
TWISTED BHARGAVA CUBES
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Abstract. In his re-interpretation of Gauss’s composition law for binary quadratic forms,
Bhargava determined the integral orbits of a prehomogeneous vector space which arises
naturally in the structure theory of the split group Spin8. We consider a twisted version
of this prehomogeneous vector space which arises in quasi-split SpinE

8 , where E is an étale
cubic algebra over a field F . We classify the generic orbits over F by twisted composition
F -algebras of E-dimension 2.

1. Introduction

In a seminal series of papers ([1], [2], [3]), Bhargava has extended Gauss’s composition law
for binary quadratic forms to far more general situations. The key step in his extension is the
investigation of the integral orbits of a group over Z on a lattice in a prehomogeneous vector
space. The prehomogeneous vector space which plays a role in elucidating the nature of the
classical Gauss’s composition arises from a simply connected Chevalley group G of type D4.
More precisely, let P = MN be a maximal parabolic subgroup of G corresponding to the
branching point of the Dynkin diagram of type D4. As it is readily seen from the Dynkin
diagram, the derived group Mder of the Levi factor M is isomorphic to SL3

2. The unipotent
radical N is 9-dimensional, and is a two step nilpotent group with 1-dimensional center Z.
The adjoint action of Mder on the abelian quotient N/Z is isomorphic to V = V2 ⊗ V2 ⊗ V2
where V2 is the standard 2-dimensional representation of SL2. Since Bhargava regards an
element of (Z2)⊗3 as a cube whose vertices are labelled by elements of Z, we shall refer to
the prehomogeneous vector space V or its elements as Bhargava’s cubes.

One of Bhargava’s achievements is the determination of the corresponding integral orbits,
i.e. SL2(Z)3-orbits on Z2 ⊗ Z2 ⊗ Z2. In particular, he discovered that generic orbits are
in a bijection with isomorphism classes of tuples (A, I1, I2, I3) where A is an order in an
étale quadratic Q-algebra and I1, I2 and I3 are elements in the narrow class group of A, i.e.
invertible fractional ideals, such that I1 · I2 · I3 = 1. More precisely, to every cube Bhargava
attaches three pairs (Ai, Bi), i = 1, 2, 3, of 2 × 2 matrices by slicing the cube in the three
possible ways. In this way he obtains three binary quadratic forms

Qi(x, y) = −det(Aix+Biy).

A remarkable fact, discovered by Bhargava, is that the three forms have the same discriminant
∆. It is a degree 4 polynomial on V , invariant under the action of Mder. The cube is generic
if ∆ 6= 0. In this case, the ring A is the unique quadratic order of discriminant ∆ and the
three fractional ideals Ii correspond to the three quadratic forms Qi by a dictionary that
essentially goes back to Gauss.
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We now consider the group G over a field F of characteristic different from 2 and 3. The
group G is exceptional in the sense that its outer automorphism group is isomorphic to S3:
no other absolutely simple linear algebraic group has such a large outer automorphism group.
In particular, since S3 is also the group of automorphisms of the split étale cubic F -algebra
F × F × F , we see that every étale cubic F -algebra E determines a quasi-split form GE .
Fixing an épinglage of G defines a splitting of the outer automorphism group S3 to Aut(G),
so that S3 acts on V by a group of symmetries of the cube, fixing two opposite vertices.
Then the quasi-split group GE contains a maximal parabolic subgroup PE = MENE , which
is a twisted form of the parabolic P mentioned above. The derived group ME,der of ME is
isomorphic to ResE/FSL2. The adjoint action of ME,der on NE/ZE , where ZE is the center
of NE , is isomorphic to a twisted form VE of V . We shall call VE(F ) (or its elements) the
E-twisted Bhargava cube.

Since the action of S3 on V permutes the three pairs (Ai, Bi) of 2 × 2 matrices obtained
by slicing a cube in three different ways, it follows by Galois descent that ∆ gives rise to a
degree 4 polynomial invariant on VE , denoted by ∆E . It is a quasi-invariant for ME . More
precisely, if v ∈ VE(F ) and g ∈ME(F ), then

∆E(gv) = χ(v)2 ·∆E(v)

where χ is a character of ME given by the adjoint action on ZE . An ME(F )-orbit O ⊂ VE(F )
is called generic if ∆E(v) 6= 0 for one and hence for all v ∈ O. If O is generic, then the

quadratic algebra K = F (
√

∆E(v)) is étale. It is an invariant of the generic orbit.

The purpose of this paper is to classify the generic ME(F )-orbits on VE(F ). The main
result is:

Theorem 1.1. Let F be a field of characteristic different from 2 or 3. Fix an étale cubic
F -algebra E.

(i) There are natural bijections between the following sets:

(a) Generic ME(F )-orbits O on the E-twisted Bhargava cube.
(b) E-isomorphism classes of E-twisted composition algebras (C,Q, β) over F which are

of E-dimension 2.
(c) E-isomorphism classes of pairs (J, i) where J is a Freudenthal-Jordan algebra over F

of dimension 9 and

i : E ↪→ J

is an F -algebra homomorphism. Here an E-isomorphism from (J, i) to (J ′, i′) is a
commutative diagram

E
i−−−−→ Jy y

E
i′−−−−→ J ′

where the first vertical arrows is the identity, while the second is an F -isomorphism
of J and J ′.
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(ii) The bijections in (i) identify

StabME
(O) ∼= AutE(C,Q, β) ∼= AutE(i : E ↪→ J).

(iii) Let K = F (
√

∆E(v)) be the étale quadratic algebra K attached to a generic orbit O
containing v. Let L = E ⊗F K. The group StabME

(O) in (ii) sits in a short exact sequence
of algebraic groups:

1 −−−−→ TE,K −−−−→ StabME
(O) −−−−→ Z/2Z −−−−→ 1

where

TE,K(F ) = {x ∈ L× : NL/E(x) = 1 = NL/K(x)}
is a 2-dimensional torus and where the conjugation action of the nontrivial element of Z/2Z
on TE,K is given by x 7→ x−1.

The reader is probably not familiar with some terminology in the theorem, so an explana-
tion is necessary. In order to define twisted composition algebras, recall that the algebra E
carries a natural cubic form, the norm NE . The norm defines a quadratic map x 7→ x# from
E to E such that x · x# = NE(x). For example, if E = F 3, then

NE(x1, x2, x3) = x1x2x3 and (x1, x2, x3)
# = (x2x3, x3x1, x1x2).

Now, an E-twisted composition algebra (or simply twisted composition algebra) of E-dimension
2 is a triple (C,Q, β) where

• C is an E-vector space of dimension 2.
• Q : C −→ E is a quadratic form.

• β : C −→ C is a quadratic map such that, for every v ∈ C and x ∈ E,

β(xv) = x# · β(v) and Q(β(v)) = Q(v)#.

• If bQ is the bilinear form associated to Q, then bQ(v, β(v)) ∈ F for every v ∈ C.

This definition is due to Springer, as is the bijection of the sets (b) and (c). More precisely,
suppose we have an algebra embedding i : E ↪→ J . Then we have a decomposition

J = E ⊕ C

where C is defined as the orthogonal complement to E, with respect to the trace form on
J . The upshot is that the Jordan algebra J determines a structure of a twisted composition
algebra on C, and vice versa.

Our contribution is the bijection between the sets (a) and (b). Starting with a twisted
cube, we define a twisted composition algebra. In fact, the construction works over Z, and
can be tied to Bhargava’s description as follows. Let (I1, I2, I3) be a triple of ideals in a
quadratic order A such that I1 · I2 · I3 = A. Let N(I) denote the norm of the ideal I, and
z 7→ z̄ denote the action of the non-trivial automorphism of the étale quadratic Q-algebra
containg A. Let

C = I1 ⊕ I2 ⊕ I3.
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Then C is a twisted composition algebra with the quadratic form Q : C → Z×Z×Z defined
by

Q(z1, z2, z3) =

(
N(z1)

N(I1)
,
N(z2)

N(I2)
,
N(z3)

N(I3)

)
and the quadratic map β : C → C defined by

β(z1, z2, z3) = (z̄2z̄3N(I1), z̄3z̄1N(I2), z̄1z̄2N(I3)).

The key parts of the paper are as follows. In order to prove the correspondence of generic
ME(F )-orbits and twisted composition algebras, we give a Galois cohomological argument in
Theorem 8.3, based on the observation that the stabiliser of a distinguished cube is isomorphic
to the automorphism group of a distinguished twisted composition algebra. This gives a
conceptual explanation for the existence of the bijection. However, for arithmetic applications
(such as Bhargava’s), it is essential to have an explicit description of the bijection. This is
done in two steps. Firstly, after reviewing the theory of twisted composition algebras, we
prove in Proposition 3.5 that every twisted composition algebra C of E-dimension 2 has a
reduced basis, i.e. a basis of the form {v, β(v)} for some v ∈ C. Secondly, by re-interpreting
Bhargava’s work in the framework of twisted composition algebras in Section 10, we attach
to every generic E-twisted cube a twisted composition algebra together with a good basis.
In this correspondence, changing the cube by another in the same ME(F )-orbit corresponds
to changing the good basis. Since reduced bases are good, every twisted composition algebra
is obtained in this construction.

We also consider M̃ = M o S3 and its twisted form M̃E . In this case generic M̃E(F )-
orbits correspond to the F -isomorphism classes of objects in (b) and (c). The isomorphisms
of the stabilizer groups in (ii) lead us to another description of TE,K , which we view as an
exceptional Hilbert 90 theorem. This is the topic of Section 11. We conclude the paper by
illustrating the main results in the case where F is a local field.

2. Étale Cubic Algebras

Let F be a field of characteristic different from 2 and 3. Let F̄ be a separable closure of
F , with the absolute Galois group Gal(F/F ).

2.1. Étale cubic algebras. An étale cubic algebra is an F -algebra E such that E⊗FF ∼= F
3
.

More concretely, an étale cubic F -algebra is of the form:

E =


F × F × F ;

F ×K, where K is a quadratic field extension of F ;

a cubic field.

Since the split algebra F × F × F has automorphism group S3 (the symmetric group on 3
letters), the isomorphism classes of étale cubic algebras E over F are naturally classified by
the pointed cohomology set H1(F, S3), or more explicitly by the set of conjugacy classes of
homomorphisms

ρE : Gal(F/F ) −→ S3.
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2.2. Discriminant algebra of E. By composing the homomorphism ρE with the sign char-
acter of S3, we obtain a quadratic character (possibly trivial) of Gal(F/F ) which corresponds
to an étale quadratic algebra KE . We call KE the discriminant algebra of E. To be concrete,

KE =


F × F, if E = F 3 or a cyclic cubic field;

K, if E = F ×K;

the unique quadratic subfield in the Galois closure of E otherwise.

2.3. Twisted form of S3. Fix an étale cubic F -algebra E. Then, via the associated ho-
momorphism ρE , Gal(F/F ) acts on S3 (by inner automorphisms) and thus define a twisted
form SE of the finite constant group scheme S3. For any commutative F -algebra A, we have

SE(A) = AutA(E ⊗F A).

2.4. Quadratic map #. Given an étale cubic F -algebra, let NE : E −→ F be the norm
map on E and let TrE : E −→ F be the trace map. Then NE is a cubic form and TrE is a
linear form on E. There is a quadratic map

# : E −→ E

such that

a# · a = a · a# = NE(a) for a ∈ E.

It has an associated symmetric bilinear map

a× b := (a+ b)# − a# − b#.
For the split algebra F 3, we have:

N(a1, a2, a3) = a1a2a3, T r(a1, a2, a3) = a1 + a2 + a3, (a1, a2, a3)
# = (a2a3, a3a1, a1a2).

