det g2))

where (det g1,det g2) denotes the Hilbert symbol. Then G̃L(Xk) is precisely this double cover
of GL(Xk).

Hence, we have

M̃ (Xk) =
(
G̃L(Xk)×Mp(Wn−k)

)
/∆µ2.

More generally, for any parabolic subgroup P , one has the Levi decomposition

P̃ = M̃ ·N

with

M̃ ∼= G̃L(k1)×µ2
...×µ2

G̃L(kr)×µ2
Mp(Wn−k1−...−kr

).
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2.4. Representations of G̃L(Xk). The (genuine) representation theory of G̃L(Xk) can be
easily related to the representation theory of GL(Xk). Indeed, the determinant map

det : GL(Xk) −→ GL(1)

has a natural lifiting

d̃et : G̃L(Xk) −→ G̃L(1)

given by

d̃et(g, ǫ) = (det g, ǫ).

On the other hand, if we fix an additive character ψ of k, then there is a natural genuine

character of G̃L(1) defined by:
(a, ǫ) 7→ ǫ · γ(a, ψ)−1

with
γ(a, ψ) = γ(ψa)/γ(ψ)

and the Weil index γ(ψ) is an 8-th root of unity associated to ψ by Weil. Composing this

genuine character by d̃et gives a genuine character χψ of G̃L(Xk), which satisfies

χψ(g, ǫ)2 = (det g,−1).

Using the genuine character χψ, one obtains a bijection between Irr(GL(Xk)) and the set

Irr(G̃L(Xk)) of genuine irreducible representations of G̃L(Xk), via:

τ 7→ τ̃ψ = τ ⊗ χψ.

We stress that this bijection depends on the choice of the additive character ψ.

Note that we could restrict the genuine character χψ to the center Z̃ of Mp(W ). We

denote this character of Z̃ by χψ as well. This character allows one to define a central sign
for irreducible representations σ of Mp(W ), as explained in the introduction.

2.5. Parabolic Induction. After the above discussion, one sees that given an irreducible
representation τ of GL(Xk) and an irreducible representation π of Mp(Wn−k), one has an

irreducible representation τ̃ψ⊠π of M̃(Xk). Thus, one may consider the parabolically induced
representation

IP (Xk),ψ(τ, π) = Ind
Mp(W )
eP (Xk)

τ̃ψ ⊠ π (normalized induction).

More generally, for any parabolic subgroup P = M ·N and irreducible representation τi of
GL(ki) and π of Mp(Wn−k1−...−kr

), one has the induced representation

IP,ψ(τ1, ..., τr, π).

A particular case of this is when P = B is the Borel subgroup, so that each ki = 1. In
that case, given characters χ1,...,χn, one has the principal series representations

IB,ψ(χ1, ...., χn).

If the χi’s are unramified, we shall call such a representation an unramified principal series
representation; note that this notion of “unramified representations” depends on the choice
of ψ.
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Though Mp(W ) is not a linear group, many basic results regarding the induction and
Jacquet functors remain valid. For a justification of this, the reader can consult [HM1].

2.6. Maximal Compact Subgroup. Let Λ be the Ok-lattice generated by the vectors ei’s
and e∗j ’s. Then Λ is a self-dual lattice and the stabilizer of Λ in Sp(W ) is a hyperspecial
maximal compact subgroup K. Note that there are two conjugacy classes of hyperspecial
maximal compact subgroups in Sp(W ); the other class of hyperspecial maximal compact
subgroup is represented by the stabilizer K ′ of the lattice

Λ′ = 〈ei, e
∗
j/̟〉.

The groups K and K ′ are conjugate by the similitude group GSp(W ).

When p 6= 2, the metaplectic covering is known to split uniquely over K and K ′. Thus, we
may regard K and K ′ as subgroups of Mp(W ). It is interesting to note that the K-spherical
irreducible representations of Mp(W ) are precisely the unique K-spherical constituents of the
unramified principal series representations IB,ψ(χ1, ...., χn) precisely when the conductor of
ψ is of the form ̟2r. When the conductor of ψ is ̟2r+1, the analogous statement holds for
the group K ′. For more discussion of this, the reader can consult [GS].

2.7. Orthogonal Groups. Now we come to the orthogonal groups. Let V be a vector space
of dimension 2n+1 over k equipped with a nondegenerate quadratic form qV of discriminant
1. There is a symmetric bilinear form bq associated to q:

bq(v1, v2) = q(v1 + v2)− q(v1)− q(v2).

Up to isomorphism, there are precisely two such quadratic spaces V . One of them, to be
denoted by V +, has maximal isotropic subspaces of dimension n, whereas the other has
maximal isotropic subspaces of dimension n− 1 and is denoted by V −. As such, we call the
former the split quadratic space and the latter the non-split one. We shall write

ǫ(V ) =

{
+1 if V is split;

−1, if V is non-split.

Let O(V ) be the associated orthogonal group. Then observe that

O(V ) = SO(V )× {±1}

where SO(V ) is the special orthogonal group. The group SO(V ) is split precisely when V is
the split quadratic space.

Given any irreducible representation π of SO(V ), there are two extensions of π to O(V ),
depending on whether the element −1 ∈ O(V ) acts as +1 or −1. We denote these two
extensions by π+ and π− respectively.

2.8. Parabolic subgroups. The parabolic subgroups of O(V ) are stabilizers of flags of
isotropic subspaces in V . More precisely, if Yr = Span(v1, ...., vr) is a maximal isotropic
subspace of V , then we may write

V = Yr + V0 + Y ∗
r ,
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where V0 is anisotropic and Y ∗
r = Span(v∗r , ..., v

∗
1) is isotropic and satisfies

bq(vi, v
∗
j ) = δij .

For each 1 ≤ k ≤ r, let Yk = Span(v1, ..., vk) and Y ∗
k = Span(v∗1 , ..., v

∗
k) and let Vn−k be such

that
V = Yk + Vn−k + Y ∗

k .

Now given a flag in Yr:
Yk1 ⊂ Yk1+k2 ⊂ .... ⊂ Yk1+...+kr

,

the associated parabolic subgroup P has Levi subgroup

M = GL(k1)×GL(k2)× ...×GL(kr)×O(Vn−k1−...−kr
),

where GL(ki) is the group of invertible linear maps on Span(vki−1+1, ...., vki
).

3. Weil Representations and Theta Correspondences

In this section, we introduce the Weil representations for Mp(W ) × O(V ) and recall the
notion of theta correspondence.

3.1. Weil Representation. Fix an additive character ψ of k. Then the group Mp(W ) ×
O(V ) has a natural representation ΩV,W,ψ depending on ψ. This representation can be realized
on the space S(X∗ ⊗ V ) of Schwarz-Bruhat functions on X∗ ⊗ V = Hom(X,V ). The action
of Mp(W )×O(V ) on S(X∗ ⊗ V ) via ΩV,W,ψ is described as follows.





(Ωψ(h)φ)(A) = φ(h−1A), if h ∈ O(V );

(Ωψ(n)φ)(A) = ψ(1
2 · 〈n(A), A〉) · φ(A), if n ∈ N(X) = Sym2X ⊂ Hom(X∗,X);

(Ωψ(m, ǫ)φ)(A) = χψ(m, ǫ) · |det(m)|
1
2

dimV · φ(m−1 ·A) if (m, ǫ) ∈ M̃(X) = G̃L(X);

(Ωψ(w)φ)(A) = γ(ψ ◦ qV )n ·
∫
X∗⊗V φ(B) · ψ(〈A,B〉) dB.

Here, in the last equation, w is a certain Weyl group element and γ(ψ ◦ qV ) is the Weil index
associated to the pair (ψ, qV ). Moreover, in the second equation, with A ∈ X∗ ⊗ V , the
element n(A) lies in X⊗V , and the pairing between X⊗V and X∗⊗V is the tensor product
of the natural pairing between X and X∗ and the symmetric bilinear form bV associated to
the quadratic form qV on V :

bV (v1, v2) = qV (v1 + v2)− qV (v1)− qV (v2).

3.2. Theta Correspondence. Given an irreducible representation π of O(V ), the maximal
π-isotypic quotient of ΩV,W,ψ has the form π ⊠ ΘV,W,ψ(π) for some smooth representation
ΘV,W,ψ(π) of Mp(W ) (called the big theta lift of π). The maximal semisimple quotient of
ΘV,W,ψ(π) is denoted by θV,W,ψ(π) and is called the small theta lift of π.

Similarly, if σ is an irreducible genuine representation of Mp(W ), then one has its big theta
lift ΘW,V,ψ(σ) and its small theta lift θW,V,ψ(σ), which are smooth representations of O(V ).

The following theorem summarizes some basic results of Howe, Kudla [Ku], Moeglin-
Vigneras-Waldspurger [MVW] and Waldspurger [W3] about the theta correspondence.
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Theorem 3.1. (i) The representation ΘV,W,ψ(π) is either zero or has finite length.

(ii) If π is supercuspidal, then ΘV,W,ψ(π) is either zero or irreducible (and thus is equal to
θV,W,ψ(π)). Moreover, if π and π′ are supercuspidal representations such that ΘV,W,ψ(π) ∼=
ΘV,W,ψ(π′), then π ∼= π′.

(iii) If p 6= 2, then ΘV,W,ψ(π) is either zero or has a unique irreducible quotient, so that
θV,W,ψ(π) is irreducible. Moreover, for any irreducible representations π and π′ of O(V ),

θV,W,ψ(π) ∼= θV,W,ψ(π′) =⇒ π ∼= π′.

(iv) The analogous statements hold for ΘW,V,ψ(σ) and θW,V,ψ(σ) if σ is an irreducible
genuine representation of Mp(W ).

3.3. The doubling see-saw. Given an irreducible representation π of SO(V ), we are inter-
ested in whether ΘV,W,ψ(πǫ) is nonzero. To address this question, it is useful to introduce
the “doubled space”

V = V + (−V )

where −V is the quadratic space (V,−q). The quadratic space V has even dimension and is
split, with a maximal isotropic subspace given by

V ∆ = {(v, v) : v ∈ V } ⊂ V.

Now consider the see-saw diagram:

O(V)

SSSSSSSSSSSSSSSSS
Mp(W )×µ2

Mp(W )

O(V )×O(V )

kkkkkkkkkkkkkk

Sp(W )

Then the see-saw identity says that:

HomSp(W )(ΘV,W,ψ(π)⊗Θ−V,W,ψ(π∨),C) ∼= HomO(V )×O(V )(ΘW,V,ψ(1), π ⊗ π∨).

Now note that if c is an element of GSp(W ) with similitude factor −1, then

Θ−V,W,ψ(π∨) = ΘV,W,ψ(π)c,

and for an irreducible representation σ of Mp(W ), σc ∼= σ∨ (cf. [Ku2]). From this, we deduce:

Lemma 3.2. Let π be an irreducible representation of O(V ), then ΘV,W,ψ(π) 6= 0 if and only
if

HomO(V )×O(V )(ΘW,V,ψ(1), π ⊗ π∨) 6= 0.

