GENERALIZED MARKOFF MAPS AND MCSHANE’S IDENTITY

SER PEOW TAN, YAN LOI WONG, AND YING ZHANG

Abstract. Following Bowditch [3], we study representations of the free group on two generators into SL(2, C), and the connection with generalized Markoff maps. We show that Bowditch’s Q-conditions for generalized Markoff maps are sufficient for the generalized McShane identity to hold for the corresponding representations. These conditions are very close to being necessary as well, and a large class of representations arising from important and interesting geometric constructions satisfy these conditions. We also show that the subset of representations satisfying these conditions is open in the relative character variety, and it is the largest open subset on which the mapping class group acts properly discontinuously. Moreover we generalize Bowditch’s results on variations of McShane’s identity for complete, finite volume hyperbolic 3-manifolds which fiber over the circle, with the fiber a punctured-torus, to identities for incomplete hyperbolic structures on such manifolds, hence obtaining identities for closed hyperbolic 3-manifolds which are obtained by doing hyperbolic Dehn surgery on such manifolds.

1. Introduction

In [18] McShane proved the following remarkable identity concerning the lengths of simple closed geodesics on a once-punctured torus, T, with a complete, finite area hyperbolic structure:

$$\sum_{\gamma} \frac{1}{1 + e^{l(\gamma)}} = \frac{1}{2},$$

where γ ranges over all simple closed geodesics on T, and $l(\gamma)$ is the hyperbolic length of γ under the given hyperbolic structure on T. This identity is independent of the hyperbolic structure on the torus, that is, it holds for all points in the Teichmüller space T of the punctured torus. This result was later generalized to more general hyperbolic surfaces with cusps by McShane himself [19], to hyperbolic surfaces with cusps and/or geodesic boundary components by Mirzakhani [22], to hyperbolic surfaces with cusps, geodesic boundary and/or conical singularities, as well as to classical Schottky groups by the authors in [29], [30].

On the other hand, Bowditch in [3] gave an alternative proof of (1) via Markoff maps, and extended it in [5] to type-preserving representations of the once-punctured torus group into SL(2, C) satisfying certain conditions which we call here the BQ-conditions (Bowditch’s Q-conditions). He also obtained in [4] a variation of (1) which applies to hyperbolic once-punctured torus bundles. Subsequently, Akiyoshi-Miyachi-Sakuma [1][2] refined Bowditch’s results in [4] and generalized them to those which apply to hyperbolic punctured surface bundles.
This paper was first motivated by our attempt to understand the extent to which the generalized McShane identities for the one-hole/one-cone torus obtained in [29] hold for general representations of the torus group into SL(2, C), and also the possible generalizations of the McShane-Bowditch identities in [4] for complete, hyperbolic punctured torus bundles over the circle to closed hyperbolic 3-manifolds obtained by hyperbolic Dehn surgery on such manifolds. In the process, we were also led to study some of the fundamental properties of "marked" two generator subgroups of SL(2, C) via the (generalized) Markoff maps studied by Bowditch in [5], and to determine which of these properties had generalizations and extensions to the generalized Markoff maps.

A proper statement of the results requires a fair bit of notation, and will be deferred to the next section. We give here first a brief outline. The first main result (Theorem 2.2) is that the generalized McShane identity obtained in [29] for the one-hole/one-cone torus holds for representations of Γ into SL(2, C) which satisfy the BQ-conditions, which we will describe in detail in the next section. Roughly speaking, these conditions say that there are no elliptics arising from the simple closed curves, and that the number of simple closed curves with length below a certain fixed bound is finite. There are many interesting examples of representations which satisfy these conditions arising from some basic and important geometric constructions. For example, representations arising from the one-cone/one-hole hyperbolic torus, the hyperbolic three-holed sphere (often called pair of pants), and more generally, classical Schottky groups with two generators all give rise to such representations. However, the class of representations satisfying the BQ-conditions is in general much larger, and an interesting problem is to classify this class geometrically. In the case of type-preserving representations studied in [5], Bowditch has conjectured that the class coincides with the quasifuchsian representations (Conjecture A in [5]). The general case is less clear since the representations are in general not discrete, or not faithful. The basic strategy for proving Theorem 2.2 follows very closely that used in [5]. The problem is reformulated in terms of generalized Markoff maps and it is shown that if the BQ-conditions are satisfied, then the generalized Markoff map has Fibonacci growth. This is sufficient to obtain the absolute convergence of the series on the left hand side of the identity. To obtain the actual value, in the type-preserving case, Bowditch made ingenious use of the quantities $\frac{x}{yz}$, $\frac{y}{zx}$ and $\frac{z}{xy}$ associated to a Markoff triple (x, y, z) and certain properties of these quantities. By exploring the geometric interpretation of these quantities, we were able to find analogous quantities, $\Psi(y, z, x)$, $\Psi(z, x, y)$ and $\Psi(x, y, z)$ (for explicit expressions see §4), associated to a generalized Markoff triple, and follow through the proof of Bowditch to complete the proof of Theorem 2.2.

The mapping class group of the torus acts naturally on the space of equivalence classes of representations, preserving the subspace consisting of representations with fixed trace of the commutator $[a, b]$ of a generating pair a, b for Γ, also called the relative character variety. The case where the trace of the commutator is −2 was the case studied by Bowditch in [5], see also the work of Minsky in [21] where the problem was studied within the context of Kleinian groups and the ending lamination conjecture. For real representations, Goldman has studied the dynamics of this action in [14] and obtained quite complete results. Our next result is that for each subspace, the mapping class group acts properly discontinuously on the subset

\[\text{subset} \]
of representations satisfying the BQ-conditions (Theorem 2.3). Furthermore, this is the largest open subset for which this is true (Proposition 2.4).

Bowditch also gave variations of McShane’s identity for complete, finite volume hyperbolic 3-manifolds which fiber over the circle, with fiber the once-punctured torus [4]. These complete structures can be deformed to incomplete structures, as shown by Thurston in [34], and in certain cases, one can perform hyperbolic Dehn surgery to obtain closed (complete) hyperbolic 3-manifolds. The next set of results (Theorems 5.3, 5.4) is that a further variation of the McShane-Bowditch identity holds for these deformations satisfying a variation of the BQ-conditions, and hence for the closed hyperbolic 3-manifolds obtained by hyperbolic Dehn surgery on such manifolds. An interesting aspect of this result is that it is easier to obtain generalizations of McShane’s identity for this class of closed (complete) hyperbolic 3-manifolds than it is for closed hyperbolic surfaces. The only example in the surface case which we know of is an identity for the genus two surface (see [20] and [29]).

