A PROJECTION AND CONTRACTION METHOD FOR THE NONLINEAR COMPLEMENTARITY PROBLEM AND ITS EXTENSIONS

Sun De-feng
(Institute of Applied Mathematics, Academia Sinica)

Abstract
In this paper we propose a new globally convergent iterative method for solving the nonlinear complementarity problem and its related problems. The method behaves effectively for not only linear cases but also nonlinear cases. In a special case, our method reduces to the same, as was discussed in [9, 11, 22] for linear cases.

1. 引言
非线性互补问题 NCP(R^+_n, F) 是指：求 $x^* \in R^+_n$, 使得

$$ F(x^*)^T x^* = 0, \quad F(x^*) \in R^+_n, $$

其中 F 为 R^+_n 到 R^n 中的映射. 本文考虑如下广义非线性互补问题:
求 $x^* \in X = \{x \in R^n | l \leq x \leq u\}$, 使得

$$ F(x^*)^T (x - x^*) \geq 0, \quad \forall x \in X, $$

其中 l 和 u 是 $\{R \cup \{\infty\}\}^n$ 中的向量且 $l \leq u$. 上面的问题记作 NCP(X, F). 当 $X = R^+_n$, 问题 (1.2) 退化成 (1.1). 设

$$ X^* = \{x \in X| x \text{ 是NCP}(X, F) \text{ 的解}\}. $$

容易验证，$x \in X^*$ 当且仅当 x 满足下面的投影方程 (一般非光滑):

$$ P_X[x - \beta F(x)] = x, \text{ 对某一或任一 } \beta > 0, $$

1993年4月20日收到.
其中对任意向量 $y \in R^n$，

$$P_X(y) = \arg\min \{ x \in X ||x - y|| \}, \quad (1.5)$$

这里 $|| \cdot ||$ 定义为 R^n 中的 l_2 范数或者由它诱导的矩阵范数。此结果可见 [3]。由 X 的简单性，投影 $P_X(y)$ 容易实现。当 X 是 R^n 中任何其它非空闭凸集时，类似于 (1.2) 可以定义变分不等式问题 (简记为 VIP(X, F))。同样可以定义 $X^* = \{ x \in X | x$ 是 VIP(X, F) 的解 }。由 [3] 知，x 是 VIP(X, F) 的解当且仅当 x 是投影方程 (1.4) 的解。故本文集中在求解投影方程 (1.4)。在数学规划领域，求解 NCP(X, F) 及 VIP(X, F) 已经有很长的历史，例如可见 [7]。

定义 1.1. 映射 $F: R^n \rightarrow R^n$ 称为：

(a) 在集合 X 上单调，如果

$$[F(x) - F(y)]^T (x - y) \geq 0, \quad \forall x, y \in X; \quad (1.6)$$

(b) 在集合 X 上伪单调 (pseudomonotone)，如果

$$F(y)^T (x - y) \geq 0 \Rightarrow F(x)^T (x - y) \geq 0, \quad \forall x, y \in X; \quad (1.7)$$

(c) 在集合 X 上强单调，如果存在一正常数 α, 使得

$$[F(x) - F(y)]^T (x - y) \geq \alpha ||x - y||^2, \quad \forall x, y \in X; \quad (1.8)$$

(d) 在集合 X 上满足可解性条件，如果 X^* 非空并且对任意 $x^* \in X^*$ 有

$$F(x)^T (x - x^*) \geq 0, \quad \forall x \in X. \quad (1.9)$$

当 $F(x)$ 在 X 上单调且 Lipschitz 连续，i.e.，存在一正常数 L，使得

$$||F(x) - F(y)|| \leq L||x - y||, \quad \forall x, y \in X, \quad (1.10)$$

$$\begin{cases}
\overline{x}^k = P_X [x^k - \beta F(x^k)], \\
x^{k+1} = P_X [x^k - \beta F(\overline{x}^k)],
\end{cases} \quad (1.11)$$