We note the following identity in E:

(2.1) (f × y)y + fy# = TrE/F (fy#).

This curious identity can be checked in E ⊗F F ∼= F
3
; we leave it as an interesting exercise

for the reader.

3. Twisted Composition Algebras

In this section, we introduce the E-twisted composition algebra of dimension 2 over E.
This notion was introduced by Springer, and the two standard (perhaps only) references,
covering many topics of this paper, are The Book of Involutions [5] and Octonions, Jordan
Algebras and Exceptional Groups [7]. Twisted composition algebras are treated in [5, Chapter
VIII, §36] and [7, Chapter 4].

3.1. Twisted composition algebras. A twisted composition algebra over F is a quadruple
(E,C,Q, β) where

• E is an étale cubic F -algebra;
• C is an E-vector space equipped with a nondegenerate quadratic form Q, with asso-

ciated symmetric bilinear form bQ(v1, v2) = Q(v1 + v2)−Q(v1)−Q(v2);
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• β : C −→ C is a quadratic map such that

β(av) = a# · β(v) and Q(β(v)) = Q(v)#,

for every a ∈ E and v ∈ C.

• if we set
NC(v) := bQ(v, β(v)),

then NC(v) ∈ F , for every v ∈ C.

For a fixed E, we shall call (C,Q, β) an E-twisted composition algebra (over F ), and the
cubic form NC the norm form of C. Frequently, for ease of notation, we shall simply denote
this triple by C, suppressing the mention of Q and β.

3.2. Morphisms. Given twisted composition algebras (E,C,Q, β) and (E′, C ′, Q′, β′), an
F -morphism of twisted composition algebras is a pair (φ, σ) ∈ HomF (C,C ′)× HomF (E,E′)
such that

φ(av) = σ(a) · φ(v)

for v ∈ C and a ∈ E, and

φ ◦ β = β′ ◦ φ and σ ◦Q = Q′ ◦ φ.
In particular,we have the automorphism group AutF (E,C,Q, β). The second projection gives
a natural homomorphism

AutF (E,C,Q, β)→ SE .

The kernel of this map is the subgroup AutE(C,Q, β) consisting of those φ which are E-linear;
we shall call these E-morphisms.

3.3. AutF (E,C)-action and isomorphism classes. Let us fix an E-vector space C and
let AutE(C) be the automorphism group of C as an E-vector space. Let

AutF (E,C) = {(g, σ) ∈ AutF (C)×AutF (E) : g ◦ λ = σ(λ) · g for all λ ∈ E}.
This is the group of E-sesquilinear automorphisms of C. The second projection induces a
short exact sequence

1 −−−−→ AutE(C) −−−−→ AutF (E,C) −−−−→ SE −−−−→ 1.

This short exact sequence is split. Indeed, the choice of an E-basis for C gives a splitting,
with SE acting on the coordinates with respect to the basis.

Now if (C,Q, β) is an E-twisted composition algebra, then for any (g, σ) ∈ AutF (E,C),
the triple

(C ′, Q′, β′) = (C, σ ◦Q ◦ g−1, g ◦ β ◦ g−1)
is also an E-twisted composition algebra. The norm forms are related by:

NC′ = NC ◦ g−1.
Moreover, we have:

(g, σ) ∈ HomF ((E,C,Q, β), (E,C ′, Q′, β′)).

Thus the map (Q, β) 7→ (Q′, β′) defines an action of AutF (E,C) on the set of pairs (Q, β)
which define an E-twisted composition algebra structure on C. The orbits of such pairs
under AutF (E,C) are precisely the F -isomorphism classes of E-twisted composition algebra
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of a given E-dimension dimE C, and the stabiliser of a given pair (Q, β) is precisely the
automorphism group AutF (E,C,Q, β). Similarly, the set of orbits under AutE(C) is the
set of E-isomorphism classes of such E-twisted composition algebras, and the stabiliser of a
particular (Q, β) is AutE(C,Q, β).

3.4. Dimension 2 case. It is known, by Corollary 36.4 in [5], that for any E-twisted com-
position algebra (C,Q, β), dimE C = 1, 2, 4 or 8. We shall only be interested in the case
when dimE C = 2.

We give an example that will feature prominently in this paper. We set CE = E ⊕E, and
define Q and β by

Q(x, y) = x · y and β(x, y) = (y#, x#)

for every (x, y) ∈ E ⊕ E. It is easy to check that this defines an E-twisted composition
algebra over F , with the norm form

NC(x, y) = NE(x) +NE(y).

The group of automorphisms of this E-twisted composition algebra is easy to describe.
Let E1 be the set of elements e in E such that N(e) = e · e# = 1. For every element
e ∈ E1 we have an E-automorphism ie defined by ie(x, y) = (ex, e#y). We also have an
E-automorphism w defined by w(x, y) = (y, x). The group of E-automorphisms is

AutE(CE , Q, β) = E1 o Z/2Z

and the group of F -automorphisms is

AutF (CE , Q, β) = (E1 o Z/2Z) o SE = E1 o (Z/2Z× SE).

If E = F × F × F , we denote the corresponding twisted composition algebra by C0 =
(C0, Q0, β0) and refer to it as the split twisted composition algebra. In this case, E1 consists
of (t1, t2, t3) such that t1t2t3 = 1, so that

AutE(C0, Q0, β0) ∼= G2
m o Z/2Z.

Observe that there is a natural splitting

(3.1) S3 × Z/2Z −→ AutF (C0, Q0, β0).

3.5. Identitites. It follows by [5, Prop. 36.3] that if (E,C,Q, β) is a twisted composition
algebra over F , then C ⊗F F is isomorphic to C0 ⊗F F . This fact is useful for verifying
polynomial identities in C. Indeed, any polynomial identity in C may be verified over F and
thus just needs to be checked in C0. In the following lemma, we list some useful identities
which may be checked in this manner.

Lemma 3.2. Let (E,C,Q, β) be a twisted composition algebra over F . Then one has

(3.3) β2(v) = NC(v)v −Q(v)β(v),

and

(3.4) β(xv + yβ(v)) = (y#N(v)− (−Q(v)x)× y) · v + (x# −Q(v)y#) · β(v)

for any v ∈ C and x, y,∈ E.
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It follows from (3.3) that Q is in fact determined by β in a twisted composition algebra.
The proof of these identities can be found in [7, Lemmas 4.1.3 and 4.2.7]. It is interesting to
note that (3.4) looks slightly different from that in [7, Lemma 4.2.7], but is equivalent to the
form we present here by the identity (2.1).

3.6. Reduced basis. If dimE C = 2, we call an E-basis of C of the form {v, β(v)} a reduced
basis of C. We note:

Proposition 3.5. Let (C,Q, β) be an E-twisted composition algebra.

(i) For v ∈ C, let

∆C(v) = NC(v)2 − 4 ·NE(Q(v)) ∈ F.
Then {v, β(v)} is an E-basis of C if and only if ∆C(v) 6= 0.

(ii) The degree 6 homogeneous polynomial ∆C factors over F as:

∆C = a · P 2

with a ∈ F× and P an absolutely irreducible homogeneous polynomial of degree 3 over F .
The square class of a is uniquely determined, and for any g ∈ AutE(C,Q, β),

(3.6) P (gv) =

{
P (v), if g ∈ AutE(C,Q, β)0;

−P (v), if g /∈ AutE(C,Q, β)0.

(iii) The algebra (C,Q, β) has a reduced basis.

(iv) Let {v′, β(v′)} be another reduced basis of C. Let g ∈ AutE(C) be such that g(v) = v′

and g(β(v)) = β(v′). Then det(g) ∈ F×.

Proof. (i) The set {v, β(v)} is linearly independent if and only if the matrix of the symmetric
bilinear form bQ with respect to {v, β(v)} has nonzero determinant. Since

bQ(v, v) = 2Q(v), bQ(β(v), β(v)) = 2Q(v)# and bQ(v, β(v)) = NC(v),

it follows that the determinant is −∆C(v).

(ii) We first work over F , in which case we may assume that C = E2, with E = F
3
,

Q(x, y) = xy and β(x, y) = (y#, x#). Then NC(x, y) = NE(x) +NE(y). So

∆C(x, y) = (NE(x) +NE(y))2 − 4NE(x)NE(y) = (NE(x)−NE(y))2.

The cubic polynomial P0(x, y) = NE(x)−NE(y) = x1x2x3 − y1y2y3 (with x = (x1, x2, x3) ∈
F

3
) is easily seen to be irreducible over F .

To descend back to F , we note that for any σ ∈ Gal(F/F ), σ(P0) = ±P0 by unique
factorisation of polynomials over F . Thus there is a quadratic character χK of Gal(F/F )
such that σ(P0) = χK(σ) · P0. If K is the quadratic étale F -algebra associated to χK ,

represented by a ∈ F×, then we see that P =
√
a
−1 · P0 is defined over F and ∆C = a · P 2.

It is clear that the square class of a is uniquely determined. The equation (3.6) can be
checked over F ; we leave it to the reader.
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(iii) Since F has more than 3 elements (as we assumed that char(F ) 6= 2 or 3), there exists
v ∈ C such that P (v) 6= 0. Hence ∆C(v) 6= 0 by (ii) and {v, β(v)} is a reduced basis by (i).

(iv) If v′ = xv + yβ(v), then β(v′) is given by (3.4). So the transition matrix between the
bases {v, β(v)} and {v′, β(v′)} is given by:

g =

(
x y#NC(v)− (−Q(v)x)× y
y x# −Q(v)y#

)
.

Hence

det(g) = NE(x)−NE(y)NC(v) + (−Q(v)xy# + ((−Q(v)x)× y)y)

= NE(x)−NE(y)NC(v)− TrE(Q(v)xy#) ∈ F

where the second equality follows by applying (2.1). �

We note that Proposition 3.5(i) and (iii) is contained in [7, Lemma 4.2.12], but (ii) seems
to be new; at least we are not able to find it in [7] or [5]. The results of the proposition will
be used later in the paper.

3.7. The quadratic algebra KC . An immediate consequence of the proposition is that to
very twisted composition algebra (E,C,Q, β) with dimE C = 2, we can associate an étale
quadratic algebra KC which is given by the square-class of ∆C(v) ∈ F× as in the proof of
Proposition 3.5(ii). Thus we have a map

(3.7) {twisted composition F -algebras with E-rank 2} −→ {étale quadratic F -algebras}.

For example, if CE is the twisted composition algebra introduced in §3.4 then

∆C(x, y) = (NE(x)−NE(y))2

and the quadratic algebra associated to CE is the split algebra F × F .

3.8. Cohomological description. We come now to the classification of twisted composi-
tion algebras C of rank 2 over E. Since every such C is isomorphic to C0 over F , the set
of isomorphism classes of twisted composition algebras over F is classified by the pointed
cohomology set

H1(F,AutF (F 3, C0, Q0, β0)).

We have seen that AutF (F 3, C0, Q0, β0) ∼= G2
m o (Z/2Z× S3), and so there is a natural map

(3.8) H1(F,AutF (F 3, C0, Q0, β0)) −→ H1(F,Z/2Z)×H1(F, S3).

Composing this with the first or second projection, we obtain natural maps

(3.9) H1(F,AutF (F 3, C0, Q0, β0)) −→ H1(F,Z/2Z) = {étale quadratic F -algebras}.
and

(3.10) H1(F,AutF (F 3, C0, Q0, β0)) −→ H1(F, S3).