All the results above are proven by transforming to equivalent statements for generalized Markoff maps and working in that framework. We remark that besides these connections with hyperbolic geometry, generalized Markoff maps are also closely related to dynamical systems (see [14], [8]), algebraic number theory (see [10], and [28]) and mathematical physics (see [25]). There also seem to be a close connection to the pair-of-pants complex introduced by Hatcher and Thurston in [15], and developed in connection with the Weil-Petersson metric on moduli space in the recent work by Brock in [7] (see also [22] for another connection of McShane’s identity with the Weil-Petersson volume). A further exploration of these ideas may lead to the correct framework of Markoff maps for general surfaces.

The rest of this paper is organized as follows. In §2 we give the definitions and state the results in terms of representations. In §3 we reformulate the results in terms of generalized Markoff maps and also state and prove some basic and fundamental results for generalized Markoff maps, including Theorem 2.3 and Proposition 2.4. In §4 we introduce the \(\Psi \) function and give the proof of Theorem 3.5, the reformulation of our first main theorem. In §5 we generalize Bowditch’s variations of McShane’s identity to identities for certain incomplete hyperbolic torus bundles over the circle (Theorems 5.3, 5.4), with applications to hyperbolic Dehn surgery. Finally, in the Appendices, we give the geometric meaning of two of the important functions \(h \) and \(\Psi \) used in this paper (Appendix A), and explain how to draw the gaps in the extended complex plane to visualize the generalized McShane’s identity (18) (Appendix B).

Acknowledgements. We would like to thank Bill Goldman, Caroline Series and Makoto Sakuma for their encouragement, helpful conversations/correspondence and comments.

2. Notation and statements of results

In this section, we set some basic notation and definitions and give precise statements of our results in terms of representations of the once-punctured torus group,
\[\Gamma, \text{ into } \text{SL}(2, \mathbb{C}). \] As much of the paper is influenced by [5] and [4], we will borrow the notation and definitions from them as much as possible to avoid confusion.

The punctured torus group. Let \(\mathbb{T} \) be a (topological) once-punctured punctured torus and let \(\Gamma \) be its fundamental group. Note that algebraically, \(\Gamma \cong \mathbb{Z} \ast \mathbb{Z} = \langle a, b \rangle \), the free group on two generators.

We define an equivalence relation, \(\sim \), on \(\Gamma \) such that \(g \sim h \) if and only if \(g \) is conjugate to \(h \) or \(h^{-1} \). Note that \(\Gamma/\sim \) can be identified with the set of free homotopy classes of unoriented closed curves on \(\mathbb{T} \).

Simple closed curves on the torus. Let \(\mathcal{C} \) be the set of free homotopy classes of non-trivial, non-peripheral simple closed curves on \(\mathbb{T} \) and let \(\hat{\Omega} \subset \Gamma/\sim \) be the subset corresponding to \(\mathcal{C} \).

Note that \(\hat{\Omega} \) can be identified with \(\mathbb{Q} \cup \{ \infty \} \) by considering the “slope” of \([g] \in \hat{\Omega} \) as follows. Fix a pair of generators \(a \) and \(b \) of \(\Gamma \). Then each class \([g] \) of \(\hat{\Omega} \) has a representative \(g = W(a^{\pm 1}, b) \) which is a cyclically reduced word in \(\{a^{\pm 1}, b\} \), and the exponents of \(a \) in each word is either all positive or all negative. The word is unique up to cyclic permutations, and the slope is the quotient of the sum of the exponents of \(a \) with the sum of the exponents of \(b \) in the word; see [27] for details. Hence, \(a \) is identified with \(\infty \), \(b \) with 0, \(ab \) with 1, and so on. Note that \(\hat{\Omega} \) inherits a cyclic ordering from the cyclic ordering of \(\mathbb{Q} \cup \{ \infty \} \) induced from the standard embedding into \(\mathbb{R} \cup \{ \infty \} \cong S^1 \).

The \(\tau \)-representations. A representation \(\rho : \Gamma \rightarrow \text{SL}(2, \mathbb{C}) \) is said to be a \(\tau \)-representation, where \(\tau \in \mathcal{C} \), if for some (hence every) pair of free generators \(a, b \in \Gamma \), \(\text{tr} \rho([a, b]) = \tau \), where \([a, b] = aba^{-1}b^{-1} \). The space of \(\tau \)-representations, modulo conjugation, is denoted by \(\mathcal{X}_\tau \). In particular, \(\mathcal{X}_{-2} \) is the space of type-preserving representations. The mapping class group of \(\mathbb{T} \), \(\text{MCG} \) acts on \(\mathcal{X}_\tau \).

Note that we can also talk about \(\tau \)-representations for representations \(\rho \) into \(\text{PSL}(2, \mathbb{C}) \), since the trace of the commutator is well-defined. Most geometric constructions give rise to representations into \(\text{PSL}(2, \mathbb{C}) \). It will, however, be more convenient for us to work with representations into \(\text{SL}(2, \mathbb{C}) \), as the statements of the results are neater in this case. This will not affect the validity of our results since the results stated will be independent of the lift chosen, and the results could have been stated in terms of representations into \(\text{PSL}(2, \mathbb{C}) \) as well.

It is well known that the image of the representation \(\rho \) is non-elementary (\(\rho \) is irreducible) if and only if \(\tau \neq 2 \), we will only be interested in \(\tau \)-representations with \(\tau \neq 2 \) in this paper. The case where \(\tau = -2 \) is particularly interesting. In this case, the representation \(\rho \) is said to be type-preserving, and except when \(\text{tr} \rho(a) = \text{tr} \rho(b) = \text{tr} \rho(ab) = 0 \), \(\rho([a, b]) \) is always a parabolic element for any pair of generating elements \(a, b \) in \(\Gamma \). This is the case usually considered in the study of Kleinian groups, (see [21]), and is also the case extensively studied in [5].

The BQ-conditions. For a fixed \(\tau \neq 2 \), a \(\tau \)-representation \(\rho : \Gamma \rightarrow \text{SL}(2, \mathbb{C}) \) (or \(\text{PSL}(2, \mathbb{C}) \)) is said to satisfy the BQ-conditions if

1. (BQ1) \(\text{tr} \rho(g) \not\in [-2, 2] \) for all \([g] \in \hat{\Omega} \); and
2. (BQ2) \(|\text{tr} \rho(g)| \leq 2 \) for only finitely many (possibly none) \([g] \in \hat{\Omega} \).
We also call such a representation ρ a BQ-representation, or Bowditch representation, and the space of such representations the Bowditch representation space, denoted by $(X_\tau)_Q$. If we replace (BQ1) by $\text{tr}\rho(g) \not\in (-2, 2)$ for all $[g] \in \Omega$, we call the resulting space the extended Bowditch representation space (see [31]).