其中 $0 < \beta < 1/L$. 上述算法的优越性是它仅需单调性而不象 [4, 7, 20] 中的算法需要强单调性。明显的缺点是它也需要 Lipschitz 常数，而这在实际中不容易实现。作者在 [21] 中给出了外梯度法的一种改进形式如下：

给定常数 $\eta \in (0, 1), \alpha \in (0, 1), s \in (0, +\infty)$. 迭代形式如下：

$$\begin{cases}
\overline{x}^k = P_X [x^k - \beta_k F(x^k)], \\
x^{k+1} = P_X [x^k - \beta_k F(\overline{x}^k)],
\end{cases} \quad (1.12)$$

其中 $\beta_k = sa^m_k$ 并且 m_k 是使下式成立的最小非负整数:

$$
\|F(\bar{x}^k) - F(x^k)\| \leq \frac{\eta \|\bar{x}^k - x^k\|}{\beta_k}.
$$

改进的算法不需要映射 $F(x)$ 的 Lipschitz 常数，并且有较好的数值结果。但数值结果在
线性情形还不能与 [9, 10, 11] 针对线性情形设计的算法相比。本文的目的是给出一种新
的求非线性互补问题的投影收缩算法，数值结果显示此算法不仅对线性情形有效而且
对非线性情形也同样有效。本文的算法在特殊情形（特别是对线性规划）与 [11, 22] 给出
的相应情形是一致的，而 [11,22] 的结果是针对线性互补问题给出的。

2. 基本引理

假设 X 是 R^n 中一非空闭凸集且 $F(x)$ 在 X 上连续。

引理 2.1[18]. 如果 $F(x)$ 在 X 中的非空紧致凸集 Y 上连续，则存在 $y^* \in Y$ 使得

$F(y^*)^T(y - y^*) \geq 0, \ \forall y \in Y.$

引理 2.2[23]. 对投影算子 $P_X(\cdot)$, 有如下性质：

(i) 当 $y \in X$ 时 $|P_X(z) - z|^T|P_X(z) - y| \leq 0, \ \forall z \in R^n$;

(ii) $\|P_X(z) - P_X(y)\| \leq \|z - y\|, \ \forall y, z \in R^n$.

引理 2.3[2,5]. 给定 $x \in R^n$ 及 $d \in R^n$, 如下定义的函数:

$$
\theta(\beta) = \frac{\|P_X(x + \beta d) - x\|}{\beta}, \ \beta > 0
$$

是反序（非增）的。

选取任意常数 $\eta \in (0, 1], $ 定义

$$
\varphi(x, \beta) = \eta F(x)^T\{x - P_X[x - \beta F(x)]\}, \ \ (2.4)
$$

$$
\psi(x, \beta) = \eta\|x - P_X[x - \beta F(x)]\|^2, \ \ (2.5)
$$

其中 $\beta > 0, x \in X$.

由引理 2.2 之 (i), 取 $z = x - \beta F(x)$ 及 $y = x$ 得

$$
\beta\{x - P_X[x - \beta F(x)]\}^T F(x) \geq \|x - P_X[x - \beta F(x)]\|^2. \ \ (2.6)
$$

结合 (2.4)-(2.5) 及 (2.6) 可得如下定理。

定理 2.1. 设 $\varphi(x, \beta)$ 和 $\psi(x, \beta)$ 由 (2.4) 及 (2.5) 分别定义，则

(i) $\varphi(x, \beta) \geq \psi(x, \beta), \ \ \forall x \in X$,

(ii) $x \in X$ 及 $\varphi(x, \beta) = 0 \iff x \in X$ 及 $\psi(x, \beta) = 0 \iff x \in X^*$.