All these projection maps are surjective, because of the natural splitting in (3.1). Indeed,
(3.1) endows each fiber of the maps in (3.8), (3.9) and (3.10) with a distinguished point. We
shall see in a moment that the map in (3.9) is the map defined in (3.7).
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For an étale cubic F-algebra E with associated cohomology class [E] ∈ H1(F, S3), the
fiber of (3.10) over [E] is precisely the set of F -isomorphism classes of E-twisted composition
algebras. Moreover, a Galois descent argument shows that the distinguished point in this
fiber furnished by the splitting (3.1) is none other than the E-twisted composition algebra
CE constructed in §3.4.

Using CE as the base point, the fiber in question is identified naturally with the set
H1(F,AutE(CE , Q, β)) modulo the natural action of SE(F ) (by conjugation). The cohomol-
ogy set H1(F,AutE(CE , Q, β)) classifies the E-isomorphism classes of E-twisted composition
algebras C over F , and the action of SE(F ) is given by

σ : (C,Q, β) 7→ (C ⊗E,σ E, σ ◦Q, β)

for σ ∈ SE(F ).

Lemma 3.11. The maps defined by (3.7) and (3.9) are the same.

Proof. We fix the cubic algebra E and let CE = (E2, Q, β) be the distinguished E-twisted
composition algebra introduced in §3.4. Let ∆C = P 2 be the homogeneous polynomials as
given in Proposition 3.5(ii).

Any E-twisted composition algebra C ′ is given by a pair of tensors (Q′, β′) on E2 and
there is an element g ∈ GL2(E ⊗F F ) such that g · (Q, β) = (Q′, β′). A 1-cocycle associated
to (Q′, β′) is given by

aσ = g−1σ(g) ∈ Aut
F

3(E2, Q, β) for σ ∈ Gal(F/F ).

The corresponding ∆C′ is related to ∆C by

∆C′(v) = ∆C(g−1v).

Now the quadratic algebra associated to C ′ by (3.9) corresponds to the quadratic character

χ : σ 7→ [aσ] ∈ π0(Aut
F

3(E2, Q, β)) = Z/2Z

of Gal(F/F ). By (3.6), we thus have

P (a−1σ v) = χ(σ) · P (v)

for any v ∈ (E ⊗F F )2.

On the other hand, the quadratic algebra associated to C ′ by (3.7) is defined by
√

∆C′(v)
for any v ∈ E2 such that ∆C′(v) 6= 0. Since√

∆C′(v) =
√

∆C(g−1v) = P (g−1v),

we need to show that

σ(P (g−1v)) = χ(σ)P (g−1v).

But we have

σ(P (g−1v)) = P (σ(g)−1v) = P (a−1σ g−1v) = χ(σ) · P (g−1v),

as desired. This proves the lemma. �
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3.9. Tits construction. Given an element

([E], [K]) ∈ H1(F, S3)×H1(F,Z/2Z),

we describe the composition algebras in the fiber of (3.8) over ([E], [K]). Note that by (3.1),
we have a distinguished point in this fiber. Now we have:

Proposition 3.12. If C is an E-twisted composition algebra, with the associated étale qua-
dratic algebra K, then we may identify C with E ⊗F K, such that

Q(x) = e ·NE⊗FK/E(x) for some e ∈ E×

and

β(x) = x# · e−1 · ν for some ν ∈ K
where x 7→ x is induced by the nontrivial automorphism of K over F . Moreover, we have:

NE/F (e) = NK/F (ν).

The distinguished point in the fiber of (3.8) over ([E], [K]) corresponds to taking (e, ν) =
(1, 1).

Proof. This proposition essentially follows by Galois descent. Indeed, a Galois descent argu-
ment, starting from the algebra CE introduced in §3.4, shows that C can be identified with
E ⊗F K. Then Q is necessarily of the form e · NE⊗FK/E for some e ∈ E×. On the other
hand, we claim that for x ∈ E ⊗F K and x0 ∈ C, one has

β(x · x0) = x# · β(x0).

Indeed, one can check this by going to F , whence one is reduced to checking this identity
in the split algebra C0, where it is straightforward. This shows that β is determined by
β(1) = ν · e−1 for some ν ∈ E ⊗F K. However, the identity

Q(1)# = Q(β(1))

implies that

ν · ν = NE⊗FK/E(ν) = NE/F (e) ∈ F.
The requirement that N(x) ∈ F for all x ∈ E ⊗F K implies that

TrE⊗FK/E(ν ·NE⊗FK/K(x)) ∈ F.
In particular, taking x = 1 and then a trace zero element δ ∈ K one obtains, respectively:

ν + ν ∈ F and νδ + νδ ∈ F.
All these conditions imply that ν ∈ K.

Finally, it is easy to see by Galois descent that the distinguished point in the fiber over
([E], [K]) corresponds to (e, ν) = (1, 1). �

The description of twisted composition algebras given in the above proposition is sometimes
referred to as a Tits construction (though usually this terminology is reserved for the Jordan
algebra associated to the above twisted composition algebra by Springer’s construction, which
is the subject matter of the next section).
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3.10. Automorphism group. Using Proposition 3.12, it is not difficult to determine the
automorphism group of any twisted composition algebra C. Indeed, if C ∼= E⊗F K as in the
proposition, then the special orthogonal group

SO(C,Q) = {λ ∈ E ⊗F K : NE⊗K/E(λ) = 1}
acts E ⊗ K-linearly on C by multiplication and preserves Q. An element λ ∈ SO(C,Q)
preserves β if and only if

λ
#

= λ.

But λ# = λ−1 since NE⊗K/E(λ) = λ · λ# = 1. So

AutE(C,Q, β) ∩ SO(C,Q) = {λ ∈ L = E ⊗K : NL/E(λ) = 1 = NL/K(λ)} = TE,K ,

which is a 2-dimensional torus. Since we know the automorpshim group of the split twisted
composition algebra (C0, Q0, β0), we see that

AutE(C,Q, β)0 = TE,K

and AutE(C,Q, β) sits in short exact sequences of algebraic groups as in Theorem 1.1 (iii).

3.11. Cohomology of TE,K . Using Proposition 3.12 and the above description of AutE(C,Q, β)0,
we can describe the fiber of the natural map

H1(F,AutF (F 3, C0, Q0, β0)) −→ H1(F,Z/2Z)×H1(F, S3)

over the element ([K], [E]) ∈ H1(F,Z/2Z)×H1(F, S3). Indeed, this fiber is equal to

H1(F, TE,K) modulo the action of SE(F )× Z/2Z.

The cohomology group H1(TE,K) classifies twisted composition algebras with fixed E and
K, up to E ⊗F K-linear isomorphism. With L = E ⊗F K, one has a short exact sequence of
algebraic tori

1 −−−−→ TE,K −−−−→ L×
NL/E×NL/K−−−−−−−−→ (E× ×K×)0 −−−−→ 1

where
(E ×K)0 = {(e, ν) ∈ E× ×K× : NE/F (e) = NK/F (ν)}.

The associated long exact sequence gives

(3.13) H1(F, TE,K) ∼= (E× ×K×)0/ImL×.

This isomorphism is quite evident in the context of Proposition 3.12. Indeed, Proposition
3.12 tells us that any twisted composition algebra C with invariants (E,K) is given by an
element (e, ν) ∈ (E× × K×)0. Any L-linear map from C to another twisted composition
algebra C ′ with associated pair (e′, ν ′) is given by multiplication by an element a ∈ L×, and
this map is an isomorphism of twisted composition algebras if and only if

(e, ν) = (e′ ·NL/E(a), ν ′ ·NL/K(a)).

This is precisely what (3.13) expresses.

4. Springer’s construction.

We can now relate twisted composition algebras to Freudenthal-Jordan algebras. This
construction is due to Springer. Our exposition follows §38A, page 522, in [5].
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4.1. Freudenthal-Jordan algebra of dimension 9. A Freudenthal-Jordan algebra J of
dimension 9 over F is a Jordan algebra which is isomorphic over F to the Jordan algebra J0
associated to the associative algebra M3(F ) of 3× 3-matrices, with Jordan product

a ◦ b =
1

2
· (ab+ ba).

An element a ∈ J satisfies a characteristic polynomial

X3 − TJ(a)X2 + SJ(a)X −NJ(a) ∈ F [X].

The maps TJ and NJ are called the trace and norm maps of J respectively. The element

a# = a2 − TJ(a)a+ SJ(a)

is called the adjoint of a. It satisfies a · a# = NJ(a). The cross product of two elements
a, b ∈ J is defined by

a× b = (a+ b)# − a# − b#.

4.2. Cohomological description. The automorphism group of J0 is PGL3 o Z/2Z, with
g ∈ PGL3 acting by conjugation and the nontrivial element of Z/2Z acting by the transpose:
a 7→ at. Thus, the isomorphism classes of Freudenthal-Jordan algebra of dimension 9 is
parametrized by the pointed set H1(F,PGL3 o Z/2Z), and there is a exact sequence of
pointed sets

H1(F,PGL3)
f−−−−→ H1(F,PGL3 o Z/2Z)

π−−−−→ H1(F,Z/2Z)∥∥∥
{étale quadratic F -algebras}.

The map π is surjective and the fiber of π over the split quadratic algebra F 2 is the image of f .
By Proposition 39(ii) and Corollary 1 in [6], page 52, the image of f is H1(F,PGL3) modulo
a natural action of Z/2Z (see [6], page 52). Now the set H1(F,PGL3) parametrizes the set of
central simple F -algebras B of degree 3, and the Z/2Z action in question is B 7→ Bop. Then
the map f sends B to the associated Jordan algebra.

In general, for any étale quadratic F -algebra K, an element in the fiber of π over [K] ∈
H1(F,Z/2Z) is the Jordan algebra J3(K) of 3×3-Hermitian matrices with entries in K. The
automorphism group of J3(K) is an adjoint group PGUK3 o Z/2Z. Using J3(K) as the base
point, the fiber of π over [K] can then be identified with H1(F, PGUK3 ) modulo the action
of Z/2Z (by [6], pages 50 and 52). By [5], page 400, H1(F, PGUK3 ) has an interpretation as
the set of isomorphism classes of pairs (BK , τ) where

• BK is a central simple K-algebra of degree 3,
• τ is an involution of the second kind on BK ,

Moreover the action of the non-trivial element τK ∈ Aut(K/F ) = Z/2Z is via the Galois
twisting action: B 7→ B ⊗K,τK K, so that

H1(F, PGUK3 )/Z/2Z←→ {F -isomorphism classes of (BK , τ)}.

Then the map f sends (BK , τ) to the Jordan algebra Bτ
K of τ -symmetric elements in BK .
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If J is a Freudenthal-Jordan algebra of dimension 9, we will write KJ for the étale quadratic
algebra corresponding to π(J).

4.3. Relation with twisted composition algebras. Fix an étale cubic F -algebra E and
a Freudenthal-Jordan algebra J . Suppose we have an algebra embedding

i : E ↪→ J.

Then, with respect to the trace form TJ , we have an orthogonal decomposition

J = i(E)⊕ C

where C = i(E)⊥. We shall identify E with its image under i. Then for e ∈ E and v ∈ C,
one can check that e× v ∈ C. Thus, setting

e ◦ v := −e× v

equips C with the structure of an E-vector space. Moreover, writing

v# = (−Q(v), β(v)) ∈ E ⊕ C = J

for Q(v) ∈ E and β(v) ∈ V , we obtain a quadratic form Q on C and a quadratic map β on
C. Then, by Theorem 38.6 in [5], the triple (C,Q, β) is an E-twisted composition algebra
over F .

Conversely, given an E-twisted composition algebra C over F , Theorem 38.6 in [5] says
that the space E ⊕C can be given the structure of a Freuthendal-Jordan algebra over F . In
particular, we have described the bijective correspondence between the objects in (b) and (c)
of the main theorem:

{E-twisted composition algebras over F}

l

{i : E −→ J with J Freudenthal-Jordan of dimension 9}.