Note that $\text{tr}\rho(g_1) = \text{tr}\rho(g_2)$ if $[g_1] = [g_2]$ (since g_1 is conjugate to g_2 or its inverse by definition); so the conditions (BQ1) and (BQ2) make sense.

Some conventions. Throughout this paper we assume that

- the function \cosh^{-1} has images with nonnegative real parts and with imaginary parts in $(-\pi, \pi]$;
- the function \log has images with imaginary parts in $(-\pi, \pi]$; while
- the function \tanh^{-1} has images with imaginary parts in $(-\pi/2, \pi/2]$.

The functions $l/2$ and l. For $x \in \mathbb{C}$, let $l(x)/2 \in \mathbb{C}/2\pi i\mathbb{Z}$ be defined by

$$l(x)/2 = \cosh^{-1}(x/2).$$

Hence $l(x) = 2\cosh^{-1}(x/2) = \cosh^{-1}(x^2/2 - 1) \in \mathbb{C}/2\pi i\mathbb{Z}$. In particular, $\Re(l(x)/2) \geq 0$ and if $\Re(l(x)/2) = 0$ then $\Im(l(x)/2) \geq 0$.

Note that $e^{l(x)/2} \in \mathbb{C}$ is well-defined. It can be shown (see Lemma 4.1) that if $x \not\in [-2, 2]$ then $e^{-l(x)/2} = x h(x)$ where $h(x)$ is defined below. Hence

$$e^{l(x)} = x^{-2} h(x)^{-2} = h(x)^{-1} - 1.$$ (3)

For $A \in \text{SL}(2, \mathbb{C})$, we define its half translation length $l(A)/2 \in \mathbb{C}/2\pi i\mathbb{Z}$ by

$$\frac{l(A)}{2} = \frac{l(\text{tr}A)}{2} = \cosh^{-1}\left(\frac{\text{tr}A}{2}\right).$$

(4)

The function h. We define an even function $h : \mathbb{C}\backslash\{0\} \rightarrow \mathbb{C}$ by

$$h(x) = \frac{1}{2} \left(1 - \sqrt{1 - \frac{4}{x^2}}\right).$$

(5)

It is easy to check that

$$h(x)^2 - h(x) + x^{-2} = 0.$$ (6)

In fact, if $x \not\in [-2, 2]$ then $h(x)$ is the root of the quadratic equation which has smaller real part. By (3), we also have

$$h(x) = \frac{1}{1 + e^{l(x)}}.$$ (7)

The function $\mathfrak{h} = h_\tau$. For $\tau \in \mathbb{C}$, set $\nu = \cosh^{-1}(-\tau/2)$. We define a function

$$\mathfrak{h} = \mathfrak{h}_\tau : \mathbb{C}\backslash\{\pm\sqrt{\tau + 2}\} \rightarrow \mathbb{C}$$

with
by
\[h(x) = 2 \tan^{-1} \left(\frac{\sinh \nu}{\cosh \nu + e^{l(x)}} \right) \] (8)
\[= \log \frac{e^{\nu} + e^{l(x)}}{e^{-\nu} + e^{l(x)}} \] (9)
\[= \log \frac{1 + (e^\nu - 1) h(x)}{1 + (e^{-\nu} - 1) h(x)}, \] (10)
where (10) follows from (9) by (3). Note that \(h(0) \) is well-defined if \(\tau \neq -2 \). In fact,
\[h(0) = \nu + \pi i. \]
Note also that \(e^{\pm \nu} + e^{l(x)} = 0 \) if and only if
\[\pm \nu + \pi i = l(x), \]
which implies that \(x^2 = \tau + 2 \).

Geometric interpretation of \(h \) and \(\mathfrak{h} \) in the real case. When the representation arises from a real one-cone/cusp/holed torus, then \(h \) and \(\mathfrak{h} \) correspond to the gaps on the boundary of the torus arising from intersecting geodesics, see [19] or [29], we give a more detailed description in Appendix A.

Bowditch’s extension of McShane’s identity. With the above notation and definitions, Bowditch’s extension and reformulation of McShane’s identity (1) can be stated as follows.

Theorem 2.1. (Theorem 3 in [5]) Let \(\rho : \Gamma \rightarrow \text{SL}(2, \mathbb{C}) \) be a type-preserving representation which satisfies the BQ-conditions. Then
\[\sum_{\rho \in \hat{\Omega}} h(\text{tr}(\rho)) = \frac{1}{2}, \] (11)
where the sum converges absolutely.

Remarks.
(i) The identity (11) is also true for BQ-representations into \(\text{PSL}(2, \mathbb{C}) \) since \(h(x) \) is an even function and the trace of an element of \(\text{PSL}(2, \mathbb{C}) \) is well-defined up to sign.
(ii) For an element \(A \in \text{PSL}(2, \mathbb{C}) \), its complex translation length
\[l(A) = l(\text{tr}A) = \cosh^{-1} \left(\frac{1}{2} \text{tr}^2 A - 1 \right) \in \mathbb{C}/2\pi i \mathbb{Z} \]
is well-defined with \(\Re l(A) \geq 0 \) and \(h(\text{tr}A) = 1/(1 + e^{l(A)}) \).

Our first main theorem, which is a generalization of Theorem 2.1 of Bowditch above, and Theorem 1.4 of [29], is as follows:

Theorem 2.2. Let \(\rho : \Gamma \rightarrow \text{SL}(2, \mathbb{C}) \) be a \(\tau \)-representation (where \(\tau \neq 2 \)) satisfying the BQ-conditions. Set \(\nu = \cosh^{-1}(\text{tr}(A)/2) \). Then
\[\sum_{\rho \in \hat{\Omega}} h(\text{tr}(\rho)) = \nu \mod 2\pi i, \] (12)
where the sum converges absolutely.