<http://www.>
定理 2.2. 假设 $F(x)$ 在 X 上连续且 $\eta \in (0, 1)$. 如果 $S \subseteq X \backslash X^*$ 是一有界闭集，则存在一正常数 δ 使得对所有 $x \in S$ 及 $\beta \in (0, \delta]$ 有

$$
\{F(x) - F(P_X[x - \beta F(x)])\}^T \{x - P_X[x - \beta F(x)]\} \\
\leq (1 - \eta)F(x)^T \{x - P_X[x - \beta F(x)]\}.
$$

(2.7)

证明. 由于 $S \subseteq X \backslash X^*$ 是一有界闭集及 $F(x)$ 在 X 上连续，故存在 $\delta_0 > 0$, 使得对所有 $x \in S$ 成立

$$
\|P_X[x - F(x)] - x\| \geq \delta_0 > 0.
$$

(2.8)

由引理 2.3 及 (2.8) 式，对所有 $\beta \in (0, 1]$ 及 $x \in S$ 有

$$
\frac{\|x - P_X[x - \beta F(x)]\|}{\beta} \geq \|x - P_X[x - F(x)]\| \geq \delta_0.
$$

(2.9)

由 $F(x)$ 的连续性知，$F(x)$ 在 S 上有界且一致连续。故再由引理 2.2 之 (ii) 可知，存在正数 δ, 使得对所有 $x \in S$ 及 $\beta \in (0, \delta]$ 有 (不妨设 $\delta \leq 1$)

$$
\|F(P_X[x - \beta F(x)]) - F(x)\| \leq (1 - \eta)\delta_0.
$$

(2.10)

结合 (2.9) 及 (2.10) 知，对任意 $x \in S$ 及 $\beta \in (0, \delta]$ 有

$$
\{F(x) - F(P_X[x - \beta F(x)])\}^T \{x - P_X[x - \beta F(x)]\} \\
\leq \|F(x) - F(P_X[x - \beta F(x)])\|^2 \|x - P_X[x - \beta F(x)]\| \\
\leq (1 - \eta)\|x - P_X[x - \beta F(x)]\|^2 / \beta \\
\leq (1 - \eta)F(x)^T \{x - P_X[x - \beta F(x)]\},
$$

其中上面最后一个不等式用到了 (2.6) 式，定理得证.

注 2.1. 上面的定理保证了 3 中给出的算法的合理性.

注 2.2. 当 $F(x) = Dx + c$ 并且 D 是一反对称矩阵 ($D^T = -D$) 时，(2.7) 式对 $\eta = 1$ 及 $\beta \in (0, +\infty), x \in X$, 成立.

3. 算法及收敛性

记

$$
g(x, \beta) = F(P_X[x - \beta F(x)]), \quad \beta > 0.
$$

(3.1)

定理 3.1. 设 $F(x)$ 在 X 上连续并且满足可解性条件 (1.9). 如果存在一正常数 β, 使得 (2.7) 式对某 $x \in X$ 成立，则

$$
(x - x^*)^T g(x, \beta) \geq \varphi(x, \beta) \quad \forall x^* \in X^*.
$$

(3.2)
证明. 由于 $F(x)$ 满足可解性条件 (1.9)，故对 $x^* \in X^*$ 有

$$
\{P_x[x - \beta F(x)] - x^*\}F(P_x[x - \beta F(x)]) \geq 0,
$$
(3.3)

$$(x - x^*)^T g(x, \beta) = (x - x^*)^T F(P_x[x - \beta F(x)])
= \{x - P_x[x - \beta F(x)]\}^T F(P_x[x - \beta F(x)])
+ \{P_x[x - \beta F(x)] - x^*\}^T F(P_x[x - \beta F(x)])
\geq \{x - P_x[x - \beta F(x)]\}^T F(P_x[x - \beta F(x)]) \text{ (利用 (3.3) 式)}
= \{x - P_x[x - \beta F(x)]\}^T \{F(P_x[x - \beta F(x)]) - F(x)\}
+ F(x)^T \{x - P_x[x - \beta F(x)]\}
\geq (\eta - 1) F(x)^T \{x - P_x[x - \beta F(x)]\}
+ F(x)^T \{x - P_x[x - \beta F(x)]\}.
$$
(3.4)

上面最后一个不等式利用了 (2.7) 式，从而得到

$$(x - x^*)^T g(x, \beta) \geq \eta F(x)^T \{x - P_x[x - \beta F(x)]\} = \varphi(x, \beta).
$$