Similarly, starting from an irreducible representation σ of Mp(W ) and considering the
see-saw diagram



12 WEE TECK GAN AND GORDAN SAVIN

Mp(W)

SSSSSSSSSSSSSSS
O(V )×O(V )

Mp(W )×Mp(W )

llllllllllllll

O(V )

with

W = W + (−W ),

we obtain:

Lemma 3.3. Let σ be an irreducible representation of Mp(W ), then ΘW,V,ψ(σ) 6= 0 if and
only if

HomMp(W )×Mp(W )(ΘV,W,ψ(1), σ ⊗ σ∨) 6= 0.

3.4. Degenerate Principal Series. In order for the non-vanishing criteria given in Lemmas
3.2 and 3.3 to be useful, we need to understand the representations ΘW,V,ψ(1) of O(V) and
ΘV,W,ψ(1) of Mp(W) more precisely. For this, we need to describe some degenerate principal
series representations of O(V) and Mp(W).

Recall that we have the Siegel parabolic subgroup P (V ∆) of O(V), with Levi subgroup
GL(V ∆). For s ∈ C, let

IP (V ∆)(s) := Ind
O(V)

P (V ∆)
|det |s (normalized induction).

Similarly, we have the Siegel parabolic subgroup P̃ (W∆) of Mp(W) with Levi subgroup
GL(W∆) and we set

IP̃ (W∆),ψ(s) := Ind
O(V)

P̃ (W∆)
χψ |̇det |s (normalized induction).

3.5. Theta lifts of trivial representation. We consider the Weil representation ΩW,V,ψ

of O(V) × Sp(W ), which has a Schrodinger model realized on S((V ∆)∗ ⊗W ).The action of
Sp(W ) in this model is geometric:

(g · φ)(a) = φ(g−1 · a) for g ∈ Sp(W ).

There is a natural Sp(W )-invariant and O(V)-equivariant map

f : S((V ∆)∗ ⊗W ) −→ IP (V ∆)(0)

which sends φ to the function

fφ(h) = (h · φ)(0).

Then we have the following proposition due to Kudla-Rallis:

Proposition 3.4. (i) The map f induces an injection

ΘW,V,ψ(1) →֒ IP (V ∆)(0)

of O(V)-modules.

(ii) The representation ΘW,V,ψ(1) is irreducible.



METAPLECTIC GROUPS 13

(iii) One has:

IP (V∆)(0)
∼= ΘW,V,ψ(1)

⊕
ΘW,V,ψ(1)⊗ detO(V).

Similarly, with the Weil representation ΩV,W,ψ of O(V )×Mp(W) realized on S((W∆)∗⊗V ),
there is a natural O(V )-invariant and Mp(W)-equivariant map

f : S((W∆)∗ ⊗ V ) −→ IP (W∆),ψ(0)

which sends φ to the function:

fφ(g) = (ΩV,W,ψ(g)φ)(0).

Then we have the following proposition, which is due to Sweet [Sw] (cf. also [Z] and [GI]):

Proposition 3.5. (i) The map f induces an injection

ΘV,W,ψ(1) →֒ IP (W∆),ψ(0).

(ii) The representation ΘV,W,ψ(1) is irreducible.

(iii) One has

IP (W∆),ψ(0) ∼= ΘV +,W,ψ(1)⊕ΘV −,W,ψ(1).

4. Doubling Zeta Integrals and Epsilon Factors

We maintain the notations of the previous section. Propositions 3.4 and 3.5 imply that we
need to understand the spaces

HomO(V )×O(V )(IP (V ∆)(0), π ⊗ π
∨) and HomMp(W )×Mp(W )(IP (W∆),ψ(0), σ ⊗ σ∨).

The doubling zeta integral allows one to write down a nonzero element in each of these two
spaces.

4.1. Doubling zeta integral. More precisely, for fs ∈ IP (V ∆)(s), v ∈ π and v∨ ∈ π∨, we
define the integral

Z(s, f, v, v∨) =

∫

O(V )
fs(g, 1) · 〈g · v

∨, v〉 dg.

The following theorem ([KR1], [LR]) summarizes the properties of this family of zeta integrals:

Theorem 4.1. (i) There exists a constant c such that whenever Re(s) > c, the integral
Z(s, f, v, v∨) converges for all data fs, v and v∨. If π is tempered, then we may take c = −1.

(ii) If fs is a standard section of IP (V∆)(s), then the function Z(s, f, v, v∨) is a rational

function (when Re(s) > c) and thus admits meromorphic continuation to C.

(iii) For each s0, there exists data f , v and v∨ such that Z(s0, f, v, v
∨) is finite and nonzero.

(iv) There is a non-negative integer k (depending on s0) such that (s− s0)
k · Z(s, f, v, v∨)

is holomorphic at s = s0 and is nonzero there for some choice of data.
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(iv) Let Z∗(s0) denote the leading term in the Laurent expansion of Z(s) as a linear form,
so that

Z∗(s0, f, v, v
∨) =

(
(s − s0)

k · Z(s, f, v, v∨)
)
|s=s0,

then Z∗(s0) is a nonzero element of HomO(V )×O(V )(IP (V ∆)(0) ⊗ π
∨ ⊗ π,C)). In particular,

we see that
HomO(V )×O(V )(IP (V ∆)(0) ⊗ π

∨ ⊗ π,C)) 6= 0.

If π is supercuspidal, one can show that

dim HomO(V )×O(V )(IP (V ∆)(0)⊗ π
∨ ⊗ π,C)) = 1.

Indeed, this multiplicity one result is known to hold for most representations, and is conjec-
tured to hold for all.

One has the analogous results for Mp(W ), which implies:

Proposition 4.2.

HomMp(W )×Mp(W )(IP (W∆),ψ(0) ⊗ σ∨ ⊗ σ,C)) 6= 0.

We omit the details.

4.2. Functional equation and standard epsilon factor. Another important property of
the doubling zeta integral is a local functional equation they satisfy. To describe this, note
that there is a standard intertwining operator

Mψ(s) : IP (V ∆)(s) −→ IP (V ∆)(−s).

This is defined for Re(s) >> 0 by the integral

Mψ(s)(f)(h) =

∫

N(V ∆)
f(wnh) dnψ

and by meromorphic continuation in general, with w = (1,−1) ∈ O(V ) × O(V ). In [LR],
Lapid-Rallis has defined a certain normalization M∗

ψ(s) of Mψ(s) satisfying

M∗
ψ(−s) ◦M∗

ψ(s) = Id.

This implies that M∗
ψ(s) is holomorphic at s = 0 and satisfies

M∗
ψ(0)2 = Id.

In particular, M∗
ψ(0) acts as +1 or −1 on each of the two irreducible summands of IP (V ∆)(0).

We shall determine the precise action of M∗
ψ(0) later on.

Refining the work of Piatetski-Shapiro and Rallis [PSR], Lapid-Rallis [LR] showed that
the local zeta integeral Z(s) satisfies a functional equation of the form

Z(−s,M∗
ψ(s)(f), v, v∨) = ǫ(V ) · π(−1) · γ(s +

1

2
, π, ψ) · Z(s, f, v, v∨),

for some rational function γ(s, π, ψ) (in q−s). Following Lapid-Rallis, we have:

Definition:
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(i) The function γ(s, π, ψ) is called the standard γ-factor of π.

(ii) If π is tempered, we may write

γ(s, π, ψ) = ǫ(s, π, ψ) ·
L(1− s, π∨, ψ)

L(s, π)

where ǫ(s, π, ψ) is a monomial function of q−s and L(s, π)−1 is the numerator of the
rational function γ(s, π, ψ), normalized so that it is a polynomial in q−s with constant
term 1. The function ǫ(s, π, ψ) is called the standard epsilon factor of π and L(s, π)
is the standard L-factor of π.

(iii) If π is non-tempered, we realize π as a Langlands quotient of a standard module and
define ǫ(s, π, ψ) and L(s, π) by multiplicativity.

Lapid-Rallis showed that, with the above definitions, the local factors γ(s, π, ψ), ǫ(s, π, ψ)
and L(s, π) satisfy a number of expected properties which characterize them uniquely. In
particular,

ǫ(1/2, π, ψ) = ±1

is independent of ψ. Hence, we shall simply denote it by ǫ(π).

4.3. Metaplectic case. The analogous theory of the doubling zeta integral for the meta-
plectic groups is obtained in [G]. We record some of the relevant facts in this subsection.

There is a standard intertwining operator

Mψ(s) : IP (W∆),ψ(s) −→ IP (W∆),ψ(−s).

One may normalize this intertwining operator to obtain the normalized operator M∗
ψ(s); this

normalization has been treated in [Sw] and [Z], and satisfies

M∗
ψ(−s) ◦M∗

ψ(s) = Id.

Hence M∗
ψ(s) is holomorphic at s = 0 and satisfies

M∗
ψ(0)2 = Id.

In particular, M∗
ψ(0) acts as +1 or−1 on each of the two irreducible summands of IP (W∆),ψ(0).

The local functional equation of the doubling zeta integral can now be written as:

Z(−s,M∗
ψ(s)(f), v, v∨) = zψ(σ) · γ(s+

1

2
, σ, ψ) · Z(s, f, v, v∨),

for some rational function γ(s, σ, ψ) (in q−s), and where zψ(σ) = ±1 is the central sign of σ.
Following [LR], one can now make the following definition:

Definition:

(i) The function γ(s, σ, ψ) is called the standard γ-factor of σ.

(ii) If σ is tempered, we may write

γ(s, σ, ψ) = ǫ(s, σ, ψ) ·
L(1− s, σ∨, ψ)

L(s, σ, ψ)
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where ǫ(s, σ, ψ) is a monomial function of q−s and L(s, σ, ψ)−1 is the numerator of the
rational function γ(s, σ, ψ), normalized so that it is a polynomial in q−s with constant
term 1. The function ǫ(s, σ, ψ) is called the standard epsilon factor of σ and L(s, σ, ψ)
is the standard L-factor of σ relative to the choice of ψ.

(iii) If σ is non-tempered, we realize σ as a Langlands quotient of a standard module and
define ǫ(s, σ, ψ) and L(s, σ, ψ) by multiplicativity.

In [G], it was checked that the the above definition of γ(s, σ, ψ) satisfies the analog of the
“Ten Commandments” in [LR, Thm. 4] and is uniquely determined by these.

5. Interlude: Results of Waldspurger

Before coming to the main results of this paper, we take a short interlude to recall the
results of Waldspurger [W1,2] in the case dimW = 2 and dimV = 3.

By studying the theta correspondence for Mp(W )×SO(V ) in detail, Waldspurger showed:

Theorem 5.1. Fix an additive character ψ of k.

(i) Given any irreducible representation π of SO(V ), the theta lift θV,W,ψ(π) of π to Mp(W )
is irreducible and nonzero.

(ii) The construction in (i) gives a bijection

Θψ : Irr(SO(V +) ∪ Irr(SO(V −))↔ Irr(Mp(W )).

(iii) π ∈ Irr(SO(V )) is a discrete series (resp. tempered) representation if and only if
Θψ(π) is a discrete series (resp. tempered) representation.

(iv) Via the local Langlands correspondence for SO(V ±), one then has a bijection

Lψ : Irr(Mp(W ))↔ Φ(Mp(W )).

The above theorem says that:

(a) given π ∈ Irr(SO(V )), exactly one extension πǫ of π to O(V ) participates in the theta
correspondence with Mp(W );

(b) given σ ∈ Irr(Mp(W )), σ participates in theta correspondence with exactly one of
O(V +) or O(V −).