Remarks.
(i) Here \(\nu \) is a specific choice of half the complex translation length of the commutator \([\rho(a), \rho(b)]\).
(ii) Since \(h \) is an even function, Theorem 2.2 also holds for representations into \(\text{PSL}(2, \mathbb{C}) \) satisfying the BQ-conditions.
(iii) Note that for \(x \neq 0 \), when \(\tau \rightarrow -2 \), or equivalently, \(\nu \rightarrow 0 \), we have
\[
h(x) = \log \frac{1 + (e^{\nu} - 1)h(x)}{1 + (e^{-\nu} - 1)h(x)}
\]
\[
= \log \left(1 + \frac{2 \sinh \nu h(x)}{1 + (e^{-\nu} - 1)h(x)} \right)
\]
\[
\sim 2\nu h(x).
\]
Hence the identity (11) can be ‘obtained’ by considering the first order infinitesimal terms of (12).
(iv) Theorem 2.2 has an equivalent formulation as Theorem 3.5 in terms of \(\mu \)-Markoff maps.

Next, consider the action of the mapping class group of \(\mathbb{T} \), \(\text{MCG} \cong \text{SL}(2, \mathbb{Z}) \), and its induced action on \(\Gamma \) and on \(\mathcal{X}_\tau \), the space of \(\tau \)-representations. (Recall that \(\text{MCG} \) is the group of isotopy classes of diffeomorphisms of \(\mathbb{T} \) which fixes the puncture, that is, there exists a neighborhood \(N \) of the puncture which is pointwise fixed by the elements of \(\text{MCG} \).) Any \(H \in \text{MCG} \) induces an automorphism \(H_* \) of \(\Gamma \), and \(H \) acts on \(\mathcal{X}_\tau \) by
\[
H(\rho)(g) = \rho(H_*(g)),
\]
for any \(\rho \in \mathcal{X}_\tau \) and \(g \in \Gamma \). We shall see in the next section that the set \((\mathcal{X}_\tau)_Q \) of Bowditch representations is open in \(\mathcal{X}_\tau \) (Theorem 3.2). It is also clear that \(\text{MCG} \) acts on \((\mathcal{X}_\tau)_Q \). We have the following result:

Theorem 2.3. \(\text{MCG} \) acts properly discontinuously on \((\mathcal{X}_\tau)_Q \).

We also have a partial converse as follows:

Proposition 2.4. Suppose that \(\rho \in \mathcal{X}_\tau \) does not satisfy the extended BQ-conditions, that is, either \(\text{trp}(g) \in (-2, 2) \) for some \([g] \in \hat{\Omega} \) or \(|\text{trp}(g)| \leq 2 \) for infinitely many \([g] \in \hat{\Omega} \). Then there exists a sequence of distinct elements \(H_i \in \text{MCG} \) and \(\rho_0 \in \mathcal{X}_\tau \) such that \(H_i(\rho) \) converges to \(\rho_0 \in \mathcal{X}_\tau \).

From Proposition 2.4 it is easy to deduce that \((\mathcal{X}_\tau)_Q \) is the largest open subset of \(\mathcal{X}_\tau \) on which \(\text{MCG} \) acts properly discontinuously. The proofs of Theorem 2.3 and Proposition 2.4 will be deferred to the end of §3.

Bowditch [4] studied representations \(\rho \in \mathcal{X}_{\tau p} = \mathcal{X}_{-2} \) stabilized by a cyclic subgroup \((H) < \text{MCG} \) generated by a hyperbolic element and proved a variation of the McShane’s identity. This result can be generalized for \(\tau \)-representations as follows. The case \(\tau = -2 \) with \(h \) replaced by \(h \) is Bowditch’s variation (Theorem A in [4]).

Theorem 2.5. Suppose that a \(\tau \)-representation \(\rho : \Gamma \rightarrow \text{SL}(2, \mathbb{C}) \), where \(\tau \neq 2 \), is stabilized by a hyperbolic element \(H \in \text{SL}(2, \mathbb{Z}) \cong \text{MCG} \) and \(\rho \) satisfies the BQ-conditions on \(\hat{\Omega}/(H_*) \), that is,
Figure 1. The directed edge $\vec{e} = (X,Y; Z \rightarrow W)$

(i) $\text{tr} \rho ([g]) \notin [-2,2]$ for all classes $[g] \in \hat{\Omega}/\langle H_\ast \rangle$, and

(ii) $|\text{tr} \rho ([g])| \leq 2$ for only finitely many (possibly no) classes $[g] \in \hat{\Omega}/\langle H_\ast \rangle$.

Then

$$\sum_{[g] \in \hat{\Omega}/\langle H_\ast \rangle} \eta (\text{tr} \rho ([g])) = 0 \mod 2\pi i, \quad (13)$$

where the sum converges absolutely.

Theorem 2.5 will be reformulated and proved as Theorem 5.7 in §5, together with a more interesting version where the sum is taken only over the left partition (Theorem 5.9), with interpretations in terms of (in)complete hyperbolic structures on torus bundles (Theorems 5.3 and 5.4).

3. Generalized Markoff maps

In this section we study the basic geometry of generalized Markoff maps, the connection with the space of equivalence classes of representations \mathcal{X}, and show that many of the fundamental results obtained by Bowditch for Markoff maps extend to this case as well. In particular, we obtain the Fibonacci growth for generalized Markoff maps which satisfy Bowditch’s Q-conditions. We shall follow the notation and proofs of Bowditch [5] whenever possible. However, instead of working in the more general combinatorial set-up there, we will fix a concrete realization of the combinatorial structure involved to help with the visualization of the maps.

The Farey triangulation \mathcal{F} and the dual binary tree Σ. Let \mathcal{F} be the Farey triangulation of the hyperbolic plane \mathbb{H}^2, and Σ be the dual binary tree (also called an infinite trivalent graph). Recall that the Farey triangulation consists of edges which are complete hyperbolic geodesics joining all pairs $\{\xi, \eta\} \subset \mathbb{Q} \cup \{\infty\}$ which are Farey neighbors, and that $\xi = p/q$ and $\eta = r/s$ (where we always assume that $p,q,r,s \in \mathbb{Z}$ and $(p,q) = (r,s) = 1$) are Farey neighbors if $ps -rq = \pm 1$. See Figure 2.

Complementary regions. A complementary region of Σ is the closure of a connected component of the complement.

We denote by $\Omega = \Omega(\Sigma)$ the set of complementary regions of Σ. Similarly, we use $V(\Sigma)$, $E(\Sigma)$ for the set of vertices and edges, respectively.
Action of $\text{PSL}(2,\mathbb{Z})$. It is clear from the construction that there is a natural action of $\text{PSL}(2,\mathbb{Z})$ (in fact, $\text{PGL}(2,\mathbb{Z})$) on Σ, and there is a natural correspondence of $\Omega(\Sigma)$ with $\mathbb{Q} \cup \{\infty\}$ (the vertices of \mathcal{F}), together with the induced cyclic ordering.

