SEMILATTICE STRUCTURES OF SPREADING MODELS

DENNY H. LEUNG AND WEE-KEE TANG

Abstract. Given a Banach space X, denote by $SP_w(X)$ the set of equivalence classes of spreading models of X generated by normalized weakly null sequences in X. It is known that $SP_w(X)$ is a semilattice, i.e., it is a partially ordered set in which every pair of elements has a least upper bound. We show that every countable semilattice that does not contain an infinite increasing sequence is order isomorphic to $SP_w(X)$ for some separable Banach space X.

Given a normalized basic sequence (y_i) in a Banach space and $\varepsilon_n \downarrow 0$, using Ramsey’s Theorem, one can find a subsequence (x_i) and a normalized basic sequence (\tilde{x}_i) such that for all $n \in \mathbb{N}$ and $(a_i)_{i=1}^n \subseteq [-1, 1],

$$|| \sum a_i x_{k_i} || - || \sum a_i \tilde{x}_i || < \varepsilon_n$$

for all $n \leq k_1 < \cdots < k_m$. The sequence (\tilde{x}_i) is called a spreading model of (x_i). It is well-known that if (x_i) is in addition weakly null, then (\tilde{x}_i) is 1-spreading and suppression 1-unconditional. See [3, 5] for more about spreading models. A spreading model (\tilde{x}_i) is said to (C-) dominate another spreading model (\tilde{y}_i) if there is a $C < \infty$ such that for all $(a_i) \subseteq \mathbb{R},$

$$|| \sum a_i \tilde{y}_i || \leq C \sum a_i \tilde{x}_i ||.$$

The spreading models (\tilde{x}_i) and (\tilde{y}_i) are said to be equivalent if they dominate each other. Let $[(\tilde{x}_i)]$ denote the class of all spreading models which are equivalent to (\tilde{x}_i). Let $SP_w(X)$ denote the set of all $[(\tilde{x}_i)]$ generated by normalized weakly null sequences in X. If $[(\tilde{x}_i)], [(\tilde{y}_i)] \in SP_w(X)$, we write $[(\tilde{x}_i)] \leq [(\tilde{y}_i)]$ if (\tilde{y}_i) dominates (\tilde{x}_i). $(SP_w(X), \leq)$ is a partially ordered set. The paper [2] initiated the study of the order structures of $SP_w(X)$. It was established that every countable subset of $(SP_w(X), \leq)$ admits an upper bound ([2, Proposition 3.2]). Moreover, from the proof of this result, it follows that every pair of elements in $(SP_w(X), \leq)$ has a least upper bound. In other words, $(SP_w(X), \leq)$ is a semilattice. In [6], it was shown that if $SP_w(X)$ is countable, then it cannot admit a strictly increasing infinite sequence $(\tilde{x}_1) < (\tilde{x}_2) < \cdots$. In [4], two methods of construction, utilizing Lorentz sequence spaces and Orlicz sequence spaces respectively, were used to produce Banach spaces X so that $SP_w(X)$ has certain prescribed order.

2000 Mathematics Subject Classification. 46B20, 46B15.

Key words and phrases. Spreading models, semilattices, Lorentz sequence spaces.

Research of the first author was partially supported AcRF project no. R-146-000-086-112.
structures. In the present paper, building on the techniques employed in [4, §2], we show that every countable semilattice that has no infinite increasing sequence is order isomorphic to $SP_w(X)$ for some Banach space X. This gives an affirmative answer to Problem 1.15 in [4]. (See, however, the remark at the end of the paper.)

1. A Representation Theorem for Semilattices

Any collection of subsets of a set V that is closed under the taking of finite unions is a semilattice under the order of set inclusion. In this section, we show that any countable semilattice that does not admit an infinite increasing sequence may be represented in such a way using a countable set V. The result may be of independent interest.

Theorem 1. Let L be a countable semilattice with no infinite increasing sequences. Then there exist a countable set V and an injective map $T : L \rightarrow 2^V \setminus \{\emptyset\}$ that preserves the semilattice structure of L, i.e., $T(x \lor y) = T(x) \cup T(y)$ for all $x, y \in L$.

Suppose that L is a semilattice that satisfies the hypothesis of Theorem 1. Note that every nonempty subset of L has at least one maximal element; for otherwise, it will admit an infinite increasing sequence. Set $L_0 = L$. If L_α is defined for some countable ordinal α and $L_\alpha \neq \emptyset$, let $L_{\alpha+1} = L_\alpha \setminus \{\text{maximal elements in } L_\alpha\}$. If α is a countable limit ordinal such that $L_{\alpha'} \neq \emptyset$ for all $\alpha' < \alpha$, let $L_{\alpha} = \bigcap_{\alpha' < \alpha} L_{\alpha'}$. Since (L_{α}) is a strictly decreasing transfinite sequence of subsets of the countable set L, $L_\alpha = \emptyset$ for some countable ordinal α. Let α_0 be the smallest ordinal such that $L_{\alpha_0} = \emptyset$.