As a refinement of the above two statements, Waldspurger showed:

Theorem 5.2. (i) Given π ∈ Irr(SO(V )), πǫ participates in theta correspondence with
Mp(W ) if and only if

ǫ = ǫ(V ) · ǫ(1/2, π).

(ii) Given σ ∈ Irr(Mp(W )), σ participates in theta correspondence with O(V ) if and only
if

zψ(σ) = ǫ(V ) · ǫ(1/2,Θψ(σ)) = ǫ(V ) · ǫ(1/2,Lψ(σ)).
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Indeed, the two statements in the theorem are equivalent, and what Waldspurger showed is
the statement (ii). The statement (ii) also has the following implication. If π ∈ Irr(SO(V +))
has L-parameter φ and Jacquet-Langlands lift π′ ∈ Irr(SO(V −)) (if it exists), then the L-
packet associated to φ is

Lψ,φ = {Θψ(π),Θψ(JL(π))}.

The statement (ii) implies that the elements in Lψ,φ have different central characters.

It is instructive to examine the following example:

Example: Let StV + be the Steinberg representation of SO(V +), so that its Jacquet-Langlands
lift is the trivial representation 1V − of SO(V −). In this case, one knows that

ǫ(1/2,StV +) = ǫ(1/2, 1V −) = −1.

Thus, the extensions St−
V + and 1+

V −
participate in the theta correspondence woith Mp(W ).

Moreover, one has

Θψ(StV +) = ωoψ and Θψ(1V −) = Stψ

where ωoψ is the odd Weil representation of Mp(W ) associated to ψ and Stψ is the Steinberg

representation of Mp(W ) associated to ψ. The representation Stψ sits in a short exact
sequence

0 −−−−→ Stψ −−−−→ IB,ψ(| − |1/2) −−−−→ ωeψ −−−−→ 0

with ωeψ denoting the even Weil representation associated to ψ.

The decomposition

Irr(Mp(W )) =
⊔

φ

Lψ,φ

is a canonical decomposition, in the sense that it is independent of ψ. However, the labelling
of the packets by L-parameters φ depends on ψ, and so does the labelling of the representa-
tions in each packet by the characters of the component group A(φ). Finally, Waldspurger
determined how this dependence varies with ψ.

Theorem 5.3. For a ∈ k×, let ψa denote the additive character given by ψa(x) = ψ(ax) and
let χa be the quadratic character associated to the class of a ∈ k×/k×2. Suppose that

Lψ(σ) = (φ, η) and Lψa
(σ) = (φa, ηa).

Then

φa = φ⊗ χa

and

ηa/η = ǫ(1/2, φ ⊗ χa) · ǫ(1/2, φ) · χa(−1).

The purpose of this paper is to extend Theorems 5.1, 5.2 and 5.3 to the case of higher rank
(when dimV = 2n+ 1).
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6. The Local Langlands Correspondence for Mp2n

The goal of this section is to prove Theorem 1.1. The proof of this theorem was sketched
in [GGP], with the key step being the following special case of more general results of Kudla-
Rallis [KR2]:

Theorem 6.1. Let σ be an irreducible (genuine) representation of Mp(W ). Then at most
one of ΘW,V+,ψ(σ) or ΘW,V −,ψ(σ) is nonzero.

Corollary 6.2. For σ ∈ Irr(Mp(W )), exactly one of ΘW,V +,ψ(σ) or ΘW,V −,ψ(σ) is nonzero.

Proof. Given σ ∈ Irr(Mp(W )), Lemma 3.3, Prop. 3.5(iii) and Prop. 4.2 imply that at least
one of ΘW,V +,ψ(σ) or ΘW,V −,ψ(σ) is nonzero. Thus the corollary follows by Thm. 6.1. �

When p is odd, the small theta lift θW,V ǫ,ψ(σ) is irreducible or zero. Thus, the corollary
implies that one has an injective map

Irr(Mp(W )) −→ Irr(O(V +)) ⊔ Irr(O(V −)).

By restriction of representations of O(V ) to SO(V ), one obtains a map (not necessarily
injective at this point)

Θψ : Irr(Mp(W )) −→ Irr(SO(V +)) ⊔ Irr(SO(V −)).

We need to show that the map Θψ is bijective. For this, we note:

Proposition 6.3. Given π ∈ Irr(O(V )), with extensions π± to O(V ), at most one of
ΘV,W,ψ(π±) is nonzero.

Proof. Suppose on the contrary that π± both participate in theta correspondence with
Mp(W ), say

σ+ = θV,W,ψ(π+) and σ− = θV,W,ψ(π−).

Observe also that
π− = π+ ⊗ det .

Now consider the doubling seesaw diagram:

Mp(W + (−W ))

IIIIIIIIIIIIIIIIIIII
O(V )×O(V )

Mp(W )×Mp(W )

uuuuuuuuuuuuuuuuuuuu

O(V ).

The seesaw identity implies that

HomMp(W )×Mp(W )(ΘV,W+(−W ),ψ(det), σ+
⊠ (σ−)∨) ⊃ HomO(V )(π

+ ⊗ (π−)∨,det) 6= 0.

This implies that
ΘV,W+(−W ),ψ(det) 6= 0.
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However, a classical result of Rallis [R, Appendix] says that the determinant character of
O(V ) does not participate in the theta correspondence with Mp(4r) for r ≤ n. This gives
the desired contradiction and the proposition is proved. �

Corollary 6.4. Given π ∈ Irr(SO(V )), with extensions π± to O(V ), exactly one of ΘV,W,ψ(π±)
is nonzero.

Proof. By Lemma 3.2, Prop. 3.4(iii) and Thm. 4.1(iv), we see that at least one of ΘV,W,ψ(π±)
is nonzero. Thus the corollary follows by Prop. 6.3. �

This corollary implies that the map Θψ is bijective (when p is odd). Thm. 1.1 is proved.

Remarks: The only reason for the assumption of odd residue characteristic in Theorem 1.1
and its proof is that Howe’s conjecture for local theta correspondence is only known under
this assumption.

7. Theta Dichotomy and Epsilon Factor

In this section, we shall prove Thm. 1.4, which we restate here for ease of reference:

Theorem 7.1. (i) Let π be an irreducible representation of SO(V ). Then πǫ participates in
theta correspondence (with respect to ψ) with Mp(W ) if and only if

ǫ = ǫ(V ) · ǫ(1/2, π).

(ii) Let σ be an irreducible representation of Mp(W ). Then σ has nonzero theta lift (with
respect to ψ) to O(V ) if and only if the central sign of σ satisfies:

zψ(σ) := ωσ(−1)/χψ(−1) = ǫ(V ) · ǫ(1/2, σ, ψ) = ǫ(V ) · ǫ(1/2,Θψ(σ)).

This theorem refines the results of Cors. 6.2 and 6.4. Moreover, we do not need to assume
that p is odd here.

We first prove statement (i) in the theorem. Assume first that π ∈ Irr(SO(V )) is tempered.
Then the doubling zeta integral Z(s, f, v, v∨) is holomorphic at s = 0 for any v ∈ π and
v∨ ∈ π∨, and f ∈ IP (V∆)(0). Moreover,

0 6= Z(0) ∈ HomO(V )×O(V )(IP (V ∆)(0)⊗ π
ǫ ⊗ (πǫ)∨,C).

We need to determine whether Z(0) is nonzero when restricted to the irreducible submodule
ΘW,V,ψ(1). For this, we take note of the local functional equation

Z(−s,M∗
ψ(s)(f), v, v∨) = ǫ(V ) · πǫ(−1) · γ(s+

1

2
, π, ψ) · Z(s, f, v, v∨).

Specializing to s = 0, and noting that πǫ(−1) = ǫ, one obtains:

Z(0) ◦M∗
ψ(0) = ǫ(V ) · ǫ · γ(1/2, π, ψ) · Z(0).

Since the central L-value L(1/2, π) is finite when π is tempered, we see that γ(1/2, π, ψ) =
ǫ(1/2, π, ψ), so that the local functional equation reads:

Z(0) ◦M∗
ψ(0) = ǫ(V ) · ǫ · ǫ(1/2, π, ψ) · Z(0).
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Now we have the following crucial Lemma 7.2, which implies that Z(0) is nonzero when
restricted to ΘW,V,ψ(1) if and only if

ǫ(V ) · ǫ · ǫ(1/2, π, ψ) = 1.

Hence, assuming Lemma 7.2 for the moment, we see that πǫ participates in theta correspon-
dence with Mp(W ) if and only if

ǫ = ǫ(V ) · ǫ(1/2, π).

This proves Thm. 7.1(i) for tempered π’s.

We shall now prove:

Lemma 7.2. The normalized intertwining operator M∗
ψ(0) acts as +1 on ΘW,V,ψ(1) and as

−1 on ΘW,V,ψ(1)⊗ detO(V).

Proof. We first claim that M∗
ψ(0) acts by opposite signs on the two irreducible summands

ΘW,V,ψ(1) and ΘW,V,ψ(1) ⊗ detO(V). Indeed, if f lies in ΘW,V,ψ(1), then the function f ′ =
f · detO(V) lies in ΘW,V,ψ(1)⊗ detO(V). Now, for Re(s) >> 0, we have

Mψ(s)(f ′)(g) =

∫

N(V ∆)
f ′(wng) dnψ =

∫

N(V ∆)
f(wng) · detO(V)(wng) dnψ ,

where
w = (−1, 1) ∈ O(V )×O(V ) ⊂ O(V).

Since det(w) = −1, we see that

Mψ(s)(f ′) = −Mψ(s)(f) · detO(V),

which proves our claim.

Now we can complete the proof of the lemma in two different ways. For the first proof, one
computes the effect of Mψ(s) on the spherical vector f0 by the Gindikin-Karpelevich formula.
Taking into account the normalizing factor in M∗

ψ(s), one then sees that

M∗
ψ(0)(f0) = f0,

so that M∗
ψ(0) acts as +1 on ΘW,V,ψ(1) and as −1 on ΘW,V,ψ(1)⊗ detO(V).

For the second proof, we exploit the theta correspondence to come to the same conclu-
sion. More precisely, we shall see that by Kudla’s cuspidal support theorem ([Ku, Thm 2.5]
and [Ku2, Thms. 7.1 and 7.2]), almost all unramified tempered representations of O(V +)
participate in theta correspondence with Mp(W ). In other words, for almost all unramified
tempered representations π of SO(V +), the extension of π which has nonzero theta lift to
Mp(W ) is π+.

To see this, consider an unramified irreducible representation π = IB(χ1, ..., χn) of SO(V +)
induced from an unramified character χ1 × .... × χn of the Borel subgroup B. For its two
extensions πǫ to O(V +), the cuspidal support of the resulting representation πǫ is (ǫ, χ1, ..., χn)
with ǫ = ± regarded as a representation of O(1). By Kudla’s cuspidal support theorem
([Ku, Thm 2.5] and [Ku2, Thms. 7.1 and 7.2]), the theta lift of πǫ to Mp(W ) (if nonzero)
has cuspidal support depending on the first occurrence of the representation ǫ of O(1). If
ǫ = +, then its first occurrence is Mp(0) = {1} (by convention), and so if ΘV +,W,ψ(π+) 6= 0,
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it has cuspidal support (χ1, ..., χn). On the other hand, if ǫ = −, its first occurrence is
Mp(2), where its theta lift there is an odd Weil representation ωoψ, which is supercuspidal. If

ΘV +,W,ψ(π−) 6= 0, then we must have (without loss of generality) χ1 = χ| − |±1/2, with χ a
quadratic character, and the cuspidal support of ΘV +,W,ψ(π−) would be (ωoψ, χ2, ..., χn). In
particular, in this case, χ1 is not unitary.