It is also clear that under this identification, one has

AutF (i : E → J) = AutF (i(E)⊥).

4.4. Example. Let K be an étale quadratic F -algebra and consider the Jordan algebra
J3(K) of 3× 3 Hermitian matrices with entries in K. Let E = F × F × F be the subalgebra
of J3(K) consisting of diagonal matrices. Then C consists of matrices

v =

 0 z̄3 z2
z3 0 z̄1
z̄2 z1 0

 .

Thus C = K ×K ×K, and one cheeks that

Q(z1, z2, z3) = (z1z̄1, z2z̄2, z3z̄3)

and

β(z1, z2, z3) = (z̄2z̄3, z̄3z̄1, z̄1z̄2).
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The algebra C is the distinguished point in the fiber of ([F 3], [K]), in the sense of Proposition
3.12. The automorphism group of C is given by

AutF (C,Q, β) = (K1 ×K1 ×K1)0 o (Z/2Z× S3)

where K1 denotes the torus of norm 1 elements in K and (K1 × K1 × K1)0 denotes the
subgroup of triples (t1, t2, t3) such that t1t2t3 = 1.

4.5. The quadratic algebra associated to i : E → J . If an E-twisted composition algebra
C corresponds to a conjugacy class of embeddings i : E −→ J , then we may ask how the
quadratic algebra KC associated to C can be described in terms of i : E −→ J . In this case,
C = E⊥ is an E-twisted composition algebra, and so C = E⊗KC for a quadratic algebra KC

as in Proposition 3.12. On the other hand, we know that J is associated to a pair (BKJ
, τ),

where BKJ
is a central simple algebra over an étale quadratic F -algebra KJ and τ is an

involution of the second kind. Now, Examples (5) and (6) on page 527 in [5] show that

[KC ] · [KE ] · [KJ ] = 1 ∈ H1(F,Z/2Z) = F×/F×2.

5. Quasi-split Groups of type D4

In this section, we shall introduce the E-twisted Bhargava’s cube by way of the quasi-split
groups of type D4.

5.1. Root system. Let Ψ be a root system of type D4, and Π = {α0, α1, α2, α3} be a set of
simple roots such that the corresponding Dynkin diagram is

3

0
�
��
�H

HHH

2 1

The group of diagram automorphisms Aut(Π) is identified with S3, the group of permutations
of {1, 2, 3}. We denote the highest root by β0 = α1 + α2 + α3 + 2α0.

5.2. Quasi-split groups of type D4. Let G be a split, simply connected Chevalley group
of type D4. We fix a maximal torus T contained in a Borel subgroup B defined over F . The
group G is then generated by root groups Uα ∼= Ga, where α ∈ Ψ. Steinberg showed that one
can pick the isomorphisms xα : Ga → Uα such that

[xα(u), xα′(u
′)] = xα+α′(±uu′)

whenever α + α′ is a root. Fixing such a system of isomorphisms is fixing an épinglage (or
pinning) for G. As Kac noted, a choice of signs corresponds to an orientation of the Dynkin
diagram. Since one can pick an orientation of the Dynkin diagram which is invariant under
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Aut(Π), the group of automorphisms of Π can be lifted to a group of automorphisms of G.
Thus, we have a semi-direct product

G̃ = Go Aut(Π) = Go S3,

where the action of S3 permutes the root subgroups Uα and the isomorphisms xα.

Since the outer automorphism group S3 of G is also the automorphism group of the split
śtale cubic F -algebra F 3, we see that every cubic étale algebra E defines a simply-connected
quasi-split form GE of G, whose outer automorphism group is the finite group scheme SE .
Thus,

G̃E = GE o SE

is a form of G̃, and it comes equipped with a pair BE ⊃ TE consisting of a Borel subgroup
BE containing a maximal torus TE , both defined over F , as well as a Chevalley-Steinberg
system of épinglage relative to this pair.

5.3. G2 root system. The subgroup of GE fixed pointwise by SE is isomorphic to the split
exceptional group of type G2.

Observe that B = G2 ∩BE is a Borel subgroup of G2 and T = TE ∩G2 is a maximal split
torus of G2. Via the adjoint action of T on GE , we obtain the root system ΨG2 of G2, so
that

ΨG2 = Ψ|T .
We denote the short simple root of this G2 root system by α and the long simple root by β.
Then

β = α0|T and α = α1|T = α2|T = α3|T .
Thus, the short root spaces have dimension 3, whereas the long root spaces have dimension
1. For each root γ ∈ ΨG2 , the associated root subgroup Uγ is defined over F and the
Chevalley-Steinberg system of épinglage gives isomorphisms:

Uγ ∼=

{
ResE/FGa, if γ is short;

Ga, if γ is long.

5.4. The parabolic subgroup PE. The G2 root system gives rise to 2 parabolic subgroups
of GE . One of these is a maximal parabolic PE = MENE known as the Heisenberg parabolic.
Its unipotent radical NE is a Heisenberg group with center ZE = Uβ0 , see Section 2 in [4].
Moreover,

NE/ZE = Uβ × Uβ+α × Uβ+2α × Uβ+3α
∼= Ga × ResE/FGa × ResE/FGa ×Ga

and
M̃E = ME o SE ∼= GL2(E)0 o SE

where
GL2(E)0 = {g ∈ GL2(E) : det(g) ∈ F×}.

We shall fix the isomorphism ME o SE ∼= GL2(E)0 o SE as follows. We first consider the
case when E = F 3 is split. The pinning gives us an identification

Mder(F ) ∼= SL2(F )3
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such that

α∨1 (t) =

((
t
t−1

)
, 1, 1

)
∈ SL2(F )3,

while α∨2 (t) and α∨3 (t) are defined analogously by cyclically permuting the entries of α∨1 (t).
We extend this identification to M(F ) by

α∨0 (t) =

((
1

t

)
,

(
1

t

)
,

(
1

t

))
∈ (GL2(F )3)0.

Note that, under the identification,

β∨0 (t) =

((
t
t

)
,

(
t
t

)
,

(
t
t

))
∈ (GL2(F )3)0.

Finally, since the pinning is invariant under the action of Aut(Π) ∼= S3, it follows that

M̃(F ) ∼= (GL2(F )3)0 o S3

where S3 acts on (GL2(F )3)0 by permuting the components. For a general E, one obtains
the desired isomorphism by a Galois descent argument.

6. Bhargava’s Cube

In this section, we shall examine the split case, where the pinning for G gives a Z-structure
on N/Z, for more details see Section 4 in [4].

6.1. Bhargava’s cube. Let V2 be the standard representation of SL2. Recall that we have
identified Mder with SL3

2 and M with (GL3
2)

0. Under this identification, the representation
of Mder on N/Z is isomorphic to the representation of SL3

2 on V = V2⊗ V2⊗ V2. Since β∨0 (t)
acts on N/Z as multiplication by t, it follows that (GL3

2)
0 acts on V by the standard action

twisted by det−1. The group S3 ∼= Aut(Π) acts on V2 ⊗ V2 ⊗ V2 by permuting the three
factors.

Since V is an absolutely irreducible SL3
2-module, the isomorphism of N/Z and V is unique

up to a non-zero scalar. Since β∨0 (t) acts on N/Z as multiplication by t, the bijection between
M -orbits on N/Z and M -orbits on V does not depend on the choice on the isomorphism.
If we demand that the isomorphism preserves Z-structures, i.e. it gives an isomorphism of
(N/Z)(Z) and Z2 ⊗ Z2 ⊗ Z2, then it is unique up to a sign.

An element v ∈ V (F ) is represented by a cube

e3 f1

f2 b













a e2

e1 f3
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where a, . . . , b ∈ F , and the vertices correspond to the standard basis in F 2⊗F 2⊗F 2. More
precisely, we fix this correspondence so that(

1
0

)
⊗
(

1
0

)
⊗
(

1
0

)
and

(
0
1

)
⊗
(

0
1

)
⊗
(

0
1

)
correspond to the vertices marked with letters a and b, respectively. We note that elementary
matrices in SL2(F )3 act on the space of cubes by the following three types of “row-column”
operations on cubes:

• add or subtract the front face from the rear face of the cube, and vice-versa.
• add or subtract the top face from the bottom face of the cube, and vice-versa.
• add or subtract the right face from the left face of the cube, and vice-versa.

The group S3 ∼= Aut(Π) acts as the group of symmetries of the cube fixing these two vertices.
We shall often write the cube as a quadruple

(a, e, f, b)

where e = (e1, e2, e3) and f = (f1, f2, f3) ∈ F 3.

6.2. Reduced and distinguished cube. It is not hard to see that, using the action of
M(F ), every cube can be transformed into a cube of the form (1, 0, f, b):

0 f1

f2 b













1 0

0 f3













We shall call such a cube a reduced cube. In particular, we call the cube v0 = (1, 0, 0,−1) the
distinguished cube.

6.3. Stabilizer of distinguished cube. Let StabM (v0) and StabM̃ (v0) be the respective

stabilizers in M and M̃ of the distinguished cube v0 ∈ V . Since Aut(Π) stabilizes v0, the
group StabM̃ (v0) is a semi direct product of StabM (v0) and Aut(Π). We shall now compute
StabM (v0). Let g = (g1, g2, g3) ∈M(F ) where

gi =

(
ai bi
ci di

)
.

Since

v0 =

(
1
0

)
⊗
(

1
0

)
⊗
(

1
0

)
−
(

0
1

)
⊗
(

0
1

)
⊗
(

0
1

)
and

g · v0 = det(g)−1 ·
(
a1
c1

)
⊗
(
a2
c2

)
⊗
(
a3
c3

)
− det(g)−1 ·

(
b1
d1

)
⊗
(
b2
d2

)
⊗
(
b3
d3

)
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g · v0 = v0 if and only if eight equations hold. Six of these equations are homogeneous. They
are:

a1c2a3 = b1d2b3

a1c2c3 = b1d2d3

with the additional four obtained by cyclically permuting the indices. If we multiply the first
equation by d3, the second by b3, and subtract them, then

0 = a1c2a3d3 − a1c2c3b3 = a1c2(a3d3 − c3b3).
Since a3d3− c3b3 6= 0, we have a1c2 = 0. A similar manipulation of these two equations gives
b1d2 = 0. By permuting the indices, we have aicj = bidj = 0 for all i 6= j. This implies that
all gi are simultaneously diagonal or off diagonal. Now it is easy to see that the remaining two
equations imply that StabM (v0) has two connected components, and the identity component
consists of g = (g1, g2, g3) such that gi are diagonal matrices, aidi = 1, and a1a2a3 = 1. The
other component of StabM (v0) contains an element w = (w1, w2, w3) of order 2, where

wi =

(
0 1
1 0

)
.

We now have a complete description of StabM (v0) (and of StabM̃ (v0)):

StabM (v0) ∼= {(a1, a2, a3) ∈ G3
m : a1a2a3 = 1}o Z/2Z ∼= G2

m o Z/2Z.
In particular, we have shown:

Proposition 6.1. The stabilizer StabM̃ (v0) in M̃ of the distinguished cube v0 = (1, 0, 0,−1)
is isomorphic to the group of F -automorphisms of the split twisted composition algebra C0.
Indeed, they give identical subgroups of (GL2(F )3)0 o S3 where we fix the isomorphism
M(F ) ∼= (GL2(F )3)0 as above.