给定正常数 $s \in (0, +\infty)$ 及 $\eta \in (0, 1)$，我们给出如下的算法：

算法 A. 给定 $x^0 \in X$ 及正常数 $\alpha \in (0, 1), \gamma \in (0, 2)$. 对 $k = 0, 1, \cdots$, 如果 $x^k \notin X^*$，执行。

1. 确定 $\beta_k = s \alpha^m$, 其中 m_k 是使下式成立的最小非负整数：

$$
\{x^k - P_x[x^k - \beta_k F(x^k)]\}^T \{F(x^k) - F(P_x[x^k - \beta_k F(x^k)])\}
\leq (1 - \eta) F(x^k)^T \{x^k - P_x[x^k - \beta_k F(x^k)]\},
$$
(3.5)

2. 根据 (2.4) 及 (3.1) 分别计算 $\varphi(x^k, \beta_k), g(x^k, \beta_k)$，

3. 计算

$$
\rho_k = \varphi(x^k, \beta_k)/\|g(x^k, \beta_k)\|^2,
$$
(3.6)

4. 令

$$
x^{k+1} = P_x[x^k - \gamma \rho_k g(x^k, \beta_k)].
$$
(3.7)

当 $X = \{x \in \mathbb{R}^n | l \leq x \leq u\}$，我们可以给出算法 A 的改进形式：对 $x \in X$，设

$$
N = \{i | (x_i = l_i 且 (g(x, \beta))_i \geq 0) \text{ 或 } (x_i = u_i 且 (g(x, \beta))_i \leq 0)\},
$$

$$
B = \{1, 2, \cdots, n\} \setminus N.
$$
(3.8)
定义 \(g_N(x, \beta), g_B(x, \beta) \) 如下:

\[
(g_N(x, \beta))_i = \begin{cases}
0, & i \in B, \\
(g(x, \beta))_i, & i \in N,
\end{cases}
\]

\[
(g_B(x, \beta))_i = (g(x, \beta))_i - (g_N(x, \beta))_i, \quad i = 1, \ldots, n.
\]

(3.9)

容易验证，对任意 \(x^* \in X^* \) 及 \(x \in X \)，有

\[
(x - x^*)^T g_N(x) \leq 0, \quad (x - x^*)^T g_B(x, \beta) \geq (x - x^*)^T g(x, \beta).
\]

(3.10)

定理 3.2. 在定理 3.1 的条件下有

\[
(x - x^*)^T g_B(x, \beta) \geq \varphi(x, \beta), \quad \forall x^* \in X^*.
\]

(3.11)

证明. 由定理 3.1 及 (3.10) 式易得.

算法 B（算法 A 的改进形式）. 给定 \(x^0 \in X, s \in (0, +\infty), \eta, \alpha \in (0, 1) \) 及 \(\gamma \in (0, 2) \). 对 \(k = 0, 1, \ldots \)，如果 \(x^k \not\in X^* \)，执行：

1. 确定 \(\beta_k = sa^m_k \)，其中 \(m_k \) 是使下式成立的最小非负整数:

\[
\left\{ x^k - P_X[x^k - \beta_k F(x^k)] \right\}^T \left\{ F(x^k) - F(P_X[x^k - \beta_k F(x^k)]) \right\} \leq (1 - \eta)F(x^k)^T \left\{ x^k - P_X[x^k - \beta_k F(x^k)] \right\}.
\]

(3.12)

2. 根据 (2.4) 及 (3.1) 分别计算 \(\varphi(x^k, \beta_k), g(x^k, \beta_k) \).