Now if the χi’s are unitary, the second option cannot happen. Moreover, for almost all
unramified unitary χi’s, π = IB(χ1, ..., χn) is irreducible. Thus, for such unramified tempered
π’s, the first option must happen, i.e. ΘV +,W,ψ(π+) 6= 0, since we already know that exactly

one of π+ or π− has nonzero theta lift to Mp(W ).

Hence, when we consider the doubling zeta integral for associated to such π+’s, the linear
functional Z(0) is nonzero when restricted to ΘW,V,ψ(1) ⊗ π+ ⊗ (π+)∨. Now examine the
local functional equation:

Z(0) ◦M∗
ψ(0) = ǫ(V +) · ǫ(1/2, π, ψ) · Z(0).

Since ǫ(V +) = 1 = ǫ(1/2, π) for unramified π, we conclude from the local functional equation
that M∗

ψ(0) acts as +1 on ΘW,V,ψ(1). �

When π is non-tempered, we may express π as the unique irreducible submodule of an
induced representation

IP (τ1|det |−s1, τ2|det |−s2, ..., τr |det |−sr , π0)

where the τi’s are unitary discrete series representations of GL(ki), π0 is a tempered repre-
sentation of O(V0) (with n = k1 + ...+ kr +m) and the numbers si’s satisfy

s1 ≥ s2 ≥ ... ≥ sr > 0.

Then for ǫ = ±, we have

πǫ →֒ IP (τ1|det |−s1 , τ2|det |−s2, ..., τr |det |−sr , πǫ00 )

with

ǫ = ǫ0 ·
r∏

i=1

τi(−1).

Moreover, by multiplicativity of standard epsilon factors [LR],

ǫ(1/2, π, ψ) = ǫ(1/2, π0, ψ) ·

r∏

i=1

τi(−1).

In view of the facts that ǫ(V ) = ǫ(V0) and that the theorem has been proven for π0, it remains
to show that

ΘV,W,ψ(πǫ) 6= 0 =⇒ ΘV0,W0,ψ(πǫ00 ) 6= 0,

where dimV0 = dimW0 + 1.

First note that by induction in stages,

πǫ →֒ IP (Yk)(τ |det |−s, πǫ11 )
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where s > 0, τ is a unitary discrete series representation of GL(Yk) and πǫ11 is an irreducible
representation of O(Vn−k) with ǫ = ǫ1 · τ(−1). Now we have

0 6= ΘV,W,ψ(πǫ)∗ = HomO(V )(ΩV,W,ψ, π
ǫ) →֒ HomO(V )(ΩV,W,ψ, IP (Yk)(τ |det |−s, πǫ11 ))

= HomM(Yk)(RP (Yk)(ΩV,W,ψ), τ |det |−s ⊠ πǫ11 )

where RP (Yk) denotes the normalized Jacquet functor with respect to the parabolic P (Yk)
with Levi subgroup M(Yk) = GL(Yk)×O(Vn−k).

Now the normalized Jacquet module RP (Yk)(ΩV,W,ψ) has been computed by Kudla [K,
Thm. 2.8]:

Proposition 7.3. The normalized Jacquet module RP (Yk)(ΩV,W,ψ) has a M(Yk) ×Mp(W )-
invariant filtration

0 ⊂ Rk ⊂ ..... ⊂ R1 ⊂ R0 = RP (Yk)(ΩV,W,ψ),

with successive quotient (for 0 ≤ r ≤ k) given by:

Jr := Rr/Rr+1 ∼= Ind
GL(Yk)×O(Vn−k)×Mp(W )
Q(Yk−r ,Yk)×O(Vn−k)×P (Xr)S(Isom(Y ′

r ,Xr))⊗ΩVn−k ,Wn−r,ψ.

Here, we have:

(a) Q(Yk−r, Yk) is the maximal parabolic subgroup of GL(Yk) which stabilizes the flag

0 ⊂ Yk−r ⊂ Yk,

so that its Levi subgroup is GL(Yk−r)×GL(Y ′
r ) with Y ′

r = 〈vk−r+1, ..., vk〉;

(b) Isom(Y ′
r ,Xr) is the set of invertible linear maps from Y ′

r to Xr and S(Isom(Y ′
r ,Xr))

is the space of locally constant compactly supported functions on Isom(Y ′
r ,Xr);

(c) the action of GL(Yk−r)×GL(Y ′
r )×O(Vn−k)×GL(Xr)×Mp(Wn−r) on S(Isom(Y ′

r ,Xr))⊗
ΩVn−k,Wn−r,ψ is given by:

(i) GL(Yk−r) acts by the character |detYk−r
|

k−r

2 ;
(ii) (b, c) ∈ GL(Y ′

r )×GL(Xr) acts on S(Isom(Y ′
r ,Xr)) by

(b, c)ϕ(t) = ϕ(c−1tb),

so that if we identify GL(Y ′
r ) and GL(Xr) with GL(r) by the given bases on

Y ′
r and Xr, then this is simply the regular representation of GL(r) × GL(r) on
S(GL(r));

(iii) O(Vn−k)×Mp(Wn−r) acts on ΩVn−k ,Wn−r,ψ by the Weil representation associated
to these data.

In particular, the bottom piece of the filtration is:

Rk = Ind
GL(Yk)×O(Vn−k)×Mp(W )
GL(Yk)×O(Vn−k)×P (Xk) S(Isom(Y ′

k,Xk))⊗ ΩVn−k,Wn−k,ψ.

Using the notations in the above proposition, we have:
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Lemma 7.4. Suppose that

HomM(Yk)(RP (Yk)(ΩV,W,ψ), τ |det |−s ⊠ πǫ11 ) 6= 0

with s ≥ 0 and τ a unitary discrete series representation of GL(Yk). Then for r < k,

HomM(Yk)(J
r, τ |det |−s ⊠ πǫ11 ) = 0,

so that
HomM(Yk)(R

k, τ |det |−s ⊠ πǫ11 ) 6= 0.

In particular,
HomO(Vn−k)(ΩVn−k,Wn−k,ψ, π

ǫ1
1 ) 6= 0.

Proof. Assume that r < k and write Q = Q(Yk−r, Yk) for ease of notations. Then

HomM(Yk)(J
r, τ |det |−s ⊠ πǫ11 ) =

= HomGL(Yk−r)×GL(Y ′

r )×O(Vn−k ,Wn−r)(S(Isom(Y ′
r ,Xr))⊗ ΩVn−k,Wn−r

, |detYk
|−s ·RQ(τ) ⊠ πǫ11 ).

Now since τ is a unitary discrete series representation, RQ(τ) is an irreducible discrete series

representation |det |t1τ1 ⊠ |det |t2τ2, with τi unitary and ti ∈ R satisfying:

t1 < t2 and t1 · (k − r) + t2 · r = 0.

In particular, we must have
t1 ≤ 0.

Thus, on |detYk
|−s ·RQ(τ), the center of GL(Yk−r) acts by the character |det |−s+t1 (up to a

unitary character), whereas on S(Isom(Y ′
r ,Xr))⊗ΩVn−k ,Wn−r

, GL(Yk−r) acts by |det |(k−r)/2

by Prop. 7.3. Since
−s+ t1 ≤ 0 and k − r > 0,

we deduce that the above Hom space must be 0. �

Using this lemma, we deduce inductively that since

0 6= ΘV,W,ψ(πǫ) ⊂ HomO(V )(ΩV,W,ψ, IP (τ1|det |−s1 , τ2|det |−s2 , ..., τr|det |−sr , π0)),

we have
HomO(V0)(ΩV0,W0,ψ, π

ǫ0
0 ) 6= 0,

so that ΘV0,W0,ψ(πǫ00 ) 6= 0, as desired.

We have thus completed the proof of Thm. 7.1(i). This also allows us to deduce one of
the equalities in Thm. 7.1(ii). Indeed, from the definition of the Weil representation given
in (3.1), one sees that the action of −1 ∈ O(V ) on ΩV,W,ψ differs from that of the central
element (−1, 1) ∈ Mp(W ) by χψ(−1). Thus, if Θψ(σ) = π ∈ Irr(SO(V )), then the result of
(i) implies that the central element (−1, 1) ∈ Mp(W ) must act on σ by

χψ(−1) · ǫ(V ) · ǫ(1/2, π).

Thus, the central sign of σ is

zψ(σ) = ǫ(V ) · ǫ(1/2, π) = ǫ(V ) · ǫ(1/2,Θψ(σ)).

Thus we have established the analog of Waldspurger’s Thm. 5.2.
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To complete the proof of Thm. 7.1(ii), we need to show that

zψ(σ) = ǫ(V ) · ǫ(1/2, σ, ψ).

This is equivalent to ǫ(1/2, σ, ψ) = ǫ(1/2,Θψ(σ)), which is itself a consequence of the identity
ǫ(s, σ, ψ) = ǫ(s,Θψ(σ), ψ) which we will show in §11.

However, we could also give a proof of the desired displayed identity by an argument
analogous to that for (i). Such a proof of this result has been given by Zorn [Z], though the
notion of epsilon factors ǫ(s, σ, ψ) used in his paper differs from ours. More precisely, his
definition of the standard L-factors and epsilon factors for Mp(W ) is based on the approach
of “good sections”. The problem with such an approach is that one does not know how to
show that these local factors are multiplicative when they should be.

In any case, let us give a sketch of the proof of the remaining part of (ii) here: it is merely
a mirror reflection of the argument of (i). Assume first that σ is tempered. In this case,
the doubling zeta integral Z(s) for Mp(W )×µ2

Mp(W ) ⊂ Mp(W + (−W )) is holomorphic at
s = 0 and so is the local L-factor L(s, σ, ψ). Moreover, we know that ΘW,V,ψ(σ) 6= 0 if and
only if the linear form

Z(0) : IP̃ (W∆)(0)⊗ σ
∨ ⊗ σ −→ C

is nonzero when restricted to the submodule ΘV,W,ψ(1). On the other hand, the local func-
tional equation of the doubling zeta integral reads:

Z(0) ◦M∗
ψ(0) = zψ(σ) · ǫ(1/2, σ, ψ) · Z(0).

Now suppose thatM∗
ψ(0) acts by the sign αǫ = ±1 on the submodule ΘV ǫ,W,ψ(1) of IP̃ (W∆)(0).

Then the local functional equation shows that

ΘW,V ǫ,ψ(σ) 6= 0⇐⇒ αǫ = zψ(σ) · ǫ(1/2, σ, ψ).

Hence, it remains to show the following analog of Lemma 7.2:

Lemma 7.5. The normalized intertwining operator Mψ(0)∗ acts by +1 on ΘV +,W,ψ(1) and
by −1 on ΘV −,W,ψ(1).