We use the letters X, Y, Z, W, \ldots to denote the elements of Ω, and also introduce the notation $X(p/q)$ to indicate that $X \in \Omega$ corresponds to $p/q \in \mathbb{Q} \cup \{\infty\}$. We also use the notation $e \leftrightarrow (X, Y; Z, W)$ to indicate that $e = X \cap Y$ and $e \cap Z$ and $e \cap W$ are the endpoints of e; see Figure 1, ignoring the direction of e there. Note also that there is a correspondence of the ends of Σ with $\mathbb{R} \cup \{\infty\} \cong S^1$ which is one-to-one from ends to the irrationals and two-to-one from ends to the rational numbers, much like the decimal expansions for the real numbers although we shall not use it in this paper.

Directed edges, the sets $\Omega^0(e)$, $\Omega^\pm(e)$ and $\Omega^{0\pm}(e)$. Denote by $\tilde{E}(\Sigma)$ (or just \tilde{E}) the set of directed edges of Σ where the direction is always taken to be from the tail to the head (as in the direction of the arrow), and for a directed edge $\tilde{e} \in \tilde{E}(\Sigma)$, we use $\tilde{e} = (X, Y; Z \rightarrow W)$ (or just $\tilde{e} = (X, Y; \rightarrow W)$), to indicate that $e \cap W$ is the head of \tilde{e}, that is, \tilde{e} is the directed edge from Z to W, see Figure 1. We also use e to indicate the underlying undirected edge corresponding to the directed edge \tilde{e}, and $-\tilde{e}$ to indicate the directed edge in the opposite direction of \tilde{e}.

Associated to each $\tilde{e} \in \tilde{E}(\Sigma)$ is a partition of Ω which we will use repeatedly later. For $e \leftrightarrow (X, Y; Z, W) \in E$, define $\Omega^0(e) = \{X, Y\}$. For $\tilde{e} = (X, Y; Z \rightarrow W) \in \tilde{E}$, $\Sigma \setminus \text{int}(e)$ consists of two components, denoted by $\Sigma^+(\tilde{e})$ and $\Sigma^-(\tilde{e})$, where $\Sigma^+(\tilde{e})$ is the component containing the head of \tilde{e} and $\Sigma^-(\tilde{e})$ is the component containing the tail of \tilde{e} (so that Z meets $\Sigma^-(\tilde{e})$ and W meets $\Sigma^+(\tilde{e})$). Define $\Omega^+(\tilde{e})$ (resp. $\Omega^-(\tilde{e})$) to be the set of regions in Ω whose boundaries lie in $\Sigma^+(\tilde{e})$ (resp. $\Sigma^-(\tilde{e})$). Hence $\Omega = \Omega^+(\tilde{e}) \cup \Omega^0(e) \cup \Omega^-(\tilde{e})$. Define $\Omega^0(\tilde{e}) = \Omega^0(e) \cup \Omega^+(\tilde{e})$ (resp. $\Omega^0(\tilde{e}) = \Omega^0(e) \cup \Omega^-(\tilde{e})$).
\(\mu\)-Markoff triples. For a complex number \(\mu\), a \(\mu\)-Markoff triple is an ordered triple \((x, y, z)\) of complex numbers satisfying the \(\mu\)-Markoff equation:
\[
x^2 + y^2 + z^2 - xyz = \mu. \tag{14}
\]
Thus Markoff triples are just 0-Markoff triples. The set of \(\mu\)-Markoff triples is also called the relative character variety, see [14].

It is easily verified that if \((x, y, z)\) is a \(\mu\)-Markoff triple, so are \((x, y, xy - z)\), \((x, xz - y, z)\), \((yz - x, y, z)\) and the permutation triples of each of them.

\(\mu\)-Markoff maps. A \(\mu\)-Markoff map is a function \(\phi : \Omega \rightarrow \mathbb{C}\) such that

(i) for every vertex \(v \in V(\Sigma)\), the triple \((\phi(X), \phi(Y), \phi(Z))\) is a \(\mu\)-Markoff triple, where \(X, Y, Z \in \Omega\) are the three regions meeting \(v\); and

(ii) for every edge \(e \in E(\Sigma)\) such that \(e \leftrightarrow (X, Y; Z, W)\), we have
\[
xy = z + w, \tag{15}
\]
where \(x = \phi(X), y = \phi(Y), z = \phi(Z)\) and \(w = \phi(W)\).

We shall use \(\Phi_\mu\) to denote the set of all \(\mu\)-Markoff maps and lower case letters to denote the \(\phi\) values of the regions, for example, \(\phi(X) = x, \phi(Y) = y\). Recall that in [5] the set of all Markoff maps is denoted by \(\Phi\); while here it is denoted by \(\Phi_0\) in our notation. We use \(\Phi\) to denote the set of all generalized Markoff maps.

As in the case of Markoff maps, if the edge relation (15) is satisfied along all edges, then it suffices that the vertex relation (14) be satisfied at a single vertex. In fact one may establish a bijective correspondence between \(\mu\)-Markoff maps and \(\mu\)-Markoff triples, by fixing three regions \(X, Y, Z\) which meet at some vertex \(v_0\), say \(X(\infty), Y(0)\) and \(Z(1)\). This process may be inverted by constructing a tree of \(\mu\)-Markoff triples as Bowditch did in [5] for Markoff triples: given a triple \((x, y, z)\), set \(\phi(X) = x, \phi(Y) = y, \phi(Z) = z\), and extend over \(\Omega\) as dictated by the edge relations. In this way one obtains an identification of \(\Phi_\mu\) with the relative character variety in \(\mathbb{C}^3\) given by the \(\mu\)-Markoff equation. In particular, \(\Phi_\mu\) gets a nice topology as a subset of \(\mathbb{C}^3\).

