Weak* Convergence in Higher Duals of Orlicz Spaces

Denny H. Leung

Stable URL:
http://links.jstor.org/sici?sici=0002-9939%28198807%29103%3A3C797%3AWCIHDO%3E2.0.CO%3B2-C

Proceedings of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
WEAK* CONVERGENCE IN HIGHER DUALS OF ORLCZ SPACES

DENNY H. LEUNG

(Communicated by William J. Davis)

ABSTRACT. It is shown that the spaces \((\Sigma \oplus E)_{l=1}^{\infty}(\Gamma)\) are Grothendieck spaces for a class of Banach lattices \(E\) which includes the Orlicz spaces with weakly sequentially complete duals.

A Banach space is said to be a Grothendieck space if weak* and weak sequential convergence coincide in the dual. The simplest nontrivial example of a Grothendieck space is \(l^\infty\). In [7], the question of when the space \((\Sigma \oplus E)_{l=1}^{\infty}(\Gamma)\) is Grothendieck is treated. In particular, it is shown there that \((\Sigma \oplus L^p)_{l=1}^{\infty}(\Gamma)\) is Grothendieck if \(2 \leq p < \infty\) and \(\Gamma\) is countable. In this paper, we extend this result to a class of Banach lattices which includes the Orlicz spaces with weakly sequentially complete duals. We close these introductory remarks by mentioning that H. P. Lotz [6] has shown recently that the weak \(L^p\) spaces are Grothendieck spaces.

1. Let us start by fixing some notation. Let \(E\) be a (real) Banach lattice, \(\Gamma\) an arbitrary index set, and \(F = (\Sigma \oplus E)_{l=1}^{\infty}(\Gamma)\). For \(x \in F\), we write \(x = (x(\gamma))\), where \(x(\gamma) \in E\) for every \(\gamma \in \Gamma\). If \(x' \in F'\) and \(A \subset \Gamma\), define \(x'_{\chi_A} \in F'\) by \(\langle x, x'_{\chi_A} \rangle = \langle x_{\chi_A}, x' \rangle\) for all \(x \in F\). It is easily seen that the equation \(\mu_{x'}(A) = \|x'_{\chi_A}\|\) defines a finitely additive measure on \(\Gamma\); consequently, we may identify \(\mu_{x'}\) with an element of \(l^\infty(\Gamma)'\).

LEMMA 1. If \((x'_i)\) is a positive weak* null sequence in \(F'\), then \((\mu_{x'_i})\) is relatively weakly compact in \(l^\infty(\Gamma)'\).

PROOF. Let \(\mu_i = \mu_{x'_i}\). If \((\mu_i)\) is not relatively weakly compact, then there exist a partition \((A_i)\) of \(\Gamma\) and \(\varepsilon > 0\) such that \(\mu_i(A_i) > \varepsilon\) for all \(i\). By definition of \(\mu_i\), there is a positive normalized sequence \((x_i) \subset F\) such that \(x_i_{\chi_{A_i}} = 0\) and \(\langle x_i, x'_i \rangle > \varepsilon\) for all \(i\). Let \(x = \sup_i x_i\). Then \(\|x\| = 1\) and \(\langle x, x'_i \rangle > \varepsilon\) for all \(i\), contrary to the fact that \((x'_i)\) is weak* null.

THEOREM 2. Let \(E\) be a Banach lattice with positive cone \(E_+\). Suppose there exist a function \(\tau: E_+ \to [0, \infty]\) and a positive real number \(M\) with the following properties:

1. \(\tau(0) = 0;\)
2. \(\|x\| \leq 1 \Rightarrow \tau(x) \leq M;\)
3. For every disjoint sequence \((x_i)_{i=1}^n \subset E_+, \sum_{i=1}^n \tau(x_i) \leq M\tau(\sum_{i=1}^n x_i);\) and
4. For every sequence \((x_i)_{i=1}^\infty \subset E_+\) with \(\sum_i \tau(x_i) \leq 1\), \(\sup_i x_i\) exists and \(\|\sup_i x_i\| \leq M\).

Received by the editors February 2, 1987 and, in revised form, May 21, 1987.