Proof. When p is odd, this was shown by Zorn [Z], who proved a Gindikin-Karpelevich type
formula by direct computation. However, one can give a proof which works for all p by
making use of information from the theta correspondence, based on our discussion before the
lemma.

More precisely, to show that αǫ = ǫ, it suffices to find a representation σ of Mp(W ) which
participates in theta correspondence with O(V ǫ) and verify for this σ that

ǫ = zψ(σ) · ǫ(1/2, σ, ψ).

When ǫ = +1, one simply takes
σ = IB,ψ(χ1, ...χn)

where B is a Borel subgroup of Mp(W ) and each χi is an unramified unitary character of
k×. For generic choices of χi, we know by Kudla’ cuspidal support theorem that such a σ
participates in theta correspondence with O(V +), and it follows by multiplicativity that

zψ(σ) = ǫ(1/2, σ, ψ) = 1.
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When ǫ = −1, one takes

σ = IP,ψ(χ1, ...χn−1,Stψ)

where P is a parabolic subgroup with Levi factor (GL1)
n−1 ×Mp2, each χi is an unramified

unitary character of k× and Stψ is the Steinberg representation of Mp2(k) with respect to ψ
(see the example in §5). For generic choices of χi, one knows by Kudla’s cuspidal support
theorem ([Ku, Thm. 2.5] and [Ku2, Thms. 7.1 and 7.2]) and the example in §5 that σ
participates in theta correspondence with O(V −) and

Θψ,V −,W (σ) = IQ(χ1, ..., χn−1, 1O(V −

1 )),

where Q is the parabolic subgroup of SO(V −) with Levi factor (GL1)
n−1×SO(V −

1 ). Further,
it is easy to check that

zψ(σ) = 1 and ǫ(1/2, σ, ψ) = −1.

This proves the lemma. �

Together with the local functional equation, the lemma implies immediately that Z(0) is
non-zero on ΘV,W,ψ(1) if and only if

ǫ(V ) = zψ(σ) · ǫ(1/2, σ, ψ),

thus proving (ii) when σ is tempered.

Suppose now that σ is non-tempered. Then by [BJ, Thm. 4.1],

σ →֒ IP̃ ,ψ(τ1| − |
−s1, ..., τr | − |

−sr ;σ0)

where τi is a unitary discrete series representation of GL(ki), σ0 is a tempered representation
of Mp(W0) and

s1 ≥ s2 ≥ ... ≥ sr > 0.

Moreover, the central signs of σ and σ0 are related by

zψ(σ) = zψ(σ0) ·
r∏

i=1

τi(−1).

Similarly, by multiplicativity, the epsilon factor satisfies

ǫ(1/2, σ, ψ) = ǫ(1/2, σ0, ψ) ·
r∏

i=1

τi(−1).

Since we already know the desired result for the tempered representation σ0, it remains to
show that

ΘW,V,ψ(σ) 6= 0 =⇒ ΘW0,V0,ψ(σ0) 6= 0,

where dimV0 = dimW0 + 1. For this, the argument proceeds by a Jacquet module computa-
tion, analogous to the proof of (i); we omit the details.
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8. Discrete Series and Langlands Data

The purpose of this section is to prove Theorem 1.3(i)-(iii). We first show the following
crucial result about the theta correspondence, which holds for all primes p.

Theorem 8.1. Let π ∈ Irr(O(V )) and suppose that its big theta lift Θψ,V,W (π) on Mp(W )
is nonzero.

(i) If π is a discrete series representation, then Θψ,V,W (π) is a direct sum of irreducible
discrete series representations of Mp(W ). In particular, when p 6= 2, Θψ,V,W (π) = θψ,V,W (π)
is an irreducible discrete series representation.

(ii) Let π ∈ Irr(O(V )) be tempered and suppose that

π ⊂ IQ(τ1, ..., τr, π0),

where Q is a parabolic subgroup of O(V ) with Levi subgroup GLn1
×...×GLnr

×O(V0), the τi’s
are unitary discrete series representations of GLni

, and π0 is a discrete series representation
of O(V0). Then

Θψ,V,W (π) ⊂ IP̃ (τ1, ..., τr,Θψ,V0,W0
(π0)),

where P̃ is the parabolic subgroup of Mp(W ) with Levi subgroup G̃Ln1
×µ2

... ×µ2
G̃Lnr

×
Mp(W0). In particular, Θψ,V,W (π) is a direct sum of irreducible tempered representations,
and when p 6= 2, Θψ,V,W (π) = θψ,V,W (π) is irreducible.

(iii) More generally, suppose that

π = JQ(τ1|det |s1 , ..., τr|det |sr , π0), s1 > s2 > .... > sr > 0

is a Langlands quotient of O(V ), where Q is as in (ii), the τi’s are unitary tempered repre-
sentations of GLni

, and π0 is a tempered representation of O(V0). Then

IP̃ (τ1|det |s1 , ..., τr|det |sr ,Θψ,V0,W0
(π0)) ։ Θψ,V,W (π).

where P̃ is the parabolic subgroup of Mp(W ) with Levi subgroup G̃Ln1
×µ2

... ×µ2
G̃Lnr

×
Mp(W0). In particular, when p 6= 2, θψ,V,W (π) is the unique Langlands quotient of the
standard module IP̃ (τ1|det |s1, ..., τr|det |sr , θψ,V0,W0

(π0))

The analogous assertions in (i), (ii) and (iii) hold if one starts with σ ∈ Irr(Mp(W )) and
considers its big theta lift Θψ,V,W (σ).

Proof. The proof of this follows that of an analogous theorem of Muić [M, Thm. 4.1], but
with significant simplifications. Before going to the proof, let us note a lemma which will be
frequently used in the proof and is a direct consequence of the Casselman square-integrability
criterion (see [BJ, Thm 3.4] for the case of covering groups).

Lemma 8.2. Let π be a discrete series representation of O(V ) and let Q = Q(Yt) be a
maximal parabolic subgroup of O(V ) with Levi factor GL(Yt) × O(V0). On any irreducible
constituent of the normalized Jacquet module RQ(π), the center of GL(Yt) acts by a character
of the form χ · | − |α where χ is unitary and α > 0.

The analogous result holds for discrete series representations of Mp(W ).
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(i) Pick any Mp(W )-equivariant filtration

0 ⊂ Σr ⊂ Σr−1 ⊂ ... ⊂ Σ1 = Θψ,V,W (π)

whose successive quotients

Πi = Σi/Σi+1

are irreducible. We shall argue by contradiction that each of these successive quotients is
square-integrable. By Casselman’s square-integrability criterion [BJ, Thm. 3.4], this will
show that the representation Θψ,V,W (π) is itself square-integrable, and thus is semisimple.
Indeed, it is a basic result of Harish-Chandra that the irreducible discrete series representa-
tions are projective objects in the category of admissible tempered representations.

Suppose then that k is the smallest index such that Πk = Σk/Σk+1 is non-square-integrable.
Then one has

Πk →֒ IP̃ (Xt),ψ
(τ |detXt

|−s, σ0)

where τ is a unitary discrete series representation of GL(Xt), s ≥ 0 and π0 is an irreducible
representation of Mp(W0). Here, dimW0 + 2t = dimW . To ease notation, let us write P in

place of P̃ (Xt). Then by Frobenius reciprocity, one has

RP (Πk) ։ τ |det |−s ⊠ σ0.

Now by the exactness of Jacquet modules, one has

0 ⊂ RP (Σr) ⊂ .... ⊂ RP (Σ1)

with

RP (Σi)/RP (Σi+1) = RP (Πi).

Thus one obtains a short exact sequence of representations of GL(Xt)×Mp(W0):

0 −−−−→ τ |det |−s ⊠ σ0 −−−−→ A −−−−→ B −−−−→ 0

where A is a quotient of RP (Θψ,V,W (π)) and B is a finite length representation equipped
with a filtration with successive quotients RP (Πi) for i < k. Now the key observation is that
this short exact sequence splits.

To see this, note that for i < k, each Πi is square-integrable by assumption. Lemma 8.2
implies that on each irreducible constituent of RP (Πi) (i < k), the center of GL(Xt) acts by
a character of the form χ · | − |α with α > 0 and χ unitary. Since the center of GL(Xt) acts
on τ |det |−s ⊠ σ0 by | − |−st (up to a unitary character), we conclude that the above short
exact sequence splits, so that one has a nonzero map

RP (Θψ,V,W (π)) −→ τ |det |−s ⊠ σ0.

By Frobenius reciprocity, one obtains a nonzero map

Ωψ,V,W ։ π ⊠ Θψ,V,W (π) −→ π ⊠ IP (τ |det |−s, σ0),

so that

π∗ →֒ HomMp(W )(Ωψ,V,W , IP (τ |det |−s, σ0)) = HomGL(Xt)×Mp(W0)(RP (Ωψ,V,W ), τ |det |−s⊠σ0),
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where π∗ denotes the full linear dual of π. By the analogs of Prop. 7.3 and Lemma 7.4 (with
the roles of O(V ) and Mp(W ) exchanged), one concludes that

HomGL(Xt)×Mp(W0)(RP (Ωψ,V,W ), τ |det |−s ⊠ σ0) = IQ(Yt)(τ
∨|detYt

|s,Θψ,V0,W0
(σ0))

∗.

Thus, one has

π∨ →֒ IQ(Yt)(τ |detYt
|−s,Θψ,V0,W0

(σ0)
∨),

so that there is a nonzero map

RQ(Yt)(π
∨) ։ τ |detYt

|−s ⊠ π0

for some irreducible representation π0 of O(V0) and with s ≥ 0. Since π and hence π∨ are
square-integrable by assumption, this contradicts Lemma 8.2. With this contradiction, (i) is
proved.

(ii) Suppose that

π ⊂ IQ(τ1, ..., τr, π0)

is tempered, as in the statement of (ii). Using Proposition 7.3 and Lemma 7.4 and arguing
as in (i), one sees that

IP̃ (τ1, ..., τr,Θψ(πǫ00 )) ։ Θψ,V,W (πǫ).

By (i), Θψ(π0) is a direct sum of irreducible discrete series representations. This proves (ii).

(iii) This is similar to (ii). Suppose that

π = JQ(τ1|det |s1 , ..., τr|det |sr , π0), s1 > s2 > .... > sr > 0.

Then

π →֒ IP (τ∨1 |det |−s1, τ∨2 |det |−s2, ..., τ∨r |det |−sr , π0).

Using Proposition 7.3 and Lemma 7.4, one sees that

IP̃ (τ1|det |s1, ..., τr |det |sr ,Θψ(π0)) ։ Θψ,V,W (πǫ).

This proves (iii).
�

The above theorem implies Theorem 1.3(i), (ii) and (iii). We recall that the equality of
formal degrees described in Theorem 1.3(iv) is one of the main results of [GI] (with an input
from [GS2]); we do not prove (iv) in this paper.

Remarks: When p 6= 2, a different proof of the fact that π ∈ Irr(SO(V )) is discrete series if
and only if σ = θψ,V,W (π) ∈ Irr(Mp(W )) is discrete series can be found in [GI]. However, the
proof in [GI] does not show the equality

Θψ,V,W (π) = θψ,V,W (π),

when π is discrete series. This equality is necessary to establish the results in Theorem 8.1(ii)
and (iii).