3. 由 (3.8) 及 (3.9) 确定 \(g_B(x^k, \beta_k) \) 并且计算

\[
\rho_k = \varphi(x^k, \beta_k)/\|g_B(x^k, \beta_k)\|^2.
\]

(3.13)

4. 令

\[
x^{k+1} = P_X[x^k - \gamma \rho_k g_B(x^k, \beta_k)].
\]

(3.14)

注 3.1. 当 \(F(x) = Dx + c \) 并且 \(D \) 为一反对称矩阵 (\(DT = -D \)) 时，如果取 \(\eta = 1 \) 及 \(\beta = 1 \)，则算法 B 与 [11] 中给出的算法是一致的．注意到在 [11] 中给出的搜索方向 \(g(x) = DT\{x - P_X[x - (Dx + c)]\} + Dx + c \) 由于此时 \(DT = -D \)，故

\[
g(x) = -D\{x - P_X[x - (Dx + c)]\} + Dx + c
\]

\[
= DP_X[x - (Dx + c)] + c = g(x, 1),
\]

(3.15)

其中 \(\beta \) 取 1. 从而 [11] 中的搜索方向 \(g_B(x) \) 等同于 \(g_B(x, 1) \)，并且步长的大小也完全一致．特别对于线性规划，我们的算法与 [11] 中的相同．当 \(DT \neq -D \) 时，[11] 中的算法与本文给出的不同．当 \(F(x) \) 为非线性映射时，[11] 中的算法没有相应的形式而本文的算法推广到了非线性情形．

© 1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www...
对于算法的收敛性质，算法 A 的证明可类似算法 B 给出，故下面仅考虑算法 B。

定理 3.3. 假设 X^* 非空并且 $F(x)$ 在 $X = \{x \in \mathbb{R}^n | l \leq x \leq u\}$ 上连续。如果 $F(x)$ 在 X 上满足可解性条件 (1.9)，则对任意 $x^* \in X^*$，由算法 B 产生的无穷点列 $\{x^k\}$ 满足

$$||x^{k+1} - x^*||^2 \leq ||x^k - x^*||^2 - \gamma(2 - \gamma)\varphi^2(x^k, \beta_k)/\|g_B(x^k, \beta_k)\|^2.$$ (3.16)

证明. 由引理 2.2 之 (ii) 及定理 3.2 可得

$$||x^{k+1} - x^*||^2 = ||P_X[x^k - \gamma \rho_k g_B(x^k, \beta_k)] - x^*||^2$$
$$\leq ||x^k - \gamma \rho_k g_B(x^k, \beta_k)| - x^*||^2$$
$$= ||x^k - x^*||^2 - 2\gamma \rho_k g_B(x^k, \beta_k)^T(x^k - x^*) + \gamma^2 \rho_k^2\|g_B(x^k, \beta_k)\|^2$$
$$\leq ||x^k - x^*||^2 - 2\gamma \rho_k \varphi(x^k, \beta_k) + \gamma^2 \rho_k^2\|g_B(x^k, \beta_k)\|^2$$
$$= ||x^k - x^*||^2 - 2\varphi^2(x^k, \beta_k)/\|g_B(x^k, \beta_k)\|^2$$
$$+ \gamma^2 \varphi^2(x^k, \beta_k)/\|g_B(x^k, \beta_k)\|^2$$
$$= ||x^k - x^*||^2 - \gamma(2 - \gamma)\varphi^2(x^k, \beta_k)/\|g_B(x^k, \beta_k)\|^2,$$

这就证明了 (3.16) 式。

定义

$$\text{dist}(x, X^*) = \inf\{||x - x^*|| | x^* \in X^*\}.$$ (3.17)

由于 (3.16) 对任意 $x^* \in X^*$ 都成立，故由定理 3.3 得

$$[\text{dist}(x^{k+1}, X^*)]^2 \leq [\text{dist}(x^k, X^*)]^2 - \gamma(2 - \gamma)\varphi^2(x^k, \beta_k)/\|g_B(x^k, \beta_k)\|^2,$$ (3.18)
i.e., 序列 $\{x^k\}$ 相对于集合 X^* 为 Féjer - 单调的。

定理 3.4. 假设定理 3.3 的条件成立，则存在 $\bar{x}^* \in X^*$，使得 $x^k \to \bar{x}^*$ 当 $k \to +\infty$。