©1988 American Mathematical Society
0002-9939/88 $1.00 + $.25 per page

797
Then, for any index set Γ, every disjoint positive weak* null sequence (x'_i) in $F = (\Sigma \oplus E)_{t \in \Gamma}$ has a weakly Cauchy subsequence.

PROOF. Assume the contrary. We obtain a disjoint positive weak* null sequence (x'_i) which is not weakly sequentially precompact. By Rosenthal's theorem, we may assume that (x'_i) is equivalent to the l^1 basis. Since (x'_i) is lattice isomorphic to l^1, there exist $\varepsilon > 0$ and a positive sequence $(x_{ij})_{i \geq j} \subset F$ with the following properties:

(a) For every i, $(x_{ij})_{1 \leq j \leq i}$ is a pairwise disjoint sequence such that $\|\sum_{j \leq i} x_{ij}\| < 1$; and

(b) $\langle x_{ij}, x'_j \rangle > \varepsilon$ for $1 \leq j \leq i$.

Define $A_{ij} \subseteq \Gamma$ by $A_{ij} = \{\gamma | \tau(x_{ij}(\gamma)) \geq 1/\sqrt{i}\}$. Note that $\|\sum_{j \leq i} x_{ij}\| < 1 \Rightarrow \|\sum_{j \leq i} x_{ij}(\gamma)\| < 1$ for all $\gamma \Rightarrow \tau(\sum_{j \leq i} x_{ij}(\gamma)) \leq M$. Hence $\sum_{j \leq i} \tau(x_{ij}(\gamma)) \leq M^2$ since the x_{ij}'s are disjoint. Thus

\[
\bigcap_{j \in B} A_{ij} = \emptyset
\]

for all $B \subseteq \{1, 2, \ldots, i\}$ with card $B > M^2 \sqrt{i}$. Recall the sequence (μ_i) as defined in the proof of Lemma 1. Fix i and let $C_i = \{j \leq i | \mu_j(A_{ij}) < \varepsilon/2\}$. For $j \in C_i$, we let $z_j = x_{ij} \chi_{A_{ij}}$, then

\[
\langle z_j, x'_j \rangle \geq \langle x_{ij}, x'_j \rangle - \langle x_{ij}, x'_j \chi_{A_{ij}} \rangle \geq \varepsilon - \|x_{ij}\| \mu_j(A_{ij}) \geq \varepsilon/2
\]

while $\tau(z_j(\gamma)) \leq 1/\sqrt{i}$ for all γ by definition of A_{ij}. If $(\text{card } C_i)_{i=1}^\infty$ is unbounded, there exists an infinite subset I of \mathbb{N} such that for every $i \in I$, there exists $j_i \in C_i$ with the j_i's distinct for different i's. Without loss of generality, we may also assume that $\sum_{i \in I} 1/\sqrt{i} \leq 1$. Choose z_{j_i} as given above. Since

\[
\sum_i \tau(z_{j_i}(\gamma)) \leq \sum_{i \in I} \frac{1}{\sqrt{i}} \leq 1
\]

for all γ, $z(\gamma) \equiv \sup_i z_{j_i}(\gamma)$ exists for all γ and $\|z(\gamma)\| \leq M$ by property (4). Hence $z \equiv (z(\gamma)) \in F$. However,

\[
\langle z, x'_j \rangle \geq \langle z_{j_i}, x'_j \rangle \geq \varepsilon/2
\]

for all $i \in I$, contrary to the fact that (x'_i) is weak* null. Hence $(\text{card } C_i)_{i=1}^\infty$ is bounded by some constant $K < \infty$. Now μ_i is relatively weakly compact in the AL-space $l^\infty(\Gamma)'$ by Lemma 1, hence there exists $0 \leq \mu \in l^\infty(\Gamma)'$ such that $(\mu_i) \subset [0, \mu] + (\varepsilon/4)U$, where U denotes the unit ball of $l^\infty(\Gamma)'$. Let $D_i = \{j \leq i | \mu_j(A_{ij}) \geq \varepsilon/2\}$ for every i. By the above, card $D_i \geq i - K$ for all i. Also $\mu(A_{ij}) \geq \varepsilon/2$ for all $j \in D_i$. Using equation $(*)$, we see that