Enumerate L as a transfinite sequence $(e_\beta)_{\beta < \beta_0}$ so that if $e_\beta_1 \in L_{\alpha_1} \setminus L_{\alpha_1+1}$ and $e_\beta_2 \in L_{\alpha_2} \setminus L_{\alpha_2+1}$ for some $\alpha_1 < \alpha_2 < \alpha_0$, then $\beta_1 < \beta_2$. If $1 \leq \beta \leq \beta_0$, let $U_\beta = \{e_\beta' : \beta' < \beta\}$. Note that $L = U_{\beta_0}$.

Lemma 2.

(a) e_β is a minimal element in $U_{\beta+1}$.

(b) If $e_\beta = e_{\beta_1} \lor e_{\beta_2}$ (least upper bound taken in L), then $\beta \leq \min \{\beta_1, \beta_2\}$.

(c) If $e_{\beta_1}, e_{\beta_2} \in U_\beta$, then $e_{\beta_1} \lor e_{\beta_2}$ belongs to U_β.

Proof. (a) Suppose on the contrary that e_β is not a minimal element in $U_{\beta+1}$. Then there exists $e_{\beta'} \in U_{\beta+1}$ with $e_{\beta'} < e_\beta$. It follows from the definition of $U_{\beta+1}$ that $\beta' < \beta$. If $e_\beta \in L_\alpha \setminus L_{\alpha+1}$ and $e_{\beta'} \in L_{\alpha'} \setminus L_{\alpha'+1}$, then $\alpha' \leq \alpha$ and hence $L_\alpha \subseteq L_{\alpha'}$. Since $e_\beta, e_{\beta'} \in L_{\alpha'}$ and $e_{\beta'} < e_\beta$, $e_{\beta'}$ is not maximal in $L_{\alpha'}$. Thus $e_{\beta'} \in L_{\alpha'+1}$, a contradiction.

(b) Suppose that $\beta_1 < \beta$. Then $e_{\beta_1} \in U_{\beta+1}$ and $e_{\beta_1} < e_\beta$, contrary to the minimality of e_β in $U_{\beta+1}$. Thus $\beta \leq \beta_1$. Similarly, $\beta \leq \beta_2$.

(c) Follows immediately from (b). \qed

If $1 \leq \beta < \omega_1$, write $\beta = \gamma + n$, where γ is a limit ordinal, $n < \omega$, and let V_β denote the ordinal interval $[0, \gamma + 2n)$. We define a family of maps $T_\beta : U_\beta \rightarrow 2^{V_\beta} \setminus \{\emptyset\}$, $1 \leq \beta \leq \beta_0$, inductively so that $T = T_{\beta_0}$ is the map
sought for in Theorem 1. Let \(T_1 : U_1 = \{ e_0 \} \to 2^{V_1} \setminus \{ \emptyset \} \) be defined by
\[T_1(e_0) = \{ 0, 1 \} . \]
If \(T_\beta \) has been defined, \(1 \leq \beta < \beta_0 \), let
\[T_{\beta+1}(x) = \begin{cases} T_\beta(x) \cup \{ \gamma + 2n, \gamma + 2n + 1 \} & \text{if } x \in U_{\beta+1} \setminus \{ e_\beta \}, \\ \bigcap_{e_\beta < z \in U_\beta} T_\beta(z) \cup \{ \gamma + 2n + 1 \} & \text{if } x = e_\beta. \end{cases} \]

When \(\beta \leq \beta_0 \) is a limit ordinal and \(e_\beta' \in U_\beta \), let \(T_\beta(e_\beta') = \bigcup_{\beta' < \xi < \beta} T_\xi(e_\beta') \). The next result, which shows the compatibility of the definitions of \(T_\beta \) for different \(\beta \)’s, is the key to the subsequent arguments.

Lemma 3. If \(1 \leq \beta_1 < \beta_2 \leq \beta_0 \) and \(\beta_i = \gamma_i + n_i, \ i = 1, 2 \), then
\[T_{\beta_2}(e_{\beta_i}) = T_{\beta_1+1}(e_{\beta_i}) \cup [\gamma_1 + 2n_1 + 2, \gamma_2 + 2n_2). \]

Proof. If \(\beta_2 = \beta_1 + 1 \), the assertion holds clearly. Suppose that the assertion holds for some \(\beta_2 > \beta_1 \). By the definition of \(T_{\beta_2+1} \),
\[T_{\beta_2+1}(e_{\beta_i}) = T_{\beta_2}(e_{\beta_i}) \cup \{ \gamma_2 + 2n_2, \gamma_2 + 2n_2 + 1 \} \]
\[= T_{\beta_1+1}(e_{\beta_i}) \cup [\gamma_1 + 2n_1 + 2, \gamma_2 + 2n_2 + 1] \]
\[= T_{\beta_1+1}(e_{\beta_i}) \cup [\gamma_1 + 2n_1 + 2, \gamma_2 + 2n_2 + 2). \]

