Do the following questions from the textbook:

Misc. Exercises (Pg. 108): # 1

(1) Find all different solutions modulo 60 of the quadratic congruence:
\[x^2 + 26x + 33 \equiv 0 \pmod{60}. \]
(Hint: 60 = 3 · 4 · 5).

(2a) We showed in class that Euler’s function \(\phi \) is multiplicative. Determine the function
\[F_\phi(n) = \sum_{d|n} \phi(d). \]
(b) Deduce from (a) that
\[\sum_{d|n} \phi(d) = n. \]

(3) Let \(\left(\frac{a}{p} \right) \) denote the Legendre symbol. Compute the value of
\[\left(\frac{5}{11} \right), \left(\frac{7}{11} \right), \left(\frac{8}{11} \right). \]

(4) Let \(p \geq 7 \) be a prime number. Show that one of 2, 5 and 10 is a quadratic residue mod \(p \). Deduce from this that there are two consecutive integers which are quadratic residues mod \(p \).

(5) Find all odd primes \(p \) such that \(-2 \) is a quadratic residue mod \(p \).

(6) Show that there are infinitely many primes of the form \(8k + 3 \). (Hint: if there are only finitely many such primes \(p_1, \ldots, p_r \), consider \(Q = (p_1 \ldots p_r)^2 + 2 \) and use Question 5).

(7) Find all odd primes \(p \) such that the Legendre symbol \(\left(\frac{3}{p} \right) = -1. \)

(8) Show that there are infinitely many primes of the form \(5k + 4 \). (Hint: if there are only finitely many such primes \(p_1, \ldots, p_r \), consider \(Q = 5(2p_1 \ldots p_r)^2 - 1 \)).

Questions 6 and 8 are special cases of Dirichlet’s theorem on primes in arithmetic progression, which says that if \(\gcd(a, n) = 1 \), then there
are infinitely many primes which are $\equiv a \mod n$. The proof of this is beyond the scope of this course, but it may be covered in Math104C.