The natural action of \(\text{PSL}(2, \mathbb{Z})\) on \(\Sigma\) induces an action on \(\Phi_\mu\), given by
\[
H(\phi)(X) = \phi(H_\ast(X)),
\]
where \(H \in \text{PSL}(2, \mathbb{Z})\), \(\phi \in \Phi_\mu\), \(X\) is any element of \(\Omega\) and \(H_\ast\) is the induced action of \(H\) on \(\Omega\). There is also an action of the Klein-four group, \(\mathbb{Z}_2^2\), on \(\Phi_\mu\) obtained by changing two of the signs in a \(\mu\)-Markoff triple, for example, \((x, y, z) \mapsto (-x, -y, z)\). (We get the same action, up to automorphisms of \(\mathbb{Z}_2^2\), no matter at which vertex we choose to perform this operation.) This action is free and properly discontinuous on \(\Phi_\mu\setminus\{(\pm\sqrt{\mu}, 0, 0), (0, \pm\sqrt{\mu}, 0), (0, 0, \pm\sqrt{\mu})\}\).

Natural correspondence: \(X_{\mu-2} \equiv \Phi_\mu\). There is also a natural correspondence between conjugacy classes of \((\mu-2)\)-representations \(\rho\) and \(\mu\)-Markoff maps, obtained by fixing a generating pair \(a, b\) (and \(ab\)) for \(\Gamma\). First note that by fixing \(a\) and \(b\), we get a correspondence between \(\Omega\) and \(\hat{\Omega}\) via the correspondence with \(\mathbb{Q} \cup \{\infty\}\) (see §2 and earlier discussion in this section). Note that \((p/q), (r/s) \in \Omega\) share an edge if and only if \(p/q\) and \(r/s\) are Farey neighbors, if and only if the corresponding elements \([g_1], [g_2] \in \hat{\Omega}\) correspond to simple closed curves on \(\mathbb{T}\) which have geometric
intersection number one, or equivalently, have representatives g_1 and g_2 which are a pair of free generators for Γ.

A $(\mu - 2)$-representation $\rho : \Gamma \to \text{SL}(2, \mathbb{C})$ naturally gives rise to a μ-Markoff map $\phi \in \Phi_\mu$ via the correspondence between Ω and $\hat{\Omega}$ by taking the traces of $[g] \in \hat{\Omega}$, that is, by $\phi(X) = \text{tr}\rho(g)$ where $[g] \in \hat{\Omega}$ represents the simple closed curve corresponding to $X \in \Omega$. The edge and vertex relations follow from the trace identities in $\text{SL}(2, \mathbb{C})$:

\[
\text{tr}A\text{tr}B = \text{tr}AB + \text{tr}AB^{-1},
\]

\[
2 + \text{tr}[A, B] = (\text{tr}A)^2 + (\text{tr}B)^2 + (\text{tr}AB)^2 - \text{tr}A\text{tr}B\text{tr}AB.
\]

Representations conjugate in $\text{SL}(2, \mathbb{C})$ give rise to the same μ-Markoff map.

Conversely, given any μ-Markoff map ϕ, we can recover the $(\mu - 2)$-representation $\rho : \Gamma \to \text{SL}(2, \mathbb{C})$ up to conjugacy as follows. Consider the three regions $X(\infty), Y(0)$ and $Z(1)$ which meet at the vertex v_0 and consider the μ-Markoff triple (x, y, z), where $x = \phi(X), y = \phi(Y)$ and $z = \phi(Z)$. Then one can find $A, B \in \text{SL}(2, \mathbb{C})$, unique up to simultaneous conjugacy, such that $\text{tr}A = x, \text{tr}B = y$ and $\text{tr}AB = z$; a specific choice is given by Bowditch in §4 of [5], see also [14] for a more natural choice. This gives a $(\mu - 2)$-representation ρ with $\rho(a) = A, \rho(b) = B$ and hence $\text{tr}\rho(a) = x, \text{tr}\rho(b) = y, \text{tr}\rho(ab) = z$.

In this way we can identify Φ_μ naturally with the set $X_{\mu-2}$ of conjugacy classes of $(\mu - 2)$-representations of Γ into $\text{SL}(2, \mathbb{C})$, and study the latter via the former. Also, there is a natural identification of the mapping class group MCG with $\text{PSL}(2, \mathbb{Z})$, and the action of MCG on $X_{\mu-2}$ corresponds exactly to the action of $\text{PSL}(2, \mathbb{Z})$ on Φ_μ.

A key observation is that a μ-Markoff map gives a tremendous amount of information about the corresponding representation ρ, since it incorporates in its definition the action of the mapping class group on ρ, as well as the structure of the mapping class group itself (which is encoded in the tree Σ).

The subsets $\Omega_\phi(k) \subset \Omega$. Given $\phi \in \Phi_\mu$ and $k \geq 0$, the set $\Omega_\phi(k) \subset \Omega$ is defined by

\[
\Omega_\phi(k) = \{ X \in \Omega \mid |\phi(X)| \leq k \}.
\]

We now state Bowditch’s Q-conditions for μ-Markoff maps.

BQ-conditions for μ-Markoff maps. A generalized Markoff map $\phi \in \Phi_\mu$ is said to satisfy the *BQ-conditions* if

- (BQ1) $\phi^{-1}([-2, 2]) = \emptyset$; and
- (BQ2) $\Omega_\phi(2)$ is finite (possibly empty).

We denote by $(\Phi_\mu)_Q$ the set of all generalized μ-Markoff maps which satisfy the BQ-conditions, and call the set of all such maps the Bowditch μ-Markoff maps. It is clear that $(\Phi_\mu)_Q$ corresponds to $(X_{\mu-2})_Q$.

In the rest of this section we examine the results and arguments given in §1–§4 of [5] about Markoff maps and point out those which hold for generalized Markoff maps. A key observation here is that most of the basic results derived there only
depend on the edge relation (15) and not on the vertex relation (14) and hence holds for generalized Markoff maps as well.

Results for generalized Markoff maps. We first state the results for generalized Markoff maps corresponding to those in §§1–3 of [5] for Markoff maps.

Theorem 3.1. If $\phi \in \Phi_\mu$ then

1. there exists a constant $m = m(\mu) > 0$ (depending on μ but not on ϕ) such that $\Omega_\phi(m)$ is non-empty; and
2. for any $k \geq 2$, the union $\bigcup \Omega_\phi(k) := \bigcup_{X \in \Omega_\phi(k)} X$ is connected (as a subset of the hyperbolic plane). In particular, $\bigcup \Omega_\phi(2)$ is connected.

Part (2) of Theorem 3.1 is a fundamental result and is crucial to the study of the action of $\text{PSL}(2, \mathbb{Z})$ on Φ_μ.

We have seen that Φ_μ admits a nice topology from its identification with the relative character variety $\{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^2 + z^2 - xyz = \mu\}$. We have the following:

Theorem 3.2. The set $(\Phi_\mu)_Q$ is an open subset of Φ_μ.