\[
\sum_{j \in D_i} \mu(A_{ij}) \leq M^2 \sqrt{i} \mu(\Gamma)
\]

for all i and hence $\mu(\Gamma) \geq (\varepsilon/4M^2 \sqrt{i}) \text{card } D_i \geq (\varepsilon/4M^2 \sqrt{i})(i - K)$ for all i. This contradiction proves the theorem.
WEAK* CONVERGENCE IN HIGHER DUALS OF ORLICZ SPACES

THEOREM 3. Let E be a countably order complete Banach lattice which satisfies a nontrivial upper estimate. If there is a function τ on E as in Theorem 2, then $F = (\Sigma \oplus E)_{l^\infty(\Gamma)}$ is a Grothendieck space.

PROOF. Because of the upper estimate condition on E, F' is weakly sequentially complete. By [2], it suffices to show that any disjoint positive weak* null sequence in F' is weakly null. But this follows from Theorem 2 and the weak sequential completeness of F'.

REMARK. Some condition in addition to the countable order completeness and the upper estimate has to be imposed on E in order for the conclusion of Theorem 3 to hold. In [3], a sequence of finite dimensional lattices (E_n) which satisfy a uniform upper p-estimate is constructed such that $F = (\Sigma \oplus E_n)_{l^\infty(\Gamma)}$ is not Grothendieck. Hence $E = (\Sigma \oplus E)_{l^p}$ satisfies an upper p-estimate and is obviously order complete while $(\Sigma \oplus E)_{l^\infty(\Gamma)}$ is not Grothendieck.

COROLLARY 4. Under the hypotheses of Theorem 3, all the even duals of E are Grothendieck spaces.

PROOF. By [1, Proposition 1.20], E'' is isomorphic to a complemented subspace of some ultraproduct $E_{E''}$; hence E'' is a quotient space of some $(\Sigma \oplus E)_{l^\infty(\Gamma)}$. Simple induction now shows that all even duals of E are quotients of (different) $(\Sigma \oplus E)_{l^\infty(\Gamma)}$. But quotients of Grothendieck spaces are themselves Grothendieck.

2. We now apply the results in §1 to Orlicz spaces.

DEFINITION 5. An Orlicz function φ is a continuous nondecreasing and convex function defined for $t \geq 0$ such that $\varphi(0) = 0$ and $\lim_{t \to \infty} \varphi(t) = \infty$.

DEFINITION 6. Let (Ω, Σ, μ) be a measure space and let φ be an Orlicz function, the space $L^\omega(\Omega, \Sigma, \mu)$ is the Banach space consisting of all measurable functions f such that $\int \varphi(|f(x)|/\rho) \, d\mu(x) < \infty$ for some $\rho > 0$ with the norm

$$\|f\| = \inf \left\{ \rho > 0 \mid \int \varphi(|f(x)|/\rho) \, d\mu(x) \leq 1 \right\}.$$

For details concerning Orlicz spaces, we refer the reader to [4, 5]. Here, we only wish to point out that (1) every Orlicz space is obviously order complete, and (2) if an Orlicz space L^ω has a weakly sequentially complete dual, then it satisfies a nontrivial upper estimate. Now, if we define $\tau: (L^\omega)_+ \to [0, \infty]$ by $\tau(f) = \int \varphi(f(x)) \, d\mu(x)$, then it is easily seen that τ satisfies the conditions in Theorem 2. Hence, by Theorem 3, we get

THEOREM 6. If L^ω has a weakly sequentially complete dual, then $(\Sigma \oplus L^\omega)_{l^\infty(\Gamma)}$ is Grothendieck for every index set Γ. Consequently, all even duals of L^ω are Grothendieck.

REMARK. For $1 \leq p < \infty$, if we let $\varphi(t) = t^p$, then $L^\omega = L^p$. Thus the results of Theorem 6 apply in particular to L^p for $1 < p < \infty$.

REFERENCES

DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D.C. 20064

Current address: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712