Solutions should be worked out individually. Due 14 April 2009.

(1) Let \(f \) be analytic on \(\text{Ann}(0, R, \infty) \), where \(0 \leq R < \infty \). Then \(f \) has a Laurent series expansion
\[
f(z) = \sum_{k=0}^{\infty} a_k z^k + \sum_{k=1}^{\infty} b_k z^{-k},
\]
valid on \(\text{Ann}(0, R, \infty) \). Assume that \(\lim_{|z| \to \infty} |f(z)| = \infty \), i.e., for all \(M < \infty \), there exists \(r, R \leq r < \infty \), so that \(|f(z)| > M \) for all \(z \) with \(|z| > r \). Show that there exists \(n \in \mathbb{N} \) such that \(a_k = 0 \) for all \(k > n \).
[Consider the function \(f(1/z) \).]

(2) Assume that the integral \(\int_{-\infty}^{\infty} \frac{\log |x|}{x^2 + 1} \, dx \) converges. Find its value. Justify your steps fully.
[Integrate \(\frac{\log(-iz)}{z^2 + 1} \) around a semi-annulus in the upper half plane.]

(3) Let \(h \) be a nonconstant analytic function on an open set \(U \) and let \(z_0 \in U \). Suppose that \(f \) is analytic on \(B'(h(z_0), r) \) for some \(r > 0 \) and that \(f \) has an essential singularity at \(h(z_0) \). Show that \(f \circ h \) has an essential singularity at \(z_0 \).
[Combine the Casorati-Weierstrass Theorem and the Open Mapping Theorem.]

(4) Let \(U \) be an open connected set and let \(\gamma \) be a piecewise smooth closed path so that \(U \cap \{\gamma\} = \emptyset \). Show that the function \(f(z) = n(\gamma, z) \) is constant on \(U \).