证明. 设 $x^* \in X^*$. 容易验证，每一 Féjer - 单调序列是有界的. 假设

$$\lim_{k \to \infty} \text{dist}(x^k, X^*) = \delta_0 > 0,$$ (3.19)

则 $\{x^k\} \subset S = \{x \in X | \delta_0 \leq \text{dist}(x, X^*), ||x - x^*|| \leq ||x^0 - x^*||\}$，并且 S 是一有界闭集. 由于 S 是有界闭集且 $S \subset X \setminus X^*$，则由定理 2.2 知，存在一正常数 δ，使得对所有 $x \in S$ 及 $\beta \in (0, \delta]$ 有 (2.7) 式成立. 从而推知

$$\beta_k \geq \min \{\alpha \delta, s\} > 0, \quad \forall k.$$ (3.20)

由定理 2.1 及 (3.20) 易知

$$\inf \varphi(x^k, \beta_k) > 0.$$ (3.21)
而由 $g_B(x, \beta)$ 的定义及 $F(x)$ 的连续性易知

$$\sup ||g_B(x^k, \beta_k)|| < +\infty. \tag{3.22}$$

由 (3.21) 及 (3.22) 得

$$\inf \varphi^2(x^k, \beta_k)/||g_B(x^k, \beta_k)||^2 = \varepsilon_0 > 0. \tag{3.23}$$

由 (3.19) 知，存在 $k_0 > 0$，使得对所有 $k \geq k_0$ 有

$$[\text{dist}(x^k, X^*)]^2 \leq \delta_0^2 + \frac{\varepsilon_0}{2}(2 - \gamma)\gamma. \tag{3.24}$$

另一方面，由 (3.18)，(3.23) 及 (3.24) 得

$$[\text{dist}(x^{k+1}, X^*)]^2 \leq [\text{dist}(x^k, X^*)]^2 - \varepsilon_0(2 - \gamma)\gamma \leq \delta_0^2 - \frac{\varepsilon_0}{2}(2 - \gamma)\gamma, \ \forall k \geq k_0,$$

这与 (3.19) 式矛盾，故有

$$\lim_{k \to \infty} \text{dist}(x^k, X^*) = 0. \tag{25}$$

由上式及 (3.18) 式知，存在 $x^* \in X^*$，使得

$$x^k \to x^*, \ k \to +\infty.$$

注 3.2。若 X^* 非空且 $F(x)$ 在 X 上伪单调，定理的结论成立，因为此时可解性条件成立。

注 3.3。根据引理 2.1，当 X 是 R^n 中非空紧致凸集时，有 $X^* \neq \emptyset$；当 X 无界时，

X^* 的非空性条件见 [7]。

4. 数值实验

下面将给出利用算法 B 计算的一些例子的数值结果，并且与其它方法作了比较。

下面例子的计算结果以表格形式给出。其中 NCP 代表文中的算法 B；EGM 代表 [15] 中的外梯度法；MEGM 代表 [21] 中改进的外梯度法；LCP 代表 [11] 中针对线性互补问题给出的算法。取 $\alpha = 0.5, \eta = 0.95$ (当 η 靠近 1 时数值结果较好)。算法的终止准则为

$$\varphi(x, 1) \leq \eta \varepsilon^2,$$

其中 ε 为给定的精度 (注意 $\varphi(x, 1) \geq \eta ||x - Px||^2$)。

例 1。本例为 4 维非线性互补问题 [14]。取初步长 $s = \sqrt{\eta}/4$ 及 $\varepsilon^2 = 10^{-16}$。表 1 是本例的计算结果。表 1 清楚地显示了本文算法在不同 γ 值条件下都比 MEGM 快得多。由于该例为非线性非 Lipschitz 连续的，故 EGM 及 LCP 无法启用。