Suppose that \(\beta_2 \leq \beta_0 \) is a limit ordinal and the assertion holds for all \(\beta_1 < \xi < \beta_2 \). For such \(\xi \), let \(\xi = \gamma_\xi + n_\xi \). By the inductive hypothesis,
\[T_{\xi}(e_{\beta_i}) = T_{\beta_1+1}(e_{\beta_i}) \cup [\gamma_1 + 2n_1 + 2, \gamma_\xi + 2n_\xi \). \]
Since \(\beta_2 \) is a limit ordinal, we have
\[T_{\beta_2}(e_{\beta_i}) = \bigcup_{\beta_1 < \xi < \beta_2} T_{\xi}(e_{\beta_i}) \]
\[= T_{\beta_1+1}(e_{\beta_i}) \cup [\gamma_1 + 2n_1 + 2, \beta_2) \]
\[= T_{\beta_1+1}(e_{\beta_i}) \cup [\gamma_1 + 2n_1 + 2, \gamma_2 + 2n_2), \]
as required. (Note that \(n_2 = 0 \) since \(\beta_2 \) is a limit ordinal). \(\square \)

Lemma 4. The map \(T_\beta : U_\beta \to 2^{V_\beta} \setminus \{ \emptyset \} \) is injective if \(1 \leq \beta \leq \beta_0 \).

Proof. Suppose that \(e_\beta_1 \) and \(e_\beta_2 \) are distinct elements in \(U_\beta \), with \(\beta_1 < \beta_2 < \beta \). Write \(\beta_2 = \gamma_2 + n_2 \). It follows from Lemma 3 that \(\gamma_2 + 2n_2 \in T_\beta(e_{\beta_1}) \setminus T_\beta(e_{\beta_2}) \). \(\square \)

Proposition 5. If \(1 \leq \beta \leq \beta_0 \), then \(T_\beta(x \lor y) = T_\beta(x) \cup T_\beta(y) \) for all \(x, y \in U_\beta \). In particular, \(T_\beta(x) \subseteq T_\beta(y) \) if \(x \leq y \).

Proof. The second statement follows easily from the first. We prove the first statement by induction on \(\beta \). The result is clear if \(\beta = 1 \). Suppose that the assertion is true for some \(\beta, 1 \leq \beta < \beta_0 \). Let \(x = e_\beta_1, y = e_\beta_2 \in U_{\beta+1} \). We may assume that \(\beta_1 < \beta_2 < \beta + 1 \). Write \(\beta = \gamma + n \), and \(\beta_i = \gamma_i + n_i \), \(i = 1, 2 \), and consider two cases.
Case 1. $\beta_1 < \beta_2 < \beta$. By Lemma 3 and the inductive hypothesis,
\[
T_{\beta+1}(e_{\beta_1}) \cup T_{\beta+1}(e_{\beta_2}) = T_{\beta+1}(e_{\beta_1}) \cup [\gamma_1 + 2n_1 + 2, \gamma + 2n] \cup T_{\beta+1}(e_{\beta_2}) \cup [\gamma_2 + 2n_2 + 2, \gamma + 2n + 1] = T_{\beta}(e_{\beta_1}) \cup T_{\beta}(e_{\beta_2}) \cup [\gamma + 2n, \gamma + 2n + 1] = T_{\beta+1}(e_{\beta_1} \lor e_{\beta_2}),
\]
by definition of $T_{\beta+1}$, since $e_{\beta_1} \lor e_{\beta_2} \neq e_{\beta}$ by part (b) of Lemma 2.

Case 2. $\beta_1 < \beta_2 = \beta$. In this case,
\[
T_{\beta+1}(x) \cup T_{\beta+1}(y) = \bigcap_{e_{\beta} \in U_{\beta}} [T_{\beta}(x) \cup T_{\beta}(z)] \cup [\gamma + 2n, \gamma + 2n + 1].
\]
Note that by part (b) of Lemma 2, $x \lor e_{\beta} = e_{\xi}$ for some $\xi \leq \beta_1$. Hence, $x \lor e_{\beta} \in U_{\beta+1} \setminus \{e_{\beta}\} = U_{\beta}$. Thus, it suffices to show that
\[
\bigcap_{e_{\beta} \in U_{\beta}} [T_{\beta}(x) \cup T_{\beta}(z)] = T_{\beta}(x \lor e_{\beta}) = T_{\beta}(x \lor y).
\]
Since $e_{\beta} < x \lor e_{\beta} \in U_{\beta}$, $\bigcap_{e_{\beta} \in U_{\beta}} T_{\beta}(z) \subseteq T_{\beta}(x \lor e_{\beta})$. By the inductive hypothesis, $T_{\beta}(x) \subseteq T_{\beta}(x \lor e_{\beta})$. It follows that $\bigcap_{e_{\beta} \in U_{\beta}} [T_{\beta}(x) \cup T_{\beta}(z)] \subseteq T_{\beta}(x \lor e_{\beta})$. On the other hand, if $e_{\beta} < z \in U_{\beta}$, then $x \lor e_{\beta} \leq x \lor z \in U_{\beta}$. By the inductive hypothesis, $T_{\beta}(x \lor e_{\beta}) \subseteq T_{\beta}(x \lor z) = T_{\beta}(x) \cup T_{\beta}(z)$. Therefore, $T_{\beta}(x \lor e_{\beta}) \subseteq \bigcap_{e_{\beta} \in U_{\beta}} [T_{\beta}(x) \cup T_{\beta}(z)]$.