An important innovation in [5] was to study the growth rate of a μ-Markoff map ϕ by comparing it to a simple function $F_\phi : \Delta \mapsto \mathbb{N}$ called the Fibonacci function, defined for a fixed edge $e \in E(\Sigma)$. Recall that Bowditch defined the term ‘log$^+|\phi|$ has Fibonacci growth’ in §2.1 [5], where $\text{log}^+(x) = \max\{0, \text{log}(x)\}$ for $x > 0$. The definition of Fibonacci growth, lower and upper Fibonacci bound, and the Fibonacci function F_ϕ, will be given in the later part of this section. The power of this notion lies in that if $\text{log}^+|\phi|$ has lower Fibonacci bound then $\sum_{X \in \Omega} |\phi(X)|^{-t}$ converges for any $t > 0$; in particular, $\Omega_\phi(k)$ is finite for all k and so $\phi(\Omega) \subseteq \mathbb{C}$ is discrete.

Theorem 3.3. Suppose $\phi \in (\Phi_\mu)_Q$ and $\mu \neq 4$. Then $\text{log}^+|\phi|$ has Fibonacci growth.

Exactly as in [5], the argument for proving the lower Fibonacci bound in Theorem 3.3 can be applied to a single branch of the tree Σ.

Proposition 3.4. (Proposition 3.9 in [5]) Suppose \vec{e} is a directed edge of Σ such that $\Omega^0(\vec{e}) \cap \Omega_\phi(2)$ is finite and $\Omega^0(\vec{e}) \cap \phi^{-1}[-2, 2] = \emptyset$. Then $\text{log}^+|\phi|$ has lower Fibonacci bound on $\Omega^0(\vec{e})$.

For $\phi \in (\Phi_\mu)_Q$, we have the following version of the generalized McShane’s identity, which is a reformulation of our first main result, Theorem 2.2 in terms of generalized Markoff maps.

Theorem 3.5. If $\phi \in (\Phi_\mu)_Q$ ($\mu \neq 0, 4$) then

$$\sum_{X \in \Omega} h(\phi(X)) = \nu \mod 2\pi i,$$

where $\nu = \cosh^{-1}(1 - \mu/2)$ and $h = h_\tau : \mathbb{C} \setminus \{\pm \sqrt{\mu}\} \to \mathbb{C}$ is defined as in §2 with $\tau = \mu - 2$. Moreover, the sum converges absolutely.

There is a version, Proposition 3.6, of Theorem 3.5 applicable to a single branch of Σ, by defining the edge weight $\psi(\vec{e}) = \psi_\phi(\vec{e})$ and a specific half $h(x)$ of $h(x)$ as follows.
The function \mathcal{h}. Given $\mu \in \mathbb{C}$ with $\mu \neq 0, 4$, define $\mathcal{h} : \mathbb{C} \setminus \{0, \pm \sqrt{\mu}\} \to \mathbb{C}$ by
\[
\mathcal{h}(x) = \log \frac{1 + (e^\nu - 1)h(x)}{\sqrt{1 - \mu/x^2}} \in \mathbb{C},
\] (19)
where $\nu = \cosh^{-1}(1 - \mu/2)$. It is easy to check that for all $x \in \mathbb{C} \setminus \{0, \pm \sqrt{\mu} + 2\}$,
\[
2\mathcal{h}(x) = h(x) \mod 2\pi i.
\] (20)

The edge weight $\psi(\vec{e})$. Recall that we denote a directed edge $\vec{e} \in \vec{E}(\Sigma)$ by $\vec{e} = (X, Y ; \to Z)$ if X, Y and Z are regions such that $e = X \cap Y$ and \vec{e} points towards Z. For a fixed $\phi \in \Phi_\mu$ and a directed edge $\vec{e} = (X, Y ; \to Z)$ with $x, y \neq 0, \pm \sqrt{\mu}$, we define the ϕ-weight $\psi(\vec{e})$ by
\[
\psi(\vec{e}) = \psi_\phi(\vec{e}) = \log \frac{1 + (e^\nu - 1)(z/xy)}{\sqrt{1 - \mu/x^2} \sqrt{1 - \mu/y^2}}.
\] (21)
Note that $\psi(\vec{e}) = \Psi(x, y, z)$ where the function Ψ is defined later in §4.

Proposition 3.6. Suppose $\vec{e} = (X, Y ; \to Z)$ is a directed edge of Σ such that $\Omega^0(\vec{e}) \cap \Omega_\phi(2)$ is finite and $\Omega^0(\vec{e}) \cap \phi^{-1}[-2, 2] = \emptyset$. Then
\[
\psi(\vec{e}) = \sum_{X \in \Omega^0(\vec{e})} \mathcal{h}(\phi(X)) + \sum_{X \in \Omega^0(\vec{e})} \mathcal{h}(\phi(X)) \mod 2\pi i,
\] (22)
where the infinite sum converges absolutely.

Some other dynamical properties of Φ_μ corresponding to those in §§4–5 of [5] for Markoff maps will be discussed in a future paper [32].

Examination and extension of Bowditch’s arguments. For the rest of this section, we fix on one μ-Markoff map, ϕ, where $\mu \neq 0, 4$.

We make the assumption that $\phi^{-1}(0) = \emptyset$, which is not essential, to simplify the exposition. Note that the assumption is true for $\phi \in (\Phi_\mu)_\varphi$.

We shall also adopt the following convention of Bowditch [5]: We use upper case latin letters for elements of Ω, and the corresponding lower case letters for the values assigned to them by ϕ; that is, $x = \phi(X)$, $y = \phi(Y)$ etc.

The above convention and assumption will allow us to write the edge relation, (15), in the following convenient form:
\[
\frac{z}{xy} + \frac{w}{xy} = 1.
\] (23)

Arrows assigned by a μ-Markoff map. As Bowditch did in [5], we may use $\phi \in \Phi_\mu$ to assign to each undirected edge, e, a particular directed edge, $\alpha_\phi(e)$, with underlying edge e. Suppose $e \leftrightarrow (X, Y ; Z, W)$. If $|z| > |w|$ then the arrow on e points towards W; in other words, $\alpha_\phi(e) = (X, Y ; Z \to W)$. Note that the statement is equivalent to $\Re(\frac{x}{xy}) > \frac{1}{2}$. In particular, it implies that $2|z| > |xy|$. If $|z| < |w|$, we put an arrow on e pointing towards Z, that is, $\alpha_\phi(e) = (X, Y ; W \to Z)$. If it happens that $|z| = |w|$ then we choose $\alpha_\phi(e)$ arbitrarily.