例 2。考虑 4 维平衡点问题 [17]。映射 $F: R \times R^2_+ \times R_+ \to R^4$ 具有如下形式:

$$F(y, P_1, P_2, P_3) = \left(\begin{array}{c} -P_1 + P_2 + P_3 \\
y - \alpha(b_2 P_2 + b_3 P_3)/P_1 \\
b_2 - y - (1 - \alpha)(b_2 P_2 + b_3 P_3)/P_2 \\
b_3 - y \end{array} \right),$$
其中常数 \(b_2, b_3 > 0, \alpha \in (0, 1) \). 对本例计算两组参数 \((\alpha, b_2, b_3) = (0.75, 1, 0.5) \) 和 \((0.75, 1, 2) \). 取 \(s = \sqrt{\eta}/2, \epsilon^2 = 10^{-16} \).

表 1. 例 1 的计算结果

<table>
<thead>
<tr>
<th>算法</th>
<th>初始点</th>
<th>迭代次数</th>
<th>内部迭代次数</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGM</td>
<td>(0,0,0,0)</td>
<td>380</td>
<td>758</td>
</tr>
<tr>
<td>NCP((\gamma = 1.95))</td>
<td>(0,0,0,0)</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>NCP((\gamma = 1.0))</td>
<td>(0,0,0,0)</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>MEGM</td>
<td>(1,1,1,1)</td>
<td>395</td>
<td>785</td>
</tr>
<tr>
<td>NCP((\gamma = 1.95))</td>
<td>(1,1,1,1)</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>NCP((\gamma = 1.0))</td>
<td>(1,1,1,1)</td>
<td>73</td>
<td>63</td>
</tr>
</tbody>
</table>

表 2. 例 2 的数值结果

<table>
<thead>
<tr>
<th>参数值</th>
<th>算法</th>
<th>初始点</th>
<th>迭代次数</th>
<th>内部迭代次数</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 0.75)</td>
<td>MEGM</td>
<td>(1,1,1,1)</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>(b_2 = 1.0)</td>
<td>NCP((\gamma = 1.95))</td>
<td>(1,1,1,1)</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>(b_3 = 0.5)</td>
<td>NCP((\gamma = 1.0))</td>
<td>(1,1,1,1)</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>(\alpha = 0.75)</td>
<td>MEGM</td>
<td>(1,1,1,1)</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>(b_2 = 1.0)</td>
<td>NCP((\gamma = 1.95))</td>
<td>(1,1,1,1)</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>(b_3 = 2.0)</td>
<td>NCP((\gamma = 1.0))</td>
<td>(1,1,1,1)</td>
<td>43</td>
<td>0</td>
</tr>
</tbody>
</table>

例 3. 我们研究 [1] 中考虑过的一个例子。\(F(x) = Dx + c \), 其中 \(c \) 是 \(n \) 维向量, \(D \) 是非对称矩阵。

\[
D = \begin{pmatrix}
 4 & -2 & & & \\
 1 & 4 & -2 & & \\
 & 1 & 4 & -2 & \\
 & & \ddots & \ddots & -2 \\
 & & & 1 & 4
\end{pmatrix}
\]

\(X = [l, u] \), 其中 \(l = (0,0,\cdots,0)^T, u = (1,1,\cdots,1)^T \). 对 EGM 和 MEGM 取初始步长 \(s = \sqrt{\eta}/7 \), 对 NCP 取初始步长 \(s = \sqrt{\eta}/4 \). 取 \(\epsilon^2 = n10^{-14} \), 其中 \(n \) 是问题的维数。NCP (\(\gamma = 1.95\)) 可与 LCP (\(\gamma = 1.0\)) 相比，并且都比 EGM 及 MEGM 快得多。取不同的初始点，结论类似。
表3. 例3取初始点(0,0,…,0)的数值结果

<table>
<thead>
<tr>
<th>算法</th>
<th>n = 10</th>
<th>n = 100</th>
<th>n = 200</th>
<th>n = 500</th>
<th>n = 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM</td>
<td>59</td>
<td>0</td>
<td>59</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>MEGM</td>
<td>59</td>
<td>0</td>
<td>59</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>NCP(γ=1.95)</td>
<td>11</td>
<td>9</td>
<td>14</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>NCP(γ=1.0)</td>
<td>31</td>
<td>27</td>
<td>31</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>LCP(γ=1.95)</td>
<td>39</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>LCP(γ=1.0)</td>
<td>18</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