Suppose that β is a limit ordinal and the Proposition holds for all $\beta' < \beta$. Let $x, y \in U_{\beta}$. We may assume that $x = e_{\beta_1}$ and $y = e_{\beta_2}$ for some $\beta_1 < \beta_2 < \beta$. Let $\beta_i = \gamma_i + n_i$, $i = 1, 2$. Using Lemma 3 and the inductive hypothesis,
\[
T_{\beta}(x) \cup T_{\beta}(y) = T_{\beta+1}(e_{\beta_1}) \cup T_{\beta+1}(e_{\beta_2}) \cup \gamma_1 + 2n_1 + 2, \beta) = T_{\beta+1}(e_{\gamma_1}) \cup T_{\beta+1}(e_{\gamma_2}) \cup \gamma_2 + 2n_2 + 2, \beta) = T_{\beta+1}(e_{\gamma_1} \lor e_{\gamma_2}) \cup \gamma_2 + 2n_2 + 2, \beta).
\]
By (b) of Lemma 2, $e_{\beta_1} \lor e_{\beta_2} = e_{\eta}$ for some $\eta \leq \beta_1$. By Lemma 3,
\[
T_{\beta+1}(e_{\beta_1} \lor e_{\beta_2}) = T_{\eta+1}(e_{\eta}) \cup \gamma_\eta + 2n_\eta + 2, \gamma_2 + 2n_2 + 2),
\]
and $T_{\beta+1}(e_{\beta_1} \lor e_{\beta_2}) = T_{\eta+1}(e_{\eta}) \cup \gamma_\eta + 2n_\eta + 2, \beta)$,
where $\eta = \gamma_\eta + n_\eta$. Combining the three preceding equations gives $T_{\beta}(x) \cup T_{\beta}(y) = T_{\beta}(x \lor y)$. \hfill \Box
Proof of Theorem 1. Since $L = U_{\beta_0}$, Theorem 1 follows immediately from Lemma 4 and Proposition 5 by taking $\beta = \beta_0$ in each instance. \hfill \Box

2. Good Lorentz Functions

A Lorentz sequence is a non-increasing sequence $(w(n))_{n=1}^\infty$ of positive numbers such that $w(1) = 1$, $\lim_n w(n) = 0$ and $\sum_{n=1}^\infty w(n) = \infty$. A Lorentz sequence is C-submultiplicative if $S(mn) \leq CS(m)S(n)$ for all $m, n \in \mathbb{N}$, where $S(n) = \sum_{k=1}^n w(k)$. In [4, §2], an infinite sequence of 1-submultiplicative Lorentz sequences is constructed so that the maxima of any two incomparable finite subsets are incomparable (see [4, Proposition 2.6]). For our purpose, we require an infinite sequence of C-submultiplicative Lorentz sequences so that the supremum of any (finite or infinite) subset remains a C-submultiplicative Lorentz function, and that the suprema of any two incomparable (finite or infinite) subsets are incomparable (Proposition 10). This is done by tweaking the arguments in [4, §2]. Following [4], we will find it more convenient to work with functions defined on real intervals. If $2 \leq N < \infty$, a good Lorentz function (GLF) on $(0, N)$ is a function $w : (0, N] \to (0, \infty)$ such that

(1) $w(x) = 1$, $x \in (0, 2]$,
(2) w is nonincreasing, and
(3) If $1 \leq x, y \leq xy \leq N$, then $\int_0^x w \leq \int_0^y w$.

A GLF on $(0, \infty)$ (or simply a GLF) is a function $w : (0, \infty) \to (0, \infty)$ such that $w|_{(0, N]}$ is a GLF on $(0, N]$ for any $N \geq 2$, $\lim_{x \to \infty} w(x) = 0$ and $\int_0^\infty w = \infty$. It is an easy exercise to verify that if w is a GLF, then $(w(n))_{n=1}^\infty$ is a 4-submultiplicative Lorentz sequence.