We also note the following corollary:
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Corollary 8.3. Suppose that τ1,...,τr are discrete series representations of GLni
, and π0 and

σ0 = Θψ(π0) are discrete series representations of SO(V0) and Mp(W0) respectively. Then,
when p 6= 2, the induced representations IQ(τ1, ..., τr , π0) and IP,ψ(τ1, ..., τr, σ0) have the same
number of irreducible summands (up to equivalence and ignoring multiplicities).

Proof. This is an immediate consequence of Thm 8.1(ii). �

9. Generic Representations

In this section, we study how the bijection Θψ treats the subset of generic representations.
In particular, we prove Theorem 1.3(v).

Let U be the unipotent radical of a Borel subgroup B = T · U of SO(V +) and let λ be
any generic character of U . Any two such generic characters are in the same orbit under the
adjoint action of the maximal torus T , so the choice of λ is not important. By definition, a
representation π of SO(V +) is generic if HomU (π, λ) 6= 0.

Similarly, let U ′ be the unipotent radical of a Borel subgroup B̃′ = T̃ ′ · U ′ of Mp(W ).
The T ′-orbits of generic characters of U ′ are naturally indexed by non-trivial characters of k
modulo the action of k×2 (see [GGP, §12]). Thus the additive character ψ of k gives rise to a
T ′-orbit of generic characters λ′ψ of U ′. A representation σ of Mp(W ) is said to be ψ-generic

if HomU ′(σ, λ′ψ) 6= 0.

The following is Theorem 1.3(iv):

Theorem 9.1. If π is a generic representation of SO(V +), then σ = Θψ(π) is a ψ-generic
representation of Mp(W ). If σ is ψ-generic and tempered, then π is generic.

The theorem is a consequence of the computation of the Whittaker modules of the Weil
representation Ωψ,V,W :

Proposition 9.2. Using the above notations,

(ΩV +,W,ψ)U,λ ∼= ind
Mp(W )
U ′ λ′ψ.

Proof. See [MS1] and [Fu] for an analogous computation. We omit the details. �

Note that the above proposition uniquely specifies the T ′-orbit of λ′ψ without recourse to

[GGP, §12]. The following corollary of Proposition 9.2 establishes Theorem 1.3(iv).

Corollary 9.3. Suppose that p is odd.

(i) Let π ∈ Irr(SO(V +) be generic. Then σ = Θψ(π) is ψ-generic.

(ii) Let σ ∈ Irr(Mp(W )) be ψ-generic. Then the big theta lift Θψ,V,W (σ) of σ to O(V +) has
a unique generic constituent. In particular, if σ is tempered, then π = Θψ(σ) is generic.

Remark: In (ii) above, it is not true that if σ ∈ Irr(Mp(W )) is ψ-generic, then π = Θψ(σ)
is generic. Indeed, a counterexample can already be found when n = 1. In that case, if
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σ = ωeψ is the even Weil representation of Mp(W ) associated to ψ, then σ is ψ-generic, but

π = Θψ(σ) is the trivial representation of SO(V +) ∼= PGL2(k).

Consider now the dual pair
SO(V +

n )×Mp(Wn−1),

and the associated Weil representation ΩV +
n ,Wn−1,ψ

. By a computation similar to the proof

of Proposition 9.2, one has:

Proposition 9.4. As a representation of Mp(Wn−1),

(ΩV +
n ,Wn−1,ψ

)U,λ = 0.

Corollary 9.5. If π is a generic representation of SO(V +), then π does not participate
in the theta correspondence with Mp(Wn−1) = Mp2n−2. In particular, if π is generic and
supercuspidal, then ΘV +,W,ψ(π) is an irreducible supercuspidal ψ-generic representation of
Mp(W ).

10. Plancherel Measures

In this section, we shall see that the bijection Θψ respects a family of invariants known as
the Plancherel measures attached to representations of SO(V )×GLr and Mp(W )×GLr, thus
establishing Theorem 1.3(vi). We begin by recalling the definition of the Plancherel measure.
For the basic properties of Plancherel measures that will be used this section, we refer the
reader to [GI, Appendix B].

Suppose that π is an irreducible representation of SO(V ) and ρ is an irreducible represen-
tation of GLr. Since Lr = SO(V ) × GLr is a Levi subgroup of a parabolic Qr = Lr · Ur of
SO(Vn+r), one has the induced representation

IQr
(s, π ⊠ ρ) = IQr

(|detGLr
|s, π ⊠ ρ).

If Q̄r = Lr · Ūr is the opposite parabolic, then we similarly have the induced representation
IQ̄r

(s, π ⊠ ρ). Then there is a standard intertwining operator

Aψ(s, π ⊠ ρ, Ur, Ūr) : IQr
(s, π ⊠ ρ) −→ IQ̄r

(s, π ⊠ ρ).

The composite Aψ(s, π⊠ ρ, Ūr, Ur) ◦Aψ(s, π ⊠ ρ, Ur, Ūr) is a scalar operator on IQr
(s, π⊠ ρ)

and the Plancherel measure is the scalar-valued meromorphic function defined by

µ(s, π ⊠ ρ, ψ)−1 = Aψ(s, π ⊠ ρ, Ūr, Ur) ◦Aψ(s, π ⊠ ρ, Ur, Ūr).

Similarly, if σ is an irreducible representation of Mp(W ) and ρ is an irreducible represen-
tation of GLr, then one may define the associated Plancherel measure µ(s, σ × ρ, ψ), as the
composition of two standard intertwining operators as above.

The factorization of the intertwining operators into the product of “rank 1” operators
corresponding to simple reflections implies an inductive property of the Plancherel measures
known as multiplicativity. This is described in [GI, Appendix B], along with other properties
of the Plancherel measure.

The main result of this section is:
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Proposition 10.1. If π is an irreducible representation of SO(V ) with σ = Θψ(π) and ρ is
an irreducible representation of GLr, then one has

µ(s, π × ρ, ψ) = µ(s, σ × ρ, ψ).

Corollary 10.2. Suppose that both π and σ = Θψ(π) are supercuspidal. Then for any
supercuspidal representation ρ of GLr, IQr

(s, π ⊠ ρ) reduces if and only if IPr,ψ(s, σ ⊠ ρ)
reduces. In particular, when ρ∨ = ρ, IPr,ψ(s, σ ⊠ ρ) reduces for a unique s ≥ 0.

To infer this corollary, one only needs to take into account of [GI, Prop. B.7]. In particular,
the corollary gives an alternative proof of a special case of the main results of [HM2]. In [GI,
Thm. 12.1and Cor. 12.2], an identity of Plancherel measures as in Prop. 10.1 was established
for the theta correspondence associated to a general dual pair Mp(2m)× SO(2n+ 1), which
gives an alternative proof of the general results of [HM2].

The rest of this section is devoted to the proof of the proposition. We first draw two
consequences of the property of multipicativity [GI, Props. B.4 and B.5] and Kudla’s cuspidal
support theorem ([Ku, Thm. 2.5] and [Ku2, Thms. 7.1 and 7.2]):

(i) The desired identity of Plancherel measure in Proposition 10.1 holds when V = V +

and π and ρ have nonzero Iwahori-fixed vectors, where the Iwahori subgroup in ques-
tion is the setwise stabilizer of a fundamental chamber in the building of SO(V ).
Indeed, such a π is contained in a principal series representation induced from a
Borel subgroup of SO(V ):

π ⊂ IB(µ1, ..., µn).

Kudla’s cuspidal support theorem ([Ku, Thm. 2.5] and [Ku2, Thms. 7.1 and 7.2]) then
implies that σ is a subquotient of the principal series representation IB′,ψ(µ1, ..., µn)
of Mp(W ). Using [GI, Prop. B.6], which expresses the relevant Plancherel measures
in terms of Tate’s γ-factors, it is then easy to establish the desired identity in this
case.

(ii) Proposition 10.1 is reduced to the case when π and ρ are both supercuspidal.

In the basic case where π and ρ are both supercuspidal, the proof is via a global-to-local
argument.

More precisely, we can find the following data:

• F is a totally complex number field, with two places v0 and v1 such that Fvi

∼= k;

• Ψ is an additive character of F\A (where A is the ring of adeles of F ) such that
Ψv0 = Ψv1 = ψ;

• V is a quadratic space over F of dimension 2n + 1 and discriminant 1 such that
V ⊗F Fvi

∼= V for i = 0 or 1; moreover, we may assume that ǫ(V ⊗ Fv) = + for all
finite places v outside v0 and v1.

Given the above data, one can find cuspidal representations Π of O(V) and Ξ of GLr(A) such
that
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• Πv0 = Πv1 = πǫ and Ξv0 = Ξv1 = ρ, where πǫ is the unique extension of π to O(V )
which participates in the theta correspondence with Mp(W );

• for all finite v 6= v0 or v1, Πv and Ξv are unramified;

The simplest way to find such a Π is to use a construction of Henniart [He, Appendice 1] via
Poincare series; in the proof of [He, Appendice 1, Thm.], it suffices to pick the test function
fv to be the characteristic function of a hyperspecial maximal compact subgroup at all finite
places v 6= v0 or v1 (and the test functions fv0 and fv1 to be matrix coefficients of π). In the
following, we shall write Πv to denote the restriction of the representation Πv of O(Vv) to
SO(Vv).

Now consider the global theta lift ΘV,Wk,Ψ(Π) of Π to the tower of metaplectic groups
Mp(Wk). Let k be the first index such that the global theta lift ΘV,Wk,Ψ(Π) is nonzero.
Suppose that Σ is an irreducible summand of ΘV,Wk,Ψ(Π). Then for all places v, one can
relate Σv with Θψv

(Πv). Indeed, for all finite v 6= v0 or v1, since Πv is unramified, one knows
how to compute the theta lift of Πv to any Mp(Wk). Similarly, one understands the theta
correspondence for complex groups completely. At the places v0 and v1, where Πvi

= πǫ is
supercuspidal, one can appeal to the cuspidal support theorem of Kudla [Ku]. The following
lemma summarizes these results:

Lemma 10.3. Write k = n+ t with t ∈ Z.

(i) If k > n so that t > 0, then

Σv ⊂ I(| − |
1/2

⊠ | − |3/2 ⊠ ....⊠ | − |(2t−1)/2
⊠ Θψv

(Πv)).

(ii) If k = n, then Σv = Θψv
(Πv).

(iii) If k < n, so that t < 0, then

Θψv
(Πv) ⊂ I(| − |

1/2
⊠ | − |3/2 ⊠ ....⊠ | − |(2|t|−1)/2

⊠ Σv).

As a consequence of the multiplicative property of the Plancherel measure [GI, Prop. B.4
and B.5], we deduce that for all places v,

(10.4)

µ(s,Σv ⊠ Ξv,Ψv)

µ(s,Θψv
(Πv) ⊠ Ξv,Ψv)

=





∏t
i=1 µ(s,Ξv ⊠ | − |(2i−1)/2) · µ(s,Ξv ⊠ | − |−(2i−1)/2);

1(∏|t|
i=1 µ(s,Ξv ⊠ | − |(2i−1)/2) · µ(s,Ξv ⊠ | − |−(2i−1)/2)

)−1

in the three respective cases of the lemma. Now for v 6= v0 or v1, we already know that

µ(s,Θψv
(Πv) ⊠ Ξv,Ψv) = µ(s,Πv ⊠ Ξv,Ψv).