6.4. Three quadratic forms. One key observation in [1] is that one can slice the cube
(given in the picture in §6.1) in three different ways, giving three pairs of matrices:

A1 =

(
a e2
e3 f1

)
B1 =

(
e1 f3
f2 b

)
A2 =

(
a e3
e1 f2

)
B2 =

(
e2 f1
f3 b

)
A3 =

(
a e1
e2 f3

)
B3 =

(
e3 f2
f1 b

)
Note that the pairs (A2, B2) and (A3, B3) are obtained by rotating the pair (A1, B1) about
the axis passing through a and b. For each pair (Ai, Bi), Bhargava defines a quadratic binary
form by

Qi = −det(Aix+Biy).

Proposition 6.2. Given a cube v, the three forms Q1, Q2 and Q3 have the same discriminant
∆ = ∆(v).
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Proof. We may assume the cube is reduced. Now an easy computation show that the three
forms are 

Q1(x, y) = −f1x2 − bxy + f2f3y
2

Q2(x, y) = −f2x2 − bxy + f3f1y
2

Q3(x, y) = −f3x2 − bxy + f1f2y
2.

These forms have the same discriminant ∆ = b2 + 4f1f2f3. �

6.5. Quartic invariant. To every cube v ∈ V , the discriminant ∆(v) described in the
previous proposition is a homogeneous quartic polynomial in v, which is invariant under the
action of SL2(F )3. This describes the quartic invariant of the prehomogeneous vector space
V . An explicit computation gives the following formula:

∆ = a2b2 − 2ab(e1f1 + e2f2 + e3f3) + e21f
2
1 + e22f

2
2 + e23f

2
3

+ 4af1f2f3 + 4be1e2e3 − 2(e1e2f1f2 + e2e3f2f3 + e3e1f3f1).

If v is reduced, then this simplifies to ∆(v) = b2 +4f1f2f3. It is easy to check that for g ∈M ,
one has

∆(g · v) = det(g)2 ·∆(v).

Thus, we see that ∆ gives a well-defined map

∆ : {generic M̃(F )-orbits on V (F )} −→ F×/F×2 = {étale quadratic F -algebras}.

7. E-twisted Bhargava Cube

Now we can extend the discussion of the previous section to the case of general E, where
VE = F ⊕ E ⊕ E ⊕ F and M̃E = GL2(E)0 o SE , via a Galois descent using a cocycle in the
class of

[E] ∈ H1(F,Aut(Π)) = H1(F, S3).

A cube is a quadruple v = (a, e, f, b), where e, f ∈ E. As in the split case, we shall call
the cubes of the form v = (1, 0, f, b) reduced, and the vector v0,E = (1, 0, 0,−1) the E-
distinguished cube.

7.1. Quartic invariant. By Galois descent, we see that the basic polynomial invariant ∆E

is given by

∆E(a, e, f, b) = a2b2−2abTrE/F (ef)+TrE/F (e2f2)+4aNE/F (f)+4bNE/F (e)−2TrE/F (e#f#)

If v is reduced, then this simplifies to:

∆E(1, 0, f, b) = b2 + 4 ·NE/F (f).
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7.2. Group action. It is useful to note the action of certain elements of GL2(E)0 on VE .
Specifically, σ ∈ SE acts by σ(a, e, f, b) = (a, σ(e), σ(f), b). Moreover, the diagonal torus
elements

tα,β =

(
α 0
0 β

)
with αβ ∈ F×

acts by

(a, e, f, b) 7→ (α#β−1a, α#α−1e, β#β−1f, β#α−1b).

It is easy to check that

∆E(tα,β · v) = (αβ)2 ·∆E(v).

Since the action of SL2(E) and SE preserve ∆E , we see that

∆E(g · v) = (det g)2 ·∆E(v)

so that ∆E induces a map

{M̃E-orbits on VE} −→ F×/F×2 = {étale quadratic algebras}.

In addition, the standard Weyl group element

w =

(
0 1
1 0

)
∈ GL2(E)0

acts on

w : (a, e, f, b) 7→ (−b,−f,−e,−a).

7.3. Stabilizer of distinguished E-cube. We can readily determine the stabiliser of the
E-distinguished cube . Namely, under the action described in §7.2, it is easy to see that the
subgroup

E1 = {
(
α

α−1

)
: α ∈ E1} ⊂ SL2(E)

fixes the E-distinguished cube v0,E . So does the Weyl group element w. Thus we see that

StabME
(v0,E) ∼= E1 o Z/2Z and StabM̃E

(v0,E) = E1 o (Z/2Z× SE).

In particular, we have shown:

Proposition 7.1. The stabilizer StabM̃E
(v0,E) in M̃E of the E-distinguished cube (1, 0, 0,−1)

is isomorphic to the group of F -automorphisms of the twisted composition algebra CE intro-
duced in §3.4. Indeed, they are identical as subgroups of GL2(E)0 o SE(F ) under the fixed
isomorphism ME(F ) ∼= GL2(E)0.

8. Generic Orbits

We come now to the main result of this paper: the determination of the generic M̃E(F )-
orbits in VE(F ).
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8.1. A commutative diagram. We have the following commutative diagram

(8.1) H1(F,StabM̃ (v0)) //

��

H1(F, M̃)

��
H1(F,AutF (C0, Q0, β0)) // H1(F, S3)

We make several observations about this commutative diagram.

Lemma 8.2. (i) The first vertical arrow is bijective.

(ii) The second vertical arrow is bijective.

(iii) The horizontal arrows are surjective.

Proof. (i) This follows by Proposition 6.1.

(ii) Let the second vertical arrow be denoted by ψ. Since M̃ is a semi-direct product of M
and S3, the map ψ is surjective. For injectivity, we shall use the exact sequence of pointed
sets:

1→ H1(F,M)→ H1(F, M̃)→ H1(F, S3)→ 1.

Let c ∈ H1(F, S3) and let E be the étale cubic algebra corresponding to c. Then ME is the
twist of M by c. In order to prove that ψ−1(c) consists of one element, it suffices to show
that H1(F,ME) is trivial, by the twisting argument on page 50 in [6]. We have an exact
sequence of algebraic groups

1→ME,der →ME → GL1 → 1,

where ME,der
∼= ResE/FSL2. By Hilbert’s Theorem 90, H1(F,GL1) is trivial. Since

H1(F,ResE/FSL2) = H1(E,SL2) = 0

(see [6], page 130), it follows that H1(F,ME) is trivial.

(iii) This follows because StabM̃ (v0) = StabM (v0) o Aut(Π), hence

H1(F,StabM̃ (v0))→ H1(F,Aut(Π))

has a natural splitting. �

8.2. Determination of orbits. We can now determine the generic M̃E(F )-orbits on VE(F ).

Theorem 8.3. Fix an étale cubic F -algebra E.

(i) The generic M̃E(F )-orbits on VE(F ) are in bijective correspondence with the set of F -
isomorphism classes of E-twisted composition algebras over F , with the orbit of v0,E =
(1, 0, 0, 1) corresponding to the twisted composition algebra CE introduced in 3.4.

(ii) The generic ME(F )-orbits on VE(F ) are in bijective correspondence with the set of E-
isomorphism classes of E-twisted composition algebras over F .
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(iii) There is a commutative diagram

{E-twisted composition algebras} −−−−→ {étale quadratic F -algebras}y y
{generic M̃E-orbits on VE} −−−−→ F×/F×2

where the bottom arrow is the map induced by ∆E (see §7.2).

Proof. (i) Given a cohomology class [E] ∈ H1(F, S3) corresponding to an étale cubic F -
algebra, we consider the fibers of the two horizontal arrows in the commutative diagram
(8.1) over [E]. Since the map StabM̃ (v0) −→ S3 splits, the fiber of the second horizontal
arrow has a distinguished element which corresponds to the twisted composition algebra CE .
Similarly, the fiber over [E] of the first horizontal arrow has a distinguished point which
corresponds to the orbit of v0,E = (1, 0, 0,−1). Moreover, these two distinguished point
correspond under the first vertical arrow.

By the twisting argument, see [6], page 50, we see that both fibers in question are naturally
identified with

Ker(H1(F,StabM̃E
(v0,E)) −→ H1(F, M̃E)).

Thus, the fiber of the first horizontal map over [E] are the generic M̃E-orbits in VE , while
the fibers of the second map are F -isomorphism classes of E-twisted composition algebras.

(ii) The bijection follows because both sets are in natural bijection withH1(F,StabME
(v0,E) =

H1(F,AutE(CE)).

(iii) Suppose an E-twisted composition algebra is represented by a cocycle

(aσ) ∈ H1(F,StabME
(v0,E)).

Then the associated étale quadratic F -algebra K corresponds to the group homomorphism

ηK : Gal(F̄ /F ) −−−−→ StabME
(v0,E)(F̄ ) −−−−→ Z/2Z

given by σ 7→ aσ 7→ π(aσ), where π : StabME
(v0,E) → Z/2Z is the natural projection. In

fact, regarding StabME
(v0,E) ⊆ ME as described in §7.3, we see that the map π is simply

given by the determinant map on ME = GL2(E)0.

On the other hand, the cocycle splits in H1(F,ME) = 0, so that we may write

aσ = g−1 · σ(g) for some g ∈ME(F̄ ).

Then the M̃E-orbit associated to (aσ) is that of g · v0,E . Now we have:

∆E(g · v0,E) = det(g)2 ·∆E(v0,E) = det(g)2

and

ηK(σ) = det(aσ) = det(g)−1 · σ(det(g))

for any σ ∈ Gal(F̄ /F ). This shows that det(g) is a trace zero element in K, so that K is
represented by the square class of det(g)2 ∈ F×, as desired.

The theorem is proved. �
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In particular, we have established Theorem 1.1. However, the bijection between the generic
M̃E(F )-orbits on VE(F ) and the E-isomorphism classes of twisted composition algebras is
obtained by a Galois cohomological argument, which is quite formal and not at all explicit.
For applications, it is necessary to have an explicit description of the bijection. We shall
arrive at such an explicit description in the following sections.

9. Re-interpreting Bhargava

In this section, revisiting the case when E = F 3 is split, we shall re-interpret Bhargava’s
results in [1] in the framework of twisted composition algebras, leading to an explicit recipe
for the bijection in Theorem 8.3.

9.1. Bhargava’s result. We first review briefly Barghava’s results and, following him, we
shall work over Z. Note that we have an action of the group SL2(Z)3 on the set of integer
valued cubes, by the “row-column” operations as described in §6.1.

In order to state the main result of Bhargava, we need a couple of definitions. Fix a
discriminant ∆. Let K = Q(

√
∆) and R the unique order of discriminant ∆. A module M

is a full lattice in K. In particular, it is a Z-module of rank 2. We shall write M = {u, v} if
u and v span M . For example,

R = {1, ∆ +
√

∆

2
}.

By fixing this basis of R, we have also fixed a preferred orientation of bases of modules. An
oriented module is a pair (M, ε) where ε is a sign. If M = {u, v}, then M becomes an oriented
module (M, ε), where ε = 1 if and only if the orientation of {u, v} is preferred. The norm of
an oriented module (M, ε) is N(M) = ε · [R : M ].

Then:

• a triple of oriented modules (M1,M2,M3) with R as the multiplier ring, is said to be
colinear, if there exists δ ∈ K× such that the product of the three oriented modules
is a principal oriented ideal ((δ), ε) where ε = sign(N(δ)), i.e., M1M2M3 = (δ), as
ordinary modules, and N(M1)N(M2)N(M3) = N(δ).

• a cube is projective of discriminant ∆ if the three associated forms are primitive and
have the discriminant ∆.

• two triples of oriented modules (M1,M2,M3) and (M ′1,M
′
2,M

′
3) are equivalent if there

exist µ1, µ2, µ3 in K× such that M ′i = µiMi and ε′i = sign(N(µi))εi for i = 1, 2, 3.