If (u_i) is a finite or infinite sequence of real-valued functions with pairwise disjoint domains, let $\oplus_i u_i$ denote the set theoretic union. The constant 1 function with domain I is denoted by 1_I. We now recall the relevant facts from [4]. Note that the quantity $S(x)$ there corresponds to $\int_0^x w$ in our notation.

Lemma 6. [4, Lemma 2.2] Let w be a GLF on $(0, N]$, $N \geq 2$. Then there exists $\varepsilon_0 > 0$ such that for all $\varepsilon < \varepsilon_0$, $w \oplus \varepsilon 1_{(N, N^2]}$ is a GLF on $(0, N^2]$.

Repeated applications of Lemma 6 yield

Lemma 7. Let G be a finite set of GLF’s on $(0, N]$, $N \geq 2$. For any $N' > N$ and any $\varepsilon > 0$, there is a function $v : (N, N'] \to (0, \infty)$ such that $w \oplus v$ is a GLF on $(0, N']$ for all $w \in G$, $v(x) \leq \varepsilon$, $x \in (N, N']$, and $\int_N^{N'} v < \varepsilon$.

On the other hand, the proof of [4, Lemma 2.4] allows us to obtain GLF extensions with large total weight.

Lemma 8. Let G be a finite set of GLF’s on $(0, N]$, $N \geq 2$ and set $K = \min_{w \in G} \int_0^N w$. For any $\varepsilon > 0$, there is a function $v : (N, N'] \to (0, \infty)$, $N' > N$, such that
Proposition 10. There exists an infinite sequence \((0, \epsilon)\), \(N \geq 2\). For any \(K < \infty\) and any \(\epsilon > 0\), there is a function \(v : (N, N') \rightarrow (0, \infty)\), \(N' > N\), such that

1. \(v(x) \leq \epsilon, x \in (N, N']\),
2. \(\int_{N}^{N'} v \geq \frac{K}{2}\).

We may repeat the preceding lemma to obtain

Lemma 9. Let \(G\) be a finite set of GLF’s on \((0, N]\), \(N \geq 2\). For any \(K < \infty\) and any \(\epsilon > 0\), there is a function \(v : (N, N') \rightarrow (0, \infty)\), \(N' > N\), such that

1. \(\forall w \in G, w \oplus v \text{ is a GLF on } (0, N']\),
2. \(v(x) \leq \epsilon, x \in (N, N']\),
3. \(\int_{N}^{N'} v \geq \frac{K}{2}\).

Proposition 10. There exists an infinite sequence \((w_p)_{p=1}^\infty\) of GLF’s on \((0, \infty)\) such that for every nonempty \(M \subseteq \mathbb{N}\) and every \(p' \not\in M\),

1. \(w_M = \sup_{p \in M} w_p \text{ is a GLF on } (0, \infty)\),
2. \(\sup_n \int_0^n w_{p'} = \infty\).

Proof. The desired family of incomparable GLF’s is constructed by defining its elements inductively on successive intervals. On each of the segments, each of the \(w_p\)’s is chosen to be either “high” or “low”.

Let \((p_i, q_i)_{i=1}^\infty\) be an enumeration of \(\{(p, q) : p < q, p, q \in \mathbb{N}\}\), and fix a positive sequence \((\varepsilon_i)\) decreasing to 0. For all \(p \in \mathbb{N}\), define \(w_p^0 : (0, 2] \rightarrow (0, \infty)\) by \(w_p^0(x) = 1\). Set \(G_0 = \{w_p^0 : p \in \mathbb{N}\}\).

Assume that for some \(i \in \mathbb{N}\), functions \(w_p^j : (N_{j-1}, N_j] \rightarrow (0, \infty)\), \(0 \leq j < i\) \((N_{-1} = 0, N_0 = 2)\), \(p \in \mathbb{N}\), have been defined so that \(G_{i-1} = \{w_p^0 \oplus \cdots \oplus w_r^{i-1} : r_0, \ldots, r_{i-1} \in \mathbb{N}\}\) is a finite set of GLF’s on \((0, N_{i-1}]\) and that \(\{w_p^j : p \in \mathbb{N}\}\) is a totally ordered set of functions (in the pointwise order) for each \(j \in [0, i]\). Set \(K_{i-1} = \int_{N_{i-1}}^{N_{i-1}} \max G_{i-1}\), where by max \(G_{i-1}\) we mean the pointwise maximum of the set of functions \(G_{i-1}\). By Lemma 9, choose a function \(w_p^{i-1}\) on \((N_{i-1}, N_i]\), \(N_i > N_{i-1}\), such that \(\forall w \oplus v\) is a GLF on \((0, N_i]\) for all \(w \in G_{i-1}\), that \(w_p^i(x) \leq \varepsilon_i\) for all \(x \in (N_{i-1}, N_i]\) and that \(\int_{N_{i-1}}^{N_i} w_p^i \geq q_i K_{i-1}\). On the other hand, by Lemma 7, there exists \(v\) on \((N_{i-1}, N_i]\) such that \(w \oplus v\) is a GLF on \((0, N_i]\) for all \(w \in G_{i-1}\), that \(v(x) \leq w_p^{i-1}(N_{i-1})\) for all \(x \in (N_{i-1}, N_i]\) and that \(\int_{N_{i-1}}^{N_i} v \leq 1\). Define \(w_p^i = v\) for all \(p \neq p_i\). Note that \(G_i = \{w \oplus w_p^i : w \in G_{i-1}, p \in \mathbb{N}\}\) is a finite set of GLF’s on \((0, N_i]\). Obviously, the set \(\{w_p^i : p \in \mathbb{N}\}\) is totally ordered. This completes the inductive construction. Define \(w_p = \oplus_i w_p^i\), \(p \in \mathbb{N}\). Observe that \(K_0 = 2\) and \(K_i \geq K_{i-1} + q_i K_{i-1} \geq 3K_{i-1}\). Hence \(K_i \rightarrow \infty\). Thus