表4. 例4取初始点(0,0,…,0)的数值结果

<table>
<thead>
<tr>
<th>算法</th>
<th>n = 10</th>
<th>n = 20</th>
<th>n = 50</th>
<th>n = 100</th>
<th>n = 200</th>
<th>n = 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGM</td>
<td>227</td>
<td>0</td>
<td>434</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>MEGM</td>
<td>150</td>
<td>5</td>
<td>202</td>
<td>5</td>
<td>305</td>
<td>13</td>
</tr>
<tr>
<td>NCP(γ=1.95)</td>
<td>12</td>
<td>8</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>NCP(ν=1.0)</td>
<td>32</td>
<td>16</td>
<td>36</td>
<td>30</td>
<td>56</td>
<td>100</td>
</tr>
<tr>
<td>LCP(ν=1.95)</td>
<td>10</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>LCP(ν=1.0)</td>
<td>26</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>

“/”表示迭代次数超过1000次。

例4. 本例研究一类线性互补问题，直接采用Lemke的转轴方法的运算次数是指数次的[^19]。该问题具有特殊结构: \(c = (-1, -1, \cdots, -1)^T \)及

\[
D = \begin{pmatrix}
1 & 2 & 2 & \cdots & 2 \\
0 & 1 & 2 & \cdots & 2 \\
0 & 0 & 1 & \cdots & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\(F(x) = Dx + c \)。此例Harker和Pang[^6]，Harker和Xiao[^8]也讨论过。对EGM取初始步长
\(s = \sqrt{n}/(\sqrt{n}) \); 对MEGM取
\(s = \sqrt{2n}/(4\sqrt{n}) \); 对NCP取
\(s = \sqrt{n}/2 \)，这里
n是问题维数。

取 $\varepsilon^2 = n 10^{-14}$, 初始点 $\left(0, 0, \cdots, 0\right)$ 时, NCP ($\gamma = 1.95$) 比 LCP ($\gamma = 1.95$ 或 1.0) 慢, 即便如此, 也比 EGM 及 MEGM 快许多. 当换成初始点 $(0.6, \cdots, 0.6)$ 及 $(1, 1, \cdots, 1)$ 时, NCP ($\gamma = 1.95$) 快于 LCP ($\gamma = 1.95$ 或 1.0). 这里仅列出取初始点 $(0, 0, \cdots, 0)$ 的计算结果.

例 5. 考虑 $F(x) = F_1(x) + F_2(x), x = (x_1, x_2, \cdots, x_n)^T, x_0 = x_{n+1} = 0, F_1(x) = (f_1(x), \cdots, f_n(x))^T, F_2(x) = D x + c$, 其中 $f_i(x) = x_{i-1}^2 + x_i^2 + x_{i-1}x_i + x_ix_{i+1}, i = 1, \cdots, n$, 并且 D, c 与例 3 中的一致. 取 $X = \left[l, u\right]$, 其中 $l = (0, \cdots, 0)^T$ 及 $u = (1, \cdots, 1)^T$. 对 MEGM 及 NCP 取初始步长 $s = \sqrt{n}/4$. 本例取 $\varepsilon^2 = n 10^{-14}$, 其中 n 为问题的维数. 由表 5 可看出 NCP 比 MEGM 快得多.

<table>
<thead>
<tr>
<th>算法</th>
<th>迭代次数 (左)</th>
<th>内部迭代次数 (右)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGM</td>
<td>58</td>
<td>57</td>
</tr>
<tr>
<td>NCP($\gamma=1.95$)</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>NCP($\gamma=1.0$)</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

表 5. 例 5 取初始点 $x^0 = l$ 的数值结果

作者与何炳生博士的有益讨论，使得定理 3.4 的证明得以简化，对此表示感谢.

参考文献