To prove this identity for the places v0 and v1, and thus completing the proof of Proposition
10.1, it suffices to show that for v = v0 or v1, µ(s,Σv ⊠ Ξv,Ψv)/µ(s,Πv ⊠ ρv,Ψv) is given by
the same formulas as in (10.4).

For this, we appeal to the global functional equation for Plancherel measures [GI, Prop.
B.8] to the representation Σ ⊠ Ξ and Π ⊠ Ξ. We deduce that for any finite set S of places of
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F containing v0 and v1, µS(s,Σv ⊠ Ξv,Ψv)/µS(s,Πv ⊠ Ξv,Ψv) is a given in (10.4). Thus, we
conclude that

µ(s, π ⊠ ρ, ψ)2 = µ(s,Θψv
(π) ⊠ ρ, ψ)2.

Since the Plancherel measures are ≥ 0 on the imaginary axis [GI, Prop. B.7], we have:

µ(s, π ⊠ ρ, ψ) = µ(s,Θψv
(π) ⊠ ρ, ψ).

This completes the proof of Proposition 10.1.

11. Local Factors

In this section, we show that the bijection Θψ respects γ-factors, L-factors and ǫ-factors
associated to representations of Mp(W ) and SO(V ). We assume the following working hy-
potheses:

Working Hypotheses:

(i) there is a theory of γ-factors γ(s, π × ρ, ψ) for irreducible representations π ⊠ ρ of
SO(V )×GLr;

(ii) there is a theory of γ-factors γ(s, σ × ρ, ψ) for irreducible representations σ ⊠ ρ of
Mp(W )×GLr,

Moreover, the theories of γ-factors satisfy the following conditions:

(a) (Multiplicativity) If π = Ind
SO(V )
Q τ ⊠ π0, with τ a representation of GLk and π0 a

representation of SO(V0), then

γ(s, π × ρ, ψ) = γ(s, τ × ρ, ψ) · γ(s, τ∨ × ρ, ψ) · γ(s, π0 × ρ, ψ),

where the first two γ-factors on the RHS are the Rankin-Selberg γ-factors of GLk ×
GLr. If ρ = IndRρ1 × ρ2, with ρi an irreducible representation of GLri , then

γ(s, π × ρ, ψ) = γ(s, ρ1 × ρ, ψ) · γ(s, ρ2 × ρ, ψ),

where the twoγ-factors on the RHS are Rankin-Selberg γ-factors. The similar iden-
tities hold for γ(s, σ × ρ, ψ).

(b) (Minimal Case) Suppose that V = V −
1 , the rank 3 non-split quadratic space of dis-

criminant 1. If 1 denotes the trivial representation of the compact group SO(V ) and
χ denotes any character of GL1, then

γ(s,1× χ,ψ) = γ(s+ 1/2, χ, ψ) · γ(s − 1/2, χ, ψ),

where the γ-factors on the RHS are those of GL1.

(c) (Global Functional Equation) Suppose that F is a number field with ring of adeles A,
and V is a quadratic space over F of dimension 2n+ 1 and discriminant 1. Let Ψ =
⊗vψv be a non-trivial additive character of F\A, Π = ⊗vπv a cuspidal representation
of SO(V )(A) and Ξ = ⊗vξv a cuspidal representation of GLr(A). If S is a finite set
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of places of F containing all archimedean places and all finite places where Ψ, Π or
Ξ is ramified, then one has a functional equation

LS(s,Π× Ξ) =
∏

v∈S

γ(s, πv × ξv, ψv) · L
S(1− s,Π∨ × Ξ∨).

Likewise, if W is a symplectic space over F and Σ is a cuspidal representation of
Mp(W )(A), then one has

LS(s,Σ× Ξ,Ψ) =
∏

v∈S

γ(s, σv × ξv, ψv) · L
S(1− s,Σ∨ × Ξ∨).

Now we have:

Proposition 11.1. Suppose that one has:

(i) a theory of γ-factors γ(s, π×ρ, ψ) for irreducible representations π⊠ρ of SO(V )×GLr;

(ii) a theory of γ-factors γ(s, σ × ρ, ψ) for irreducible representations σ ⊠ ρ of Mp(W )×
GLr,

satisfying the above working hypotheses. Then if σ = Θψ(π), we have

γ(s, π × ρ, ψ) = γ(s, σ × ρ, ψ).

Proof. The proof is similar but simpler than that of Proposition 10.1. By properties (a)
and (b), and Kudla’s cuspidal support theorem ([Ku, Thm. 2.5] and [Ku2, Thms. 7.1 and
7.2]), one knows that the desired identity holds when π has nonzero Iwahori-fixed vectors.
Further, one is reduced to the case when the representations π and ρ are supercuspidal. For
the supercuspidal case, the proof is via a global argument similar to, but simpler than, that
of Proposition 10.1 (see also [MS1, Prop. 5.4]). More precisely, let V be as in the proof
of Proposition 10.1, so that Vv0 = V for a finite place v0. By a construction of Henniart
[He, Appendice 1] via Poincare series, one can find cuspidal representations Π and Ξ of O(V)
and GLr(A) such that Πv0 = πǫ (where πǫ is the unique extension of π to O(V ) which
participates in the theta correspondence with Mp(W )) and Ξv0 = ρ, and such that for all
other finite places v, Πv and Ξv have nonzero Iwahori-fixed vectors. Indeed, in the proof of
[He, Appendice 1, Thm.], one simply picks the test function fv to be a matrix coefficient of π
at v = v0, to be the characteristic function of a hyperspecial maximal compact subgroup for
almost all v 6= v0 and to be the characteristic function of an Iwahori subgroup at all other
v 6= v0. Then the argument in Prop. 10.1, using property (c) and our knowledge of the
desired identity at all places outside v0, implies that

γ(s, π × ρ, ψ) = γ(s, σ × ρ, ψ).

�

Corollary 11.2. Assume the hypotheses of Proposition 11.1. If one defines the local L-factors
L(s, π × ρ) and L(s, σ × ρ, ψ), as well as local epsilon factors ǫ(s, π × ρ, ψ) and ǫ(s, σ × ρ, ψ)
following the approach of Shahidi (i.e. analogous to that in [LR, §10] or §4.2), then one has:

{
L(s, π × ρ) = Lψ(s, σ × ρ)

ǫ(s, π × ρ, ψ) = ǫ(s, σ × ρ, ψ).
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In particular, a theory of γ-factors satisfying the working hypotheses has been developed
in the following cases:

(a) for generic representations π ⊠ ρ of SO(V +)×GLr by Shahidi [Sh] and Soudry [So];
(b) for ψ-generic representations σ ⊗ ρ of Mp(W )×GLr by D. Szpruch [Sz];
(c) for all irreducible representations π×χ of SO(V ±)×GL1 and σ⊠χ of Mp(W )×GL1

via the doubling method (cf. [PSR], [LR] and [G]).

Thus we have:

Corollary 11.3. (i) Suppose that σ = Θψ(π), with π ∈ Irr(SO(V +)) generic. Then the
equalities of L- and ǫ-factors in Corollary 11.2 hold.

(ii) Th equalities L- and ǫ-factors in Corollary 11.2 hold for representations of SO(V )×GL1

and Mp(W )×GL1.

12. Variation of ψ

One remaining issue is the dependence of the bijection Lψ when ψ varies. More precisely,
for c ∈ k×, let ψc be the character ψc(x) = ψ(cx). Then we would like to know the relation
between Lψ(σ) and Lψc

(σ). Here, recall that

Lψ(σ) = (φ, η),

where

φ : WDk −→ Sp2n(C)

and η is an irreducible character of the component group Aφ = π0(ZSp2n
(φ)). The component

group Aφ can be explicitly described as follows. If we decompose φ as a 2n-dimensional
representation:

φ =
⊕

i

niφi,

then (cf. [GGP])

Aφ =
⊕

i:φi is symplectic

Z/2Zai.

In [GGP], a conjecture was stated for the relation between Lψ(σ) and Lψc
(σ). The purpose

of this section is to verify this conjecture. Of course, to address this issue, one would need to
assume that the local Langlands correspondence for SO(V ±) is known. Hence, let us begin
by setting down the precise hypotheses we shall require:

Hypothesis LLC

(a) We assume the local Langlands correspondence for the classical groups G = SO2n+1,
SO2n and Sp2n as supplied by the recently released book of Arthur [A] and supple-
mented by the results of Jiang-Soudry [JS]. In particular, each irreducible represen-
tation of this group is indexed by a pair (φ, η) consisting of an L-parameter φ for the
group G and a character η of the component group Aφ.
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(b) Moreover, we suppose that the local Langlands correspondence satisfies the desiderata
in [B] and preserves local L-factors and ǫ-factors as in Theorem 1.3(vii) and (viii).

(c) In addition, for representations π1 and π2 which have the same L-parameter, one has
an equality of Plancherel measures:

µ(s, π1 × ρ, ψ) = µ(s, π2 × ρ, ψ).

In particular, by Shahidi [Sh], such Plancherel measures can be expressed in terms of
γ-factors of Artin type associated to the L-parameters.

Under the above hypothesis, one has the following highly non-trivial results:

• (GP) The Gross-Prasad conjecture [GP] for tempered representations of special or-
thogonal groups holds by the recent work of Waldspurger [W5-9]. More precisely, sup-
pose that π is an irreducible tempered representation of SO(V ) (with dimV = 2n+1)
with Lψ(π) = (φ, η) as above, and τ is an irreducible tempered representation of
SO(U) with U ⊂ V of codimension 1. Suppose further that

HomSO(U)(π ⊗ τ,C) 6= 0.

Then

η(ai) = ǫ(1/2, φi ⊗ φτ ) · χU (−1)
1
2
·dimφi ,

where χU is the quadratic character of k× associated to the disc(U). Similarly, if
V ⊂ U with codimension 1, then HomSO(V )(π ⊗ τ,C) 6= 0 implies that η(ai) is given
by the above formula as well.

• (Θ) Consider the theta correspondence for Sp(W ) × O(U) with dimW = 2n and
dimU = 2n+ 2 with discriminant χU . For an irreducible tempered representation of
τ of Sp(W ) which participates in this theta correspondence, it was shown by Muić
[M1,2] that

ΘW,U,ψ(τ) = θW,U,ψ(τ) =: θ(τ).

Moreover, θ(τ) is irreducible when restricted to SO(U). Finally, it was shown by
Muić [M1,2] and Moeglin [Mo1] that the L-parameters φτ and φθ(τ) are related by

φθ(τ) = 1⊕ χU · φτ .

Similarly, consider the theta correspondence for Sp(W ) × O(U) with dimU = 2n
and let τ be an irreducible tempered representation of O(U). Then

ΘU,W,ψ(τ) = θU,W,ψ(τ) =: θ(τ).

Moreover, the L-parameters of τ and θ(τ) are related by

φθ(τ) = χU · (1⊕ φτ ) .