\[N_i \geq N_i - N_{i-1} \geq \int_{N_{i-1}}^{N_i} w_p^i \geq q_i K_{i-1} \rightarrow \infty.\]
Hence w_p is defined on $(0, \infty)$ for all $p \in \mathbb{N}$. If $\emptyset \neq M \subseteq \mathbb{N}$, let $w_M = \sup_{p \in M} w_p$. We claim that w_M is a GLF on $(0, \infty)$. By definition, $w_M|_{[0,N_i]} \in G_i$ for all $i \in \mathbb{N}$. Thus w_M is a GLF on $(0, N_i]$ for all $i \in \mathbb{N}$. Also note that $w_M(x) \leq \varepsilon_i$ for all $x \in (N_{i-1}, N_i]$. Therefore, $\lim_{x \to \infty} w_M(x) = 0$. Furthermore, since $w_M = w_{p_i}$ on $(N_{i-1}, N_i]$ if $p_i \in M$,

$$
\int_0^\infty w_M > \sup_{\{i:p_i \in M\}} \int_{N_{i-1}}^{N_i} w_{p_i} \geq \sup_{\{i:p_i \in M\}} q_i K_{i-1}.
$$

Because of the enumeration, $p_i \in M$ holds for infinitely many i. It follows that $\int_0^\infty w_M = \infty$. This shows that w_M is a GLF on $(0, \infty)$.

Finally, note that for all i such that $p_i \notin M$, $\int_{N_{i-1}}^{N_i} w_M \leq 1$ by construction. In particular, if $p' \notin M$, then for all i such that $p_i = p'$,

$$
\int_0^{N_i} w_{p'} \leq \int_0^{N_{i-1}} w_M + \int_{N_{i-1}}^{N_i} w_{p'} \leq \int_0^{N_{i-1}} \max G_{i-1} + \max_{p \in M} \int_{N_{i-1}}^{N_i} w_p \leq K_{i-1} + 1.
$$

On the other hand, for all such i,

$$
\int_0^{N_i} w_{p'} \geq \int_{N_{i-1}}^{N_i} w_{p'} = \int_{N_{i-1}}^{N_i} w_{p_i} \geq q_i K_{i-1}.
$$

Hence

$$
\sup_n \int_0^n w_{p'} = \infty.
$$

Given a Lorentz sequence $(w(n))_{n=1}^\infty$ and $1 \leq p < \infty$, the Lorentz sequence space $d(w,p)$ consists of all real sequences (a_n) such that $\sum a_n^p w_n < \infty$, where (a_n^p) denotes the non-increasing rearrangement of $(|a_n|)$.

Corollary 11. Let $(w_p)_{p=1}^\infty$ be as above. For every $M \subseteq \mathbb{N}$, and $p \notin M$, the unit vector basis of $d(w,p,1)$ does not dominate that of $d(w,p,1)$.

Proof. Let (v_i) and (u_i) denote the respective unit vector bases of $d(w,p,1)$ and $d(w,1)$. According to Proposition 10, for any $K < \infty$, there exists $N \in \mathbb{N}$ such that $\int_0^{N+1} w_p \geq K \int_0^{N+1} w_M$. Then

$$
\|\sum_{i=1}^N v_i\| = \sum_{i=1}^N w_p(i) \geq \int_1^{N+1} w_p = \int_0^{N+1} w_p - 1 \\
\geq K \int_0^{N+1} w_M - 1 \geq K \sum_{i=1}^N w_M(i) - 1 = K \|\sum_{i=1}^N u_i\| - 1.
$$

The result follows since K is arbitrary. \(\square\)
3. Countable Semilattices of Spreading Models

In this section, we show that every countable semilattice without an infinite increasing sequence is order isomorphic to some $\mathbf{S}P_w(X)$. If (x_i) and (y_i) are sequences in the Banach spaces X and Y respectively, let (x_i, y_i) denote the sequence $(z_i) = (x_i, y_i)$ in the direct sum $X \oplus Y$. The ℓ^p-sum of an infinite sequence (X_j) of Banach spaces is denoted by $(\sum_{j=1}^{\infty} \oplus X_j)_p$. We omit the easy proof of the next lemma.