The following elementary lemma, which is Lemma 3.2(3) of [5], is fundamental. It generalizes to μ-Markoff maps as the proof only uses the edge relation (15).
Lemma 3.7. (Lemma 3.2(3), [5]) Suppose $X, Y, Z \in \Omega$ meet at a vertex $v \in V(\Sigma)$, and that the arrows on the edges $X \cap Y$ and $X \cap Z$ both point away from v. Then $|x| \leq 2$.

Proof. Let y' be the value of ϕ on the region opposite Y. Then from the direction of the arrow, $2|y| \geq |y| + |y'| \geq |y + y'| = |xz|$. Similarly, $2|z| \geq |xy|$, from which the inequality follows. \hfill \Box

Proof of Theorem 3.1(2). This is now a simple exercise. Assume that the result is false, choose a minimal path on Σ joining two connected components. If the path consists of only one edge, we get a contradiction using (15). If there is more than one edge on this connecting path, we observe that the two ends point outwards, and we derive a contradiction using Lemma 3.7, see [5] for details. \hfill \Box

Note that Lemma 3.2(1), [5] (which states that there are no sources for $\phi \in \Phi_0 \setminus \{0\}$) will no longer hold for general generalized Markoff maps. For example, if $x \in [-2, 2]$, then the generalized Markoff map which corresponds to the triple (x, x, x) at vertex v has a source at v. On the other hand, Lemma 3.2(2) of [5] can be modified as follows.

Lemma 3.8. (Lemma 3.2(2) in [5]) There is a constant $m(\mu) > 0$ such that if three regions X, Y, Z meet at a sink, then
\[
\min\{|x|, |y|, |z|\} \leq m(\mu).
\] (24)

Proof. We show that if $|x|, |y|, |z|$ are all sufficiently large then the vertex, v, that the regions X, Y, Z meet cannot be a sink. We may assume $x, y, z \neq 0$ and $|x| \leq |y| \leq |z|$. We can rewrite (14) as:
\[
\frac{z}{xy} + \frac{x}{yz} + \frac{y}{zx} = 1 + \frac{\mu}{xyz},
\] (25)

hence
\[
\Re\left(\frac{z}{xy}\right) + \Re\left(\frac{x}{yz}\right) + \Re\left(\frac{y}{zx}\right) = 1 + \Re\left(\frac{\mu}{xyz}\right),
\] (26)

Since $|x|, |y|, |z|$ are all sufficiently large and μ is fixed, $|\frac{x}{yz}|, |\frac{y}{zx}|$ and $|\frac{\mu}{xyz}|$ are all sufficiently small and so are $\Re\left(\frac{z}{xy}\right), \Re\left(\frac{x}{yz}\right)$ and $\Re\left(\frac{\mu}{xyz}\right)$. It follows that $\Re\left(\frac{z}{xy}\right) > \frac{1}{2}$. Hence the arrow on the edge $X \cap Y$ is directed away from v and therefore v is not a sink. \hfill \Box

It seems difficult to determine the optimal $m(\mu)$ for general μ, although it was proven in Lemma 3.8, [3] that the optimal $m(0) = 3$.

Neighbors around a region. For each $X \in \Omega$, its boundary ∂X is a bi-infinite path consisting of a sequence of edges of the form $X \cap Y_n$, where $(Y_n)_{n \in \mathbb{Z}}$ is a bi-infinite sequence of complementary regions. Let $x = \lambda + \lambda^{-1}$ where $|\lambda| \geq 1$. If $x = 2$, then the vertex relation tells us that $y_{n+1} = y_n + \sqrt{\mu - 4}$, and the edge relation tells us that $y_{n+1} - y_n = y_n - y_{n-1}$, hence the ± sign is constant in n. Similarly, if $x = -2$, then $y_{n+1} = -y_n + \sqrt{\mu - 4}$, but this time, $y_{n+1} - y_n = -(y_n - y_{n-1})$, hence the ± sign alternates in n. If $x = \pm \sqrt{\mu}$, then $y_{n+1} = (1/2)(x \pm \sqrt{\mu - 4})y_n$ where the ± sign is constant in n. If $x \notin \{\pm 2, \pm \sqrt{\mu}\}$ then there are constants $A, B \in \mathbb{C} \setminus \{0\}$ with $AB = (x^2 - \mu)/(x^2 - 4)$ such that $y_n = A\lambda^n + B\lambda^{-n}$. Note
that $|\lambda| = 1$ if and only if $x \in [-2, 2] \subseteq \mathbb{R}$. Hence we deduce that the following holds. (This is Corollary 3.3 in [5] in the case $\mu = 0$.)

Lemma 3.9. Suppose that $X \in \Omega$ has neighboring regions Y_n, $n \in \mathbb{Z}$. Then

1. If $x \notin [-2, 2] \cup \{\pm \sqrt{\mu}\}$, then $|y_n|$ grows exponentially as $n \to \infty$ and as $n \to -\infty$.
2. If $x \in (-2, 2)$, then $|y_n|$ remains bounded.
3. If $x = 2$, then either $y_n = y_0 + n\sqrt{\mu - 4}$ for all n, or $y_n = y_0 - n\sqrt{\mu - 4}$ for all n.
4. If $x = -2$, then either $y_n = (-1)^n(y_0 + n\sqrt{\mu - 4})$ for all n, or $y_n = (-1)^n(y_0 - n\sqrt{\mu - 4})$ for all n.
5. If $x = \pm \sqrt{\mu}$, then either $y_n = y_0[(x + \sqrt{\mu - 4})/2]^n$ for all n, or $y_n = y_0[(x - \sqrt{\mu - 4})/2]^n$ for all n.

Using part (5) of the Lemma above, we can show:

Lemma 3.10. If $\phi \in \Phi_\mu$ and $\phi(X) = \pm \sqrt{\mu}$ for some $X \in \Omega$, then $\phi \notin (\Phi_\mu)_Q$.

Proof. Without loss of generality, we may assume that $y_n = y_0[(x + \sqrt{\mu - 4})/2]^n$ for all n. If $y_0 = 0$ then $\phi \notin (\Phi_\mu)_Q$. Suppose $y_0 \neq 0$ and let $\lambda = (x + \sqrt{\mu - 4})/2$. Then it is easy to see that $\lambda \neq 0$. If $|\lambda| = 1$, then $\lambda^{-1} = (x - \sqrt{\mu - 4})/2