NUMBER FIELDS HW 1

(1) Which of the following are algebraic integers?
\(\frac{\sqrt{3} + \sqrt{5}}{2}, \quad \frac{\sqrt{3} + \sqrt{7}}{2}, \quad \frac{1 + \sqrt{10} + \sqrt{100}}{3} \)

(2) If \(a_i \) are algebraic integers and \(\alpha \in \mathbb{C} \) satisfies:
\[\alpha^d + a_{d-1}\alpha^{d-1} + \ldots + a_0 = 0, \]
show that \(\alpha \) is an algebraic integer.

(3) Let \(V \) is a finite dimensional vector space over a field \(F \), and let
\[\langle -, - \rangle : V \times V \rightarrow F \]
be a nondegenerate bilinear form. Suppose that \(\{v_i\} \) is a basis of \(V \). Show that there is a unique basis \(\{v_i^*\} \) of \(V \) so that \(\langle v_i, v_j^* \rangle = \delta_{ij} \). The basis \(\{v_i^*\} \) is called the dual basis to \(\{v_i\} \) with respect to \(\langle -, - \rangle \).

(4) Let \(\mathcal{O}_f = \mathbb{Z} + \mathbb{Z} \cdot f\sqrt{D} \). Show that \(\mathcal{O}_f \) is an order in \(\mathbb{Q}(\sqrt{D}) \). Compute \(Disc(\mathcal{O}_f) \).

(5) If \(\mathcal{O} \) is an order spanning a number field \(K \), and \(Disc(\mathcal{O}) \) is squarefree. Must \(\mathcal{O} \) be equal to the ring of integers \(\mathcal{O}_K \)?

(6) Prove Stickelberger’s criterion: if \(K \) is a number field, then \(Disc(K) = 0 \) or \(1 \) mod 4. (Hint: use the fact that if \(\mathcal{O}_K = \oplus_i \mathbb{Z} \alpha_i \), then \(Disc(K) = |\det(\sigma_i(\alpha_j))|^2\); write the determinant as \(P - Q \), where \(P \) is the sum over even permutations and \(Q \) is the sum over odd permutations, and use \((P - Q)^2 = (P + Q)^2 - 4PQ \)).

(7) Let \(d \) be a cubefree integer not divisible by 3 and let \(K = \mathbb{Q}(\sqrt[3]{d}) \).

(i) Show that \(\mathbb{Z}[\sqrt[3]{d}] \) has discriminant \(27d^2 \).

(ii) If \(p \) is a prime factor of \(d \) and \(\alpha = (a + b\sqrt[3]{d} + c\sqrt[3]{d^2})/p \) lies in \(\mathcal{O}_K \) (with \(a, b, c \) rational), show by taking traces that \(p|a \). Then show by squaring that \(\alpha \in \mathbb{Z}[\sqrt[3]{d}] \).

(iii) Deduce that either \(\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{d}] \) or that \(\mathcal{O}_K \) is spanned by \(\mathbb{Z}[\sqrt[3]{d}] \) and some
\[\beta = (a + b\sqrt[3]{d} + c\sqrt[3]{d^2})/3. \]
In the second case, show by squaring that \(a \equiv 1 \) mod 3 and \(b \equiv d \) mod 3, so that we may take \(\beta \) to be
\[\beta_0 = (1 + bd\sqrt[3]{d} + \sqrt[3]{d^2})/3. \]

(iv) Show that if \(d \neq \pm 1 \) mod 9, then \(\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{d}] \), and otherwise \(\mathcal{O}_K \) is generated by \(\mathbb{Z}[\sqrt[3]{d}] \) and \(\beta_0 \).
(8) Do (the very long) Exercises 29 and 42 from Chapter 2 of D. Marcus’s “Number Fields”. These exercises determine the ring of integers of a biquadratic extension $\mathbb{Q}(\sqrt{m}, \sqrt{n})$.

(9) Do Ex. 30 from Marcus. This exercise shows that the ring of integers \mathcal{O}_K is not always of the form $\mathbb{Z}[\alpha]$.