Lemma 12. Let $w_1 = (w_1(n))$ and $w_2 = (w_2(n))$ be Lorentz sequences. Then $w = w_1 \lor w_2 = (w_1(n) \lor w_2(n))$ is a Lorentz sequence. Moreover, if (u_{1n}) and (u_{2n}) are the respective unit vector bases of $d(w_1, 1)$ and $d(w_2, 1)$, then $(u_{1n}) \oplus (u_{2n})$ is equivalent to (u_n), the unit vector basis of $d(w, 1)$.

Lemma 13 ([4, Lemma 3.6]). Let $X = (\sum_{j=1}^{\infty} \oplus X_j)_p$, where $1 \leq p < \infty$ and each X_j is an infinite-dimensional Banach space, and let (\tilde{x}_i) be a spreading model generated by a normalized weakly null sequence in X. Then there exist non-negative $(c_j)_{j=0}^{\infty}$ with $\sum_{j=0}^{\infty} c_j^p = 1$ and normalized spreading models (\tilde{x}_i^j) in X_j generated by weakly null sequences such that for all scalars (a_i),

$$\| \sum_i a_i \tilde{x}_i^j \| = \left[\sum_j c_j^p \| \sum_i a_i \tilde{x}_i^j \|^p + c_0^{p} \| \sum_i |a_i|^p \right]^{1/p}. \quad (1)$$

Remark. If $p = 1$, the final term on the right of equation (1) may be omitted, i.e., $c_0 = 0$. In fact, according to the proof of Lemma 13 in [4, Lemma 3.6], the spreading model (\tilde{x}_i) is generated by a weakly null sequence (x_i) in X in such a way that $c_0 = \lim ||x_i - P_i(x_i)||$, where $P_i(x_i) = (x_i^1, x_i^2, \ldots, x_i^1, 0, 0, 0, \ldots)$. However, since ℓ^1 has the Schur property (weakly null sequences are norm null), it is easy to see that $\lim ||x_i - P_i(x_i)|| = 0$ for any weakly null sequence (x_i) in $(\sum_{j=1}^{\infty} \oplus X_j)_1$.

The following is the crucial property of Lorentz sequence spaces that we require. It can be deduced from the arguments in [1, §4]:

Theorem 14. [1] Let $w = (w(n))$ be a C-submultiplicative Lorentz sequence and (u_n) be the unit vector basis of $d(w, 1)$. For any $\varepsilon > 0$, every normalized block basis in $d(w, 1)$ has a subsequence (x_n) such that either

(a) (x_n) is equivalent to the unit vector basis of ℓ^1, or
(b) there exists $c > 0$ such that for all $(a_n) \in c_0$,

$$c \| \sum a_n u_n \| \leq \| \sum a_n x_n \| \leq (C + \varepsilon) \| \sum a_n u_n \|. \quad (2)$$

In particular, if (\tilde{x}_n) is a spreading model generated by a normalized weakly null sequence, then (\tilde{x}_n) satisfies (2) in place of (x_n).

Theorem 15. Given a countable semilattice L with no infinite increasing sequence, there is a Banach space X_L such that $\mathbf{S}P_w(X_L)$ is order isomorphic to L.

Proof. By Theorem 1, there exists a countable set \(V \) and an injective map \(T : L \to 2^V \setminus \{ \emptyset \} \) such that \(T(e \vee f) = T(e) \cup T(f) \) for all \(e, f \in L \). Since \(V \) is countable, by Proposition 10 (and Corollary 11), there is a family \((w_e)_{e \in V}\) of 4-submultiplicative GLF’s such that for each non-empty subset \(M \) of \(V \), \(w_M = \sup_{w \in M} w_v \) is again a (4-submultiplicative) GLF. Moreover, if \(p \notin M \), the unit vector basis of \(d(w_M, 1) \) does not dominate that of \(d(w_p, 1) \). Set \(X_L = (\bigoplus_{e \in L} d(w_{Te}, 1))_1 \). For any \(e \in L \), let \((u_e)\) be the unit vector basis of \(d(w_{Te}, 1) \). \((u_e)\) may be regarded in an obvious way as a normalized weakly null sequence in \(X_L \) which generates a spreading model equivalent to itself. Thus \([u_e]\), the equivalence class containing \((u_e)\), is an element of \(SP_w(X_L) \).