Then Bhargava [1] showed:

Theorem 9.1. There is a bijection, to be described in the proof, between the equivalence
classes of oriented colinear triples of discriminant ∆ and SL2(Z)3-equivalence classes of
projective cubes of discriminant ∆.

Sketch of Proof: Let v be a projective cube. Again, without any loss of generality we can
assume that the cube is reduced and that the numbers f1, f2 and f3 are nonzero. Define
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three modules by

M1 = {1, b−
√

∆

2f1
}, M2 = {1, b−

√
∆

2f2
} and M3 = {1, b−

√
∆

2f3
}.

The norms of the three modules are −1/f1,−1/f2 and −1/f3, respectively, if we take the
given bases to be proper. For δ we shall take

δ = − 2

b+
√

∆
,

which has the correct norm −1/f1f2f3.
The modules Mi, with given oriented bases, correspond to the quadratic forms Qi. More

precisely, if

zi = xi + yi
b−
√

∆

2fi
∈Mi

then

−fiN(zi) = Qi(xi, yi) = −fix2i − bxiyi + f#i y
2
i

where f# = (f2f3, f3f1, f1f2). �

9.2. Integral Twisted Composition algebras. We can now give a re-interpretation of
Bhargava’s results, in particular of Barghava’s triples (M1,M2,M3), in the framework of
twisted composition algebras. Assume the notation from the previous subsection, so that
M1M2M3 = (δ). Set

C = M1 ⊕M2 ⊕M3.

We shall define a pair of tensors (Q, β) on C as follows:

• Define a quadratic form Q : C → Z× Z× Z by

Q(z1, z2, z3) = (−f1N(z1),−f2N(z2),−f3N(z3)) = −f · (N(z1), N(z2), N(z3)).

• Define a quadratic map β : C → C by

β(z1, z2, z3) = δ(f2f3z̄2z̄3, f3f1z̄3z̄1, f1f2z̄1z̄2) = δ · f# · (z̄1, z̄2, z̄3)#.
The relations M1M2M3 = (δ) and MM̄ = N(M) imply that β is well defined. Moreover,
using N(δ) = −1/f1f2f3, one checks that

Q(β(z1, z2, z3)) = Q(z1, z2, z3)
#

and

NC(z1, z2, z3) = Tr(
z1z2z3
δ

).

Thus the triple (C,Q, β) is a twisted composition algebra over Z.

In terms of the coordinates (xi, yi) given by

zi = xi + yi
b−
√

∆

2fi
,

we have seen in the sketch proof of Theorem 9.1 that

Qi(zi) = −fiN(zi) = −fix2i − bxiyi + f#i y
2
i .
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We shall now do the same for β. Write β(z1, z2, z3) = (z′1, z
′
2, z
′
3), and let (x′i, y

′
i) be the

coordinates of z′i. A short calculation shows that

x′1 = −
(
x3 y3

)( 0 f3
f2 b

)(
x2
y2

)

y′1 =
(
x3 y3

)( 1 0
0 f1

)(
x2
y2

)
while the expressions for (x′2, y

′
2) and (x3, y3) are obtained by cyclicly permuting the indices.

There are two important observations to be made here:

• Firstly, these formulas make sense for any triple (f1, f2, f3) and any b, i.e. the fi’s can
be zero. The axioms of twisted composition algebra are satisfied for formal reasons.
For example, if (f1, f2, f3) = (0, 0, 0) and b = −1, we get the split algebra C0.

• Secondly, the two matrices are two opposite faces of the cube. This gives a hint how
to directly associate a composition algebra to any cube in general (i.e. not just a
reduced cube).

9.3. From cubes to twisted composition algebras. The above discussion suggests an
explicit recipe for associating a twisted composition algebra over F × F × F to any cube
v ∈ V (F ).

Let C = F 2×F 2×F 2. An element z ∈ C is a triple (z1, z2, z3) of column vectors zi = ( xiyi ).
Slice a cube into three pairs of 2× 2-matrices (Ai, Bi), as before and let

Qi(zi) = −det(Aixi +Biyi).

Then we set:

• Q : C → F × F × F is defined by

Q(z1, z2, z3) = (Q1(z1), Q2(z2), Q3(z3)).

• β : C → C is defined by

β(z1, z2, z3) = (z′1, z
′
2, z
′
3)

where z′i =
(
x′i
y′i

)
,

x′1 = −z>3 B1z2, x′2 = −z>1 B2z3, x′3 = −z>2 B3z1

and

y′1 = z>3 A1z2, y′2 = z>1 A2z3, y′3 = z>2 A3z1.

Thus, starting from a cube v, we have defined a pair of tensors (Q, β) on C = F 2×F 2×F 2.
Let

φ̃ : V (F ) −→ {tensors (Q, β) on C}
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be the resulting map. We may express this map using the coordinates (a, e, f, b) of a cube.
A short calculation gives:

Q(x, y) = (e# − af)x2 + (−ab− 2ef + Tr(ef))xy + (f# − be)y2

β(x, y) = (−ex# − by# − (fx)× y, ax# + fy# + (ey)× x).

In the next section, we shall study the properties of the map φ̃; for example, we shall show
that a (Q, β) in the image of φ̃ does define a twisted composition algebra on C.

10. Explicit Parametrization

Using the results of the previous section, we can now give an explicit description of the
bijection between M̃E(F )-orbits of nondegenerate cubes and F -isomorphism classes of E-
twisted composition algebras.

10.1. Definition of φ̃. Let us write C = E ·e1⊕E ·e2. Motivated by the case where E = F 3

studed in the previous section, we define the map

φ̃ : VE(F ) −→ {tensors (Q, β) on C}
using the coordinates v = (a, e, f, b) of a cube, with a, b ∈ F and e, f ∈ E by:

Q(x, y) = (e# − af)x2 + (−ab− 2ef + Tr(ef))xy + (f# − be)y2(10.1)

β(x, y) = (−ex# − by# − (fx)× y, ax# + fy# + (ey)× x).

In particular, for a reduced cube (1, 0, f, b), one has

Q(x, y) = −fx2 − bxy + f#y2(10.2)

β(x, y) = (−by# − (fx)× y, x# + fy#).

Thus, the image of the distinguished cube vE,0 = (1, 0, 0,−1) is the algebra CE . Observe also
that one has

(10.3) β(1, 0) = (0, 1) and β(0, 1) = (−b, f).

Thus, the standard basis {e1, e2} is a reduced basis with respect to (Q, β), in the sense of
Section 3.6.

One has:

Proposition 10.4. (i) The map φ̃ is injective.

(ii) For g ∈ GL2(E)0 and for σ ∈ SE(F ), , one has

φ̃(g · v) = tg−1 · φ̃(v) and φ̃(σ · v) = σ · φ̃(v)

for any v ∈ VE(F ).

Thus, the map φ̃ is GL2(E)0 o SE-equivariant, with respect to the outer automorphism
(g, σ) 7→ (tg−1, σ) of GL2(E)0 o SE, and where the action of GL2(E)0 o SE on the set of
(Q, β) is given as in Section 3.3.

(iii) For any nondegenerate cube v, φ̃(v) = (Q, β) defines a twisted composition algebra on
C.
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Proof. (i) If φ̃(a, e, f, b) = (Q, β), then

β(1, 0) = (−e, a) and β(0, 1) = (−b, f).

Hence the cube (a, e, f, b) is uniquely determined by β.

(ii) We can verify this equivariance property over F ; thus we only need to check it for E = F 3.
For the central element (t, t, t) ∈ GL2(E)0 or the element σ ∈ SE , the desired equivariance
property is clear. Thus, it remains to verify it for elementary matrices such as

g = (Eu, 1, 1) =

((
1 u
0 1

)
, 1, 1

)
∈ (GL2(F )×GL2(F )×GL2(F ))0.

Now if the cube v has a pair of faces (A1, B1), then the corresponding pair for g · v is

(A′1, B
′
1) = (A1 + uB1, B1).

Slicing the cube in the other two ways, we obtain

(A′2, B
′
2) = (EuA2, EuB2) and (A′3, B

′
3) = (A3E

t
u, B3E

t
u).

Hence, if φ̃(g · v) = (Q′, β′), then β′ is given on (z1, z2, z3) ∈ F 2 × F 2 × F 2 by(
x′1 x′2 x′3
y′1 y′2 y′3

)
=

(
−zt3B1z2 −zt1EuB2z3 −zt2B3E

t
uz1

zt3(A1 + uB1)z2 zt1EuA2z3 zt2A3E
t
uz1

)
.

On the other hand, tg−1 acts on β by precomposing by (tg−1)−1 = gt, and post composing
by tg−1:

tg−1 · β(gt(z1, z2, z3)) = tg−1 · β(Etuz1, z2, z3)

= tg−1 ·
(
−zt3B1z2 −zt1EuB2z3 −zt2B3E

t
uz1

zt3A1z2 zt1EuA2z3 zt2A3E
t
uz1

)
=

(
−zt3B1z2 −zt1EuB2z3 −zt2B3E

t
uz1

zt3(A1 + uB1)z2 zt1EuA2z3 zt2A3E
t
uz1

)
= β′(z1, z2, z3).

(iii) Again, we may work over F and hence we may assume that E = F 3. If v is a reduced
cube, we have seen in §9.2 that (Q, β) defines a twisted composition algebra on E2. Since

every M̃(F )-orbit contains a reduced cube, the result follows by (ii). �

The occurrence of the outer automorphism g 7→ tg−1 is natural here. Indeed, assume that
E = F 3 and regard GL2(F ) as GL(V ) for a 2-dimensional F -vector space V . Then the
quadratic map β is an element of (V ∗)⊕3 ⊗F (V ∗)⊕3 ⊗F V ⊕3, whereas its associated cube is
an element in V ⊗F V ⊗F V ⊗F det(V )−1. Thus scaling a cube by t ∈ F× corresponds to
scaling β by t−1.
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10.2. Reduced cubes and bases. To describe the image of φ̃, we examine the case of
reduced cubes more carefully.

Proposition 10.5. Suppose that the pair (Q, β) defines a twisted composition algebra struc-
ture on E2 such that the standard basis {e1, e2} is reduced (i.e. β(e1) = e2). Then (Q, β)

is the image under φ̃ of the reduced cube v = (1, 0,−Q(e1),−NQ,β(e1)). Moreover, ∆E(v) =
∆Q,β(e1) (where the ∆ on the LHS is the quasi-invariant form on the space VE of cubes while
that on the left is defined in Proposition 3.5).

Proof. We need to show that Q and β is uniquely determined by f = −Q(e1) and b =
−NQ,β(e1). Since

Q(e2) = Q(β(e1)) = f# and bQ(e1, e2) = bQ(e1, β(e1)) = N(e1) = −b,

we see that Q is uniquely determined. Then β(xe1 + ye2) is uniquely determined by (3.4) in
Lemma 3.2. Finally, observe that

∆E(v) = ∆Q,β(e1) = b2 + 4NE(f).

�

10.3. Good bases. We call a basis of C a good basis if it is in the AutE(C)0 ∼= GL2(E)0-
orbit of a reduced basis. By Proposition 3.5(iv), this notion is independent of the choice
of the reduced basis. Similarly, since the action of SE preserves the set of reduced cubes,
the notion of good bases does not depend on whether one uses AutE(C)0 or AutF (E,C)0 ∼=
GL2(E)0 o SE .

As a consequence of the proposition, we have:

Corollary 10.6. (i) The map φ̃ gives a bijection between the set of reduced (nondegenerate)
cubes and the set of (Q, β) on E2 so that the standard basis {e1, e2} is reduced.