Under the hypothesis LLC and the above theorems (GP) and (Θ), one has:

Theorem 12.1. For σ ∈ Irr(Mp(W )) and c ∈ k×, let Lψ(σ) = (φ, η) and Lψc
(σ) = (φc, ηc).

Then:

(i) φc = φ⊗ χc, where χc is the quadratic character associated to c ∈ k×/k×2.
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It follows by (i) that we have canonical identification of component groups:

Aφ = Aφc
= ⊕iZ/2Zai,

so that it makes sense to compare η and ηc.

(ii) the characters η and ηc are related by:

ηc(ai)/η(ai) = ǫ(1/2, φi) · ǫ(1/2, φi ⊗ χc) · χc(−1)
1
2

dimφi ∈ {±1}.

When dimW = 2, this reduces to Theorem 5.3 of Waldspurger. The remainder of this
paper is devoted to the proof of the theorem. We first note the following reduction.

Proposition 12.2. If Theorem 12.1 holds for tempered representations of Mp(W ), then it
holds for all representations.

Proof. Suppose that σ = JP,ψ(τ1, ..., τr, σ0). Write Lψ(σ) = (φ, η) and Lψc
(σ) = (φc, ηc) as

in the conjecture, and similarly, write Lψ(σ0) = (φ0, η0) and Lψc
(σ0) = (φ0,c, η0,c). We are

assuming that the pairs (φ0, η0) and (φ0,c, η0,c) are related as in Theorem 12.1.

Now Theorem 1.3(iii) implies that

φ = φ1 ⊕ ...⊕ φr ⊕ φ0 ⊕ φ
∨
1 ⊕ ...⊕ φ

∨
r ,

where φi is the L-parameter of τi for i ≥ 1 . Moreover, there is a natural identification
Aφ = Aφ0

under which one has η = η0.

On the other hand, as genuine characters of G̃L(X), one has

χψc
= χψ · (χc ◦ detX).

Thus, one also has
σ = JP,ψc

(τ1 ⊗ χc, ..., τr ⊗ χc, σ0).

By Theorem 1.3(iii) again, one has

φc ⊗ χc = φ1 ⊕ ...⊕ φr ⊕ (φ0,c ⊗ χc)⊕ φ
∨
1 ⊕ ...⊕ φ

∨
r ,

and ηc = η0,c. Since (φ0,c, η0,c) and (φ0, η0) are related as in Theorem 12.1, so are (φc, ηc)
and (φ, η). �

Now suppose that σ ∈ Irr(Mp(W )) is tempered, and let

π = ΘW,V,ψ(σ) and πc = ΘW,V,ψc
(σ).

Note that π and πc are both irreducible by Theorem 8.1. To prove Theorem 12.1, we need
to show that their L-parameters φ and φc are related by

φ⊗ χc = φc.

By Theorem 1.3(ii), this identity for tempered representations follows from the case of discrete
series representations. Hence, we may assume that σ is discrete series. Now by Proposition
10.1, one has the following identities of Plancherel measures:

µ(s, (π ⊗ χc)× ρ, ψ) = µ(s, π × (ρ⊗ χc), ψ) = µ(s, σ × (ρ⊗ χc), ψ)

and
µ(s, πc × ρ, ψc) = µ(s, σ × ρ, ψc),
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where ρ is any supercuspidal representation of GLr (for any r).

On the other hand, it follows from [GI, §B.2] that

µ(s, σ × ρ, ψc) = |c|2nr+r(r+1)/2 · µ(s, σ × (ρ⊗ χc), ψ)

and

µ(s, πc × ρ, ψc) = |c|(2n+1)r+r(r−1)/2 · µ(s, πc × ρ, ψ).

Hence, we deduce that

µ(s, πc × ρ, ψ) = µ(s, (π ⊗ χc)× ρ, ψ).

By Hypothesis (LLC), we may express these Plancherel measures in terms of Shahidi’s γ-
factors, which can in turn be expressed as γ-factors of L-parameters. This gives the identity

γ(s, φc ⊗ φρ, ψ) · γ(−s, φc ⊗ φ
∨
ρ , ψ) = γ(s, (φ⊗ χc)⊗ φρ, ψ) · γ(−s, (φ⊗ χc)⊗ φ

∨
ρ , ψ).

The following lemma then allows one to conclude that

φc = φ⊗ χc.

Lemma 12.3. Suppose that φ1 and φ2 are 2n-dimensional semisimple representations of
WDk, each of which is a multiplicity-free sum of irreducible symplectic summands. If,

(12.4) γ(s, φ1 ⊗ φρ, ψ) · γ(−s, φ1 ⊗ φ
∨
ρ , ψ) = γ(s, φ2 ⊗ φρ, ψ) · γ(−s, φ2 ⊗ φ

∨
ρ , ψ)

for every irreducible representation φρ of Wk, then

φ1
∼= φ2

as representations of WDk.

Proof. We shall proceed by induction on dimφi = 2n. Suppose that φ0 is an irreducible
representation of Wk such that φ0 ⊠ Sr is contained in φ1 for some r ≥ 1. Here Sr is the
r-dimensional irreducible repersentation of SL2(C). Let r0 be the smallest such r. Taking
φρ = φ0 and evaluating at s = (r0 − 1)/2 ≥ 0, one sees that the LHS of (12.4) has a zero at
s = (r0 − 1)/2, and hence so must the RHS. This implies that L(−s, φ2 ⊗ φ

∨
0 ) · L(s, φ2 ⊗ φ0)

must have a pole at s = (r0 − 1)/2. It is not difficult to see that this can only happen if φ2

contains φ0 ⊠ Sr0 as well. Thus, we may cancel φ0 ⊠ Sr from both φ1 and φ2, and still have
the analog of (12.4). The lemma then follows by induction. �

Now let

Uc ⊂ V

be a quadratic subspace of discriminant c and codimension 1. Then we have:

V = Uc + Lc

where Lc is a nondegenerate line of discriminant c, and SO(Uc) ⊂ SO(V ). We have:

Lemma 12.5. Given an irreducible tempered representation π of SO(V ), there exists an
irreducible tempered representation ξc of SO(Uc) such that

HomSO(Uc)(π, ξc) 6= 0.
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Proof. Let fπ be a matrix coefficient of π, which is a smooth function on SO(V ). By replacing
fπ by a SO(V )-translate if necessary, we may assume that fπ has nonzero restriction to the
subgroup SO(Uc). Then there is an element φ ∈ C∞

c (SO(Uc)) such that
∫

SO(Uc)
fπ(h) · φ(h) dh 6= 0.

By the Plancherel theorem for Schwarz-Harish-Chandra functions [W4, Thm. VIII.1.1],

φ =
⊕

M

φM

as M ranges over conjugacy classes of Levi subgroups of SO(Uc) and each φM is a finite sum
of “wave packets” associated to discrete series representations of M . More precisely, a “wave
packet” is a function on SO(Uc) of the form:

h 7→

∫

X0(M)
β(s) · 〈I(s, τ)(h)(F ,F ′〉µ(s) · ds

where

• X0(M) denotes the compact torus of unramified unitary characters of M ;
• β is a smooth function on X0(M);
• τ is a discrete series representation (with unitary central character) of M ;
• I(s, τ) is the family of tempered representations of SO(Uc) parabolically induced from

the unramified twists τ ⊗ χs for s ∈ X0(M), which are all realized on the same space
I(τ) of functions on a maximal compact subgroup K of SO(Uc);
• F and F ′ are elements of I(τ);
• 〈−,−〉 is the standard inner product on I(τ) induced by an inner product on τ and

integration over K;
• µ(s) ds is the Plancherel measure associated to (M, τ), with ds a Haar measure of
X0(M) and µ(s) a smooth function.

Hence, we conclude that

(12.6)

∫

SO(Uc)
fπ(h) ·

∫

X0(M)
β(s) · 〈I(s, τ)(h)(F ,F ′〉µ(s) · ds dh 6= 0

for some choice of (M, τ,F ,F ′). We note also that the function

s 7→ 〈I(s, τ)(h)F ,F ′〉

is continuous in s, as is easy to see from the definitions.

Now in [II], it was shown that
∫

SO(Uc)
fπ(h) · fξc(h) dh

is absolutely convergent for any tempered representation ξc of SO(Uc). Hence the double
integral in (12.6) is absolutely convergent. On exchanging the order of integration in (12.6),
we deduce that ∫

SO(Uc)
fπ(h) · 〈I(s, τ)(h)(F ,F

′〉 dh 6= 0
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for some (τ, s,F ,F ′). This implies that there is a tempered representation ξc of SO(Uc) and
a matrix coefficient fξc such that

∫

SO(Uc)
fπ(h) · fξc(h) dh 6= 0.

This proves the lemma. �

By (GP), one has

η(ai) = ǫ(1/2, φi ⊗ φξc) · χc(−1)1/2 dimφi .

Let τ = ΘUc,W,ψ(ξc). By (Θ), τ is either zero or irreducible tempered. Now by the see-saw
identity associated to the see-saw diagram:

Sp(W )×Mp(W )

SSSSSSSSSSSSSS
SO(V )

Mp(W )

kkkkkkkkkkkkkkkk

SO(Uc)× SO(Lc)

we deduce that
HomSp(W )(τ ⊗ ωW,ψc

, σ) 6= 0.

In particular, τ must be nonzero and by (Θ), its L-parameter is

φτ = χc · (1 + φξc).

Moreover, since the representations τ , σ and ωW,ψc
are unitary, one sees by taking complex

conjugate that
HomSp(W )(τ

∨ ⊗ ωW,ψ−c
, σ∨) 6= 0.

Since

HomSp(W )(τ
∨ ⊗ ωW,ψ−c

, σ∨) = HomSp(W )(τ
∨ ⊗ ωW,ψ−c

⊗ σ,C) = HomSp(W )(ωW,ψ−c
⊗ σ, τ),

we conclude that
HomSp(W )(σ ⊗ ωW,ψ−c

, τ) 6= 0.

Now consider the see-saw diagram

Mp(W )×Mp(W )

TTTTTTTTTTTTTTT
SO(V + L−1)

Sp(W )

jjjjjjjjjjjjjjjj

SO(V )× SO(L−1)

where L−1 is a quadratic line of discriminant −1, and examine the theta correspondence with
respect to the additive character ψc. Set

ξ = ΘW,V+L−1,ψc
(τ).

By (Θ) again, ξ is either zero or irreducible tempered, in which case its L-parameter is

φξ = 1 + φτ = 1 + χc + χc · φξc .

Now the see-saw identity says that

HomSO(V )(ξ,Θψc
(σ)) = HomSp(W )(σ ⊗ ωW,ψ−c

, τ) 6= 0.
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Since Lψc
(σ) = (φ⊗ χc, ηc), it follows by (GP) that

ηc(ai) = ǫ(1/2, φi ⊗ χc ⊗ φξ).

Thus,

ηc(ai)/η(ai) = ǫ(1/2, φi) · ǫ(1/2, φi ⊗ χc) · χc(−1)1/2 dimφi .

This completes the proof of Theorem 12.1.

References

[A] J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, preprint,
available at http://www.claymath.org/cw/arthur/pdf/Book.pdf.

[Ad] J. Adams, Genuine representations of the metaplectic group and epsilon factors, Proceedings of the
International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 721731, Birkhäuser, Basel, 1995.
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