Define a map \(\Theta : L \to SP_w(X_L) \) by \(\Theta e = [\{u_e]\] \). We will show that \(\Theta \) is a bijection such that \(\Theta e_1 \leq \Theta e_2 \) if and only if \(e_1 \leq e_2 \). Hence \(SP_w(X_L) \) is order isomorphic to \(L \).

We first show that \(\Theta \) is onto. Let \([\tilde{x}_i]\) be an element in \(SP_w(X_L) \). By Lemma 13 and the subsequent Remark, there exist a non-negative sequence \((c_e)_{e \in L} \) with \(\sum c_e = 1 \) and normalized spreading models \((\tilde{x}_e)\) in \(d(w_{Te}, 1) \) such that
\[
\| \sum_i a_i \tilde{x}_i \| = \sum_{e \in L} c_e \sum_i a_i \tilde{x}_e. \tag{3}
\]
Since each \(w_{Te} \) is 4-submultiplicative, according to Theorem 14, for each \(e \in L \), there exists \(b_e > 0 \) such that
\[
b_e \sum_i a_i u_e^{f_i} \leq \| a_i \tilde{x}_e \| \leq 5 \sum_i a_i u_e^{f_i}. \tag{4}
\]
Let \(I = \{ e \in L : c_e > 0 \} \). If \(I \) is infinite, write its elements in a sequence \((e_i)_{i=1}^\infty \). Since the sequence \((\vee_{i=1}^n e_i)_{n=1}^\infty \) has no strictly increasing infinite subsequence, there is a finite subset \(J \) of \(I \) such that \(\vee_{e \in J} e \geq e' \) for all \(e' \in I \). If \(I \) is finite, take \(J = I \). Let \(f = \vee_{e \in J} e \). We claim that \((\tilde{x}_i)\) is equivalent to \((u_i)\). Observe that \(e \leq f \) for all \(e \in I \). Hence \(T e \subseteq T f \) and thus \(w_{Te} \leq w_{Tf} \). Therefore, \((u_i)\) is 1-dominated by \((u_i)\). By (3) and (4),
\[
\| \sum_i a_i \tilde{x}_i \| = \sum_{e \in L} c_e \sum_i a_i \tilde{x}_e \leq 5 \sum_{e \in L} c_e \sum_i a_i u_e^{f_i} \leq 5 \sum_{e \in L} c_e \sum_i a_i u_e^{f_i} = 5 \| a_i u_i^{f_i} \|.
\]
On the other hand, by Lemma 12, \(\bigoplus_{e \in J} (u_e) \) is equivalent to \((u_i)\). Using (3) and (4) again,
\[
\| \sum_i a_i \tilde{x}_i \| \geq \| \sum_{e \in J} c_e u_e^{f_i} \| \geq \| \sum_{e \in J} c_e u_e^{f_i} \| \geq \min_{e \in J} \{ c_e b_e \} \sum_i a_i u_i^{f_i} \geq K \| a_i u_i^{f_i} \| \text{ for some } K > 0.
\]
This shows that \tilde{x}_i is equivalent to (u^f_i). Hence $\Theta f = [(u^f_i)] = [(\tilde{x}_i)]$.

Next we show that

$$e_1 \leq e_2 \iff \Theta e_1 \leq \Theta e_2.$$

If $e_1 \leq e_2$, then $T e_1 \subseteq T e_2$ and hence $w_{Te_1} \leq w_{Te_2}$. It follows that $[(u^e_1)] \leq [(u^e_2)]$. On the other hand, if $e_1 \not\leq e_2$, then $T (e_1) \not\subseteq T (e_2)$. Choose $p \in T (e_1) \setminus T (e_2)$. By Corollary 11, $(u^{e_2}_i)$ does not dominate (v_i), the unit vector basis of $d (w_p, 1)$. But obviously $(u^{e_1}_i)$ dominates (v_i). Hence $[(u^e_1)] \not\leq [(u^e_2)]$. Note that (5) also implies that Θ is injective. Hence $\Theta : L \to SP_w (X_L)$ is an order isomorphism. □

Remark. The example given here is non-reflexive. Given a countable semilattice L without an infinite increasing sequence, the ℓ^p $(1 < p < \infty)$ version of the space defined above, i.e., $X_p = \bigoplus_{e \in L} d (w_{Te}, p)$, which is a reflexive space, has the property that $SP_w (X_p)$ is order isomorphic to the semilattice $\hat{L} = \{a\} \cup L$, $a > e$ for all $e \in L$. We do not know how to obtain a reflexive example for general semilattices. In fact, according to the authors of [4], it is not known if there is a reflexive space X such that $SP_w (X)$ is order isomorphic to $((\{1, 2\}, \{1\}, \{2\}, \subseteq)$.

References

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543

E-mail address: matlh@nus.edu.sg

Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616

E-mail address: weekee.tang@nie.edu.sg