(ii) The image of φ̃ consists precisely of those (Q, β) such that the standard basis {e1, e2}
of C = E2 is a good basis for (Q, β).

The definition we have given for a good basis {e1, e2} may not seem very satisfactory.
It would have been more satisfactory if one defines a good basis for (C,Q, β) using purely
the forms (Q, β) rather than using the action of AutE(C)0. Indeed, it will not be easy to
check that a given basis is good by our definition. However, by Corollary 10.6, one knows a
posteriori that a basis {e1, e2} is good for (C,Q, β) if and only if β(xe1 + ye2) has the form
given in (10.1) with a, b ∈ F . We would have taken this as a definition, but it would have
seemed completely unmotivated without the results of this section!

10.4. A commutative diagram. As a summary of the above discussion, we have the fol-
lowing refinement and explication of Theorem 8.3:
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Theorem 10.7. (i) The bijective map φ̃ descends to a give a commutative diagram:

VE(F )0 = {c ∈ VE(F ) : ∆E(c) 6= 0} −−−−→ M̃E(F )-orbits on VE(F )0

φ̃

y yφ
{pairs (Q, β) on E2: standard basis is good} −−−−→ {GL2(E)0 o SE(F )-orbits of (Q, β)}y y

{F -isom. classes of pairs (C, b)} −−−−→ {F -isom. classes of C}

where all vertical arrows are GL2(E)0 o SE(F )-equivariant bijections and, in the last row,
C denotes an E-twisted composition algebra and b denotes a good basis of C. Moreover the
action of GL2(E)0 o SE(F ) on a pair (C, {e1, e2}) is given as follows: g ∈ GL2(E)0 sends it
to (C, {e′1, e′2}), where (

e′1
e′2

)
= g ·

(
e1
e2

)
,

whereas σ ∈ SE sends it to (E ⊗E,σ C, {e1, e2}).

(ii) The bijection φ agrees with the one given in Theorem 8.3.

Proof. (i) Our discussion above already shows that φ̃ is bijective and descends to give the
map φ. It remains to show that the induced map φ is bijective. The surjectivity of φ follows
from Proposition 3.5(iii) and (iv), and Corollary 10.6(i). The injectivity of φ follows from
Proposition 10.4(i) and (ii). We leave the bijection and the equivariance of the lower half of
the diagram to the reader.

(ii) The map φ̃ sends the distinguished cube vE,0 = (1, 0, 0,−1) to the pair (Q0, β0) on E2,

which defines the algebra CE . Moreover, φ̃ is equivariant with respect to the automorphism
g 7→ tg−1 of GL2(E), which preserves the subgroup StabGL2(E)0(vE,0) = AutE(Q0, β0) ⊂
GL2(E)0. Finally, since φ̃ is algebraic, it is Galois-equivariant with respect to base field
extension. All these imply that we have a commutative diagram

{GL2(E)0-orbits on VE(F )0} −−−−→ H1(F,StabGL2(E)0(vE,0))yφ yg 7→tg−1

{E-isom. classes of twisted composition algebras} −−−−→ H1(F,AutE(CE))

Since the map g 7→ tg−1 of StabGL2(E)0(vE,0) = AutE(Q0, β0) is given by conjugation by the

element w ∈ AutE(Q0, β0)(F ), we see that the induced map on H1 is trivial. Hence φ agrees
with the bijection given in Theorem 8.3 by Galois cohomological argument. �

10.5. An example. As an example, assume that K = F (
√

∆) and consider the compo-
sition algebra given by the example in §4.4. (This is the distinguished point in the fiber

of ([F 3], [K]).) Then v = (
√

∆,
√

∆,
√

∆) and β(v) = (∆,∆,∆) is a reduced basis. The
corresponding reduced cube is
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0 ∆

∆ 0













1 0

0 ∆













10.6. Relation with Tits’ construction. If f ∈ E×, we can relate the construction of φ̃
attached to the reduced cube (1, 0,−f, b) to Proposition 3.12. Identify E ⊕ E with E ⊗K
using the E-linear isomorphism given by

(x, y) 7→ x⊗ 1 +
y

f
⊗ b−

√
∆

2
= x+ y

b−
√

∆

2f

where, in the last expression, we omitted tensor product signs for readability. Then Q can
be written as

Q(x+ y
b−
√

∆

2f
) = −f ·NE⊗K/E(x+ y

b−
√

∆

2f
)

and β as

β(x+ y
b−
√

∆

2f
) = − 2

b+
√

∆
· f# · (x+ y

b+
√

∆

2f
)#.

Indeed, if E = F 3, these formulae are exactly the same as those in subsection 9.2 . Let

e = −f and ν = −b+
√

∆

2
.

Using e−1 · ν̄ = ν−1 · e# (since NE/F (e) = NK/F (ν)) this composition algebra is the algebra
attached to the pair (e, ν), as in Proposition 3.12. Conversely, a composition algebra given by
a pair (e, ν), as in Proposition 3.12, arises from the cube (1, 0,−e, b) where b = −TrK/F (ν).

11. Exceptional Hilbert 90

Assume that E is an étale cubic F -algebra field with corresponding étale quadratic dis-
criminant algebra KE and let K be an étale quadratic F -algebra. Recall that

TE,K = {x ∈ E ⊗F K : NE/F (x) = 1 = NK/F (x)}.
Suppose, for example, that [KE ] = [K] = 1, so E is a Galois extension, and TE,K is the group
of norm one elements in E×. Let σ be a generator of the Galois group GE/F . Then Hilbert’s
Theorem 90 states that the map

x 7→ σ(x)/σ2(x)

induces an isomorphism of E×/F× and TE,K(F ). Our goal in this section is to generalize
this statement to all tori TE,K , thus obtaining an exceptional Hilbert’s Theorem 90. As an
application, we give an alternative description of H1(F, TE,K).



32 WEE TECK GAN AND GORDAN SAVIN

11.1. The torus TE,K . We first describe the torus TE,K by Galois descent. Over F , we may
identify

TE,K(F ) = {(a, b) ∈ F 3 ⊗ F 2
: aibi = 1 for all i and a1a2a3 = 1}.

The F -structure is given by the twist of the Galois action on coordinates by the cocycle

ρE × ρK : Gal(F/F ) −→ Aut(F
3
)×Aut(F

2
) ∼= S3 × Z/2Z,

where S3 (respectively Z/2Z) acts on Z3 (respectively Z2) by permuting the coordinates.

We may describe TE,K using its cocharacter lattice X. We have:

X = {(a,−a) ∈ Z3 ⊗ Z2 : a1 + a2 + a3 = 0},

equipped with the Galois action given by

ρE ⊗ ρK : Gal(F/F ) −→ S3 × Z/2Z.

11.2. The torus T ′E,K . Now we introduce another torus T ′E,K over F . Let KJ be the étale

quadratic F -algebra such that [KJ ] · [K] · [KE ] = 1 in H1(F,Z/2Z). We define the tori

T̃ ′E,K = {x ∈ E ⊗F KJ : NE⊗KJ/E(x) ∈ F×},

and

T ′E,K = T̃ ′E,K/K
×
J

where the last quotient is taken in the sense of algebraic groups. If J = Bτ where B is a
degree 3 central simple KJ -algebra with an involution τ of the second kind, and E → J
is an F -embedding or, equivalently, E ⊗F KJ → B is a KJ -embedding such that τ pulls
back to the nontrivial element of Aut(E ⊗F KJ/E), then T ′E,K acts naturally as a group of
automorphisms of the embedding E → J .

We may again describe these tori by Galois descent. Over F , we may identify

T̃ ′E,K(F ) = {(a, b) ∈ (F
×

)3 ⊗ (F
×

)2 : a1b1 = a2b2 = a3b3},

and T ′E,K(F ) is the quotient of this by the subgroup consisting of the elements (a · 1, b · 1).

The action of Gal(F/F ) which gives the F -structure of T̃ ′E,K is then described as follows. Let

ρE : Gal(F/F ) −→ S3 be the cocycle associated to E, so that sign◦ρE : Gal(F/F ) −→ Z/2Z
is the homomorphism associated to KE . On the other hand, we let ρK be the homomorphism
associated to K, so that

(sign ◦ ρE) · ρK : Gal(F/F ) −→ Z/2Z

is the homomorphism associated to KJ . Now the action of Gal(F/F ) on F
3⊗F 2

is the twist
of the action on coordinates by the cocycle

ρE × (sign ◦ ρE) · ρK : Gal(F/F ) −→ S3 × Z/2Z.

As before, we may describe the tori T̃ ′E,K and T ′E,K by their cocharacter lattice. The

cocharacter lattice Ỹ of T̃ ′E,K is given by

Ỹ = {(a, b) ∈ Z3 ⊗ Z2 : a1 + b1 = a2 + b2 = a3 + b3},
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equipped with the Galois action given by

ρE × (sign ◦ ρE) · ρK : Gal(F/F ) −→ S3 × Z/2Z.

This contains the Galois-stable sublattice

Z = (1, 1, 1)⊗ Z2

so that Y = Ỹ /Z is the cocharacter lattice of T ′E,K .

11.3. A homomorphism. We are going to construct a morphism of tori from T̃ ′E,K to TE,K .

We shall first define this morphism over F and then shows that it descends to F .

Now we may define a morphism over F :

f : T̃ ′E,K(F ) −→ TE,K(F )

by

f :

(
a1 a2 a3
b1 b2 b3

)
7→
(
a2/a3 a3/a1 a1/a2
b2/b3 b3/b1 b1/b2

)
It is easy to see that this defines an F -isomorphism of tori

f : T ′E,K(F ) ∼= TE,K(F ).

Moreover, if σ ∈ Se(F ) = S3 is the cyclic permutation

(a1, a2, a3) 7→ (a2, a3, a1),

then the map f is given by

f(x) = σ(x)/σ2(x).

Now the morphism f induces a map

f∗ : Ỹ −→ X

given by (
a1 a2 a3
b1 b2 b3

)
7→
(
a2 − a3 a3 − a1 a1 − a2
b2 − b3 b3 − b1 b1 − b2

)
.

This induces an isomorphism of Z-modules Y ∼= X.

11.4. Exceptional Hilbert 90. Now the main result of this section is:

Theorem 11.1. The isomorphism f : T ′E,K×F F −→ TE,K×F F is defined over F , and thus
gives an isomorphism of tori

T ′E,K −→ TE,K

given by

x 7→ σ(x)/σ2(x).
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Proof. It remains to prove that f is defined over F . For this, we may work at the level
of cocharacter lattices and we need to show that f∗ is Galois-equivariant. For this, regard
Z3⊗Z2 as a S3×Z/2Z-module with the permutation of the coordinates in Z3 and Z2. Then
observe that f∗ is not equivariant with respect to S3 × Z/2Z. On the other hand, we have
the automorphism of S3 × Z/2Z given by

(g, h) 7→ (g, sign(g) · h)

If we twist the S3×Z/2Z-module structure on the domain of f∗ by this automorphism, then
f∗ is easily seen to be equivariant. Together with our description of the Gal(F/F )-actions on
the domain and codomain of f∗, the desired Gal(F/F )-equivariance follows. �

11.5. Cohomology of TE,K . As an application of the exceptional Hilbert 90, we may give
an alternative description of the cohomology group H1(F, TE,K) which classifies twisted com-
position algebras with fixed invariants (E,K), up to E ⊗F K-linear isomorphisms.

In order to state results, we need additional notation. For every quadratic extension KJ of
F , let Res1KJ/F

Gm be the 1-dimensional torus defined by the short exact sequence of algebraic

tori:

1 −−−−→ Res1KJ/F
Gm −−−−→ ResKJ/FGm −−−−→ Gm −−−−→ 1.

By the classical Hilbert Theorem 90, the associated long exact sequence gives the exact
sequence:

1 −→ H2(F,Res1KJ/F
Gm) −→ H2(KJ ,Gm) −→ H2(F,Gm)

where the last map is the corestriction. By a theorem of Albert and Albert-Riehm-Scharlau,
Theorem 3.1 in [5], the kernel of the corestriction map is the set of Brauer equivalence classes
of central simple algebras over KJ that admit an involution of the second kind, and so we
can view H2(F,Res1KJ/F

Gm) as the set of Brauer equivalence classes of such algebras.

Now we have:

Proposition 11.2. Let KJ be the étale quadratic algebra such that [KJ ] · [K] · [KE ] = 1 and
set M = E ⊗F KJ .

(i) If KJ is a field, then we have an exact sequence

1 −→ E×/F×NM/E(M×) −→ H1(F, TE,K) −→ H2(F,Res1KJ/F
Gm) −→ H2(E,Res1M/EGm)

The image of H1(F, TE,K) consists of those central simple algebras B over KJ which con-
tain M as a KJ -subalgebra and which admit an involution of the second kind fixing E (or
equivalently, restricting to the nontrivial automorphism of M over E).

(ii) If KJ = F 2, then we have a simplified version of the above sequence

H1(F, TE,K) = Ker(H2(F,Gm) −→ H2(E,Gm)).

Proof. (i) By the exceptional Hilbert Theorem 90, we have a short exact sequence of algebraic
tori:

1 −−−−→ Res1KJ/F
Gm −−−−→ ResE/FRes1M/EGm −−−−→ TE,K −−−−→ 1.
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Now (i) follows from the associated long exact sequence, using

H1(F,Res1KJ/F
Gm) = F×/NKJ/FK

×
J and H1(E,Res1M/EGm) = E×/NM/EM

×.

(ii) One argues as above, except that since KJ = F 2, we have:

1 −−−−→ Gm −−−−→ ResE/FGm −−−−→ TE,K −−−−→ 1.

Thus the long exact sequence gives

1 −−−−→ H1(F, TE,K) −−−−→ H2(F,Gm) −−−−→ H2(E,Gm)

�

11.6. Interpretation. The above description of H1(F, TE,K) fits beautifully with the cor-
respondence between E-twisted composition algebras and conjugacy classes of embeddings
E ↪→ J where J is a Freudenthal-Jordan algebra of dimension 9.

More precisely, Proposition 11.2 exhibits H1(F, TE,K) as the set of isomorphism classes of
triples (B, τ, i) where

• B is a central simple KJ -algebra of degree 3;
• τ is an involution of the second kind on B;
• i : E −→ Bτ is an F -algebra embedding, or equivalently a KJ -algebra embedding
i : M = E⊗FKJ −→ B such that τ pulls back to the nontrivial element of Aut(M/E).

The map π : H1(F, TE,K) −→ H2(F,Res1KJ/F
Gm) sends (B, τ, i) to B. For a fixed

[B] ∈ Ker(H2(F,Res1KJ/F
Gm) −→ H2(E,Res1M/EGm)),

so that B contains M = E ⊗F KJ as an KJ -subalgebra, the fiber of π over [B] is the set of
AutKJ

(B)-conjugacy classes of pairs (τ, i). The Skolem-Noether theorem says that any two
embeddings M ↪→ B are conjugate, and on fixing an embedding i : M ↪→ B, the fiber of π
over [B] is then the set of AutKJ

(B, i)-conjugacy classes of involutions of the second kind on
B which restricts to the nontrivial automorphism of M over E. Therefore, the exact sequence
in Proposition 11.2(i) says that the set of such AutKJ

(B, i)-conjugacy classes of involutions
is identified with E×/F×NM/E(M×). One has a natural map on the fiber π−1([B]) sending
a AutKJ

(B, i)-conjugacy class of involutions to its AutKJ
(B)-conjugacy class. This is the

surjective map described in Corollary 19.31 in [5].

On the other hand, the map sending the triple (B, τ, i) to the pair (B, τ) is the natural
map

H1(F, TE,K) −→ H1(F, PGUKJ
3 )

induced by the map TE,K ↪→ PUKJ
3 where PGUKJ

3 is the identity component of the auto-
morphism group of the Freuthendal-Jordan algebra associated to the distinguished twisted
composition algebra with invariants (E,K).

12. Local Fields

In this section, we specialize and explicate the main result in the case of local fields.
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12.1. Local Fields. Let F be a local field, E an étale cubic F -algebra, and KE the corre-
sponding discriminant algebra. Let K be an étale quadratic F -algebra. We consider

Ω̃E,K = {generic M̃E-orbits on VE with associated quadratic algebra K}
and

ΩE,K = {generic ME-orbits on VE with associated quadratic algebra K}
We have seen that Ω̃E,K has a distinguished element: this is the distinguished point of
H1(TE,K) which is fixed by SE(F )× Z/2Z. Moreover, by Galois cohomological arguments,

Ω̃E,K = H1(F, TE,K)/SE(F )× Z/2Z and ΩE,K = H1(F, TE,K)/Z/2Z

We would like to explicate the sets Ω̃E,K and ΩE,K .

12.2. Cohomology of tori. Recall that in (3.13), we have shown

H1(F, TE,K) = (E× ×K×)0/Im(L×)

where L = E ⊗F K,

(E× ×K×)0 = {(e, ν) ∈ E× ×K× : NE/F (e) = NK/F (ν)}

and the map from L× to (E× ×K×)0 is given by

a 7→ (NL/E(a), NL/K(a)).

This description of H1(F, TE,K) is natural but may not be so explicit. When F is a local
field, we can further explicate this description.

Since the case when E or K is not a field is quite simple, we consider the case when E and
K are both fields. In that case, the norm map induces an isomorphism

E×/NL/E(L×) −→ F×/NK/F (K×) ∼= Z/2Z,

so that any (e, ν) ∈ (E× ×K×)0 has e = NL/E(a) for some a ∈ L×. Hence any element in

H1(F, TE,K) is represented by (1, ν) for some ν ∈ K1 = {ν ∈ K× : NK/F (ν) = 1}. We thus

deduce that, with L1 = {a ∈ L× : NL/E(a) = 1},

H1(F, TE,K) = K1/NL/K(L1) ∼= K×/F×NL/K(L×),

where the last isomorphism is induced by the usual Hilbert Theorem 90. Using this last
expression, we easily see that

H1(F, TE,K) =

{
1 if K 6= KE ;

Z/3Z, if K = KE .

Exchanging the roles of E and K in the above argument, one also has:

H1(F, TE,K) = E1/NL/E(L1)

where now L1 = {a ∈ L× : NL/K(a) = 1}. If E/F is Galois (and K is a field), it follows by
the usual Hilbert Theorem 90 that

H1(F, TE,K) = E1/NL/E(L1) ∼= E×/F×NL/E(E×) = 1,

thus partially recovering the result of the last paragraph.
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Alternatively, we could use Proposition 11.2 to compute H1(F, TE,K). If KJ is a field, then
the only central simple KJ -algebra which admits an involution of the second kind is the split
algebra M3(KJ). Thus we deduce from Proposition 11.2(i) that

H1(F, TE,K) ∼= E×/F×NM/E(M×)

where M = E ⊗F KJ . On the other hand, if KJ is split, then Proposition 11.2(ii) gives

H1(F, TE,K) ∼= Ker(H2(F,Gm) −→ H2(E,Gm))

which is Z/3Z when E is a field.

12.3. Fibers. With the various computations of H1(F, TE,K) given above, it is now not

difficult to show the following proposition which determines |Ω̃E,K | and |ΩE,K |.

Proposition 12.1. We have

E K TE,K H1(F, TE,K) |Ω̃E,K | |ΩE,K |
F ×KE K = KE K× 1 1 1

F ×KE, KE a field field6= KE (K ⊗KE)×/K×E Z/2Z 2 2

F ×KE, KE a field F × F K×E 1 1 1
F 3 field K×/F× ×K×/F× Z/2Z× Z/2Z 2 4

field K = KE E×/F× Z/3Z 2 2
field K 6= KE 1 1 1

Here, the difference in the last two columns reflects the fact that SE(F ) acts trivially on
H1(F, TE,K) except when E = F 3 and K is a field.

12.4. Embeddings into J . The main theorem says that the elements of ΩE,K are in bijec-
tion with the conjugacy classes of embeddings

E ↪→ J

where J is a 9-dimensional Freudethal-Jordan algebra associated to a pair (B, τ) where B is
a central simple algebra over the quadratic algebra KJ and τ is an involution of the second
kind on B. We now describe the elements of ΩE,K in terms of such embeddings.

• when F is p-adic and K = KE so that KJ = F × F is split, then

(B, τ) = (D ×Dop, sw)

where D is a central simple F -algebra of degree 3, and sw denotes the involution
which switches the two factors. Thus, there are 2 possible J ’s in this case: the
Jordan algebra J+ attached to M3(F ) or the Jordan algebra J− attached to a cubic
division F -algebra (and its opposite). In either case, the set of embeddings E −→ J
is either empty or a single conjugacy class, and it is empty if and only if J = J− and
E is not a field. Thus when K = KE , we have:

Ω̃E,K = ΩE,K =

{
{E → J+, E → J−} if E is a field;

{E → J+}, if E is not a field.

On the other hand, when KJ is a field, then B = M3(KJ), and there is a unique
isomorphism class of involution of the second kind on B, given by conjugation by
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a nondegenerate hermitian matrix, so that J is isomorphic to the Jordan algebra of
3 × 3-Hermitian matrices with entries in KJ . According the the proposition, there
is a unique conjugacy class of embedding E ↪→ J unless E = F × KE and K is a
field with K 6= KE . In the exceptional case, there are two subalgebras E ⊂ J up to
conjugacy. We may write down the 2 non-F -isomorphic twisted composition algebras
corresponding to these. The twisted composition algebra can be realised on

E ⊗F K = K × (KE ⊗K).

Let {1, α} denote representatives of F×/NK×. Then the 2 twisted composition alge-
bras correspond to

(e, ν) = ((1, 1), 1) or ((1, α), α) ∈ (F ×KE)× ×K×.

We see that these two twisted composition algebras are not isomorphic because they
are not isomorphic as quadratic spaces over E (even allowing for twisting by SE(F )).

Further, when E = F 3, there are in fact 4 conjugacy classes of embeddings E ↪→ J .
This corresponds to the fact that the F -isomorphism class of the twisted composition
algebras associated to ((1, α), α) above breaks into 3 E-isomorphism classes. These
are associated to

(e1, ν1) = ((1, α, α), α), e2 = ((α, 1, α), α), e2 = ((α, α, 1), α).

• when F = R, then E = R3 or R× C. When KJ = R2 is split, then there is a unique
J , namely the one associated to M3(R), and there is a unique conjugacy class of
embeddings E ↪→ J .

When KJ = C, then there are two possible J ’s, associated to B = M3(C) and the
involution τ given by the conjugation action of two Hermitian matrices with signature
(1, 2) and (3, 0). We denote these two Jordan algebras by J1,2 and J3,0.

When E = R3 and K = C, we have |ΩE,K | = 2. However, the two elements in
question correspond to embeddings

R3 ↪→ J3,0 and R3 ↪→ J1,2.

Thus, we see that these subalgebras are unique up to conjugacy. When E = R × C
and K = R2, we have |ΩE,K | = 1. This reflects the fact that there is no embedding
R× C ↪→ J3,0, and there is a unique conjugacy class of embeddings C ↪→ J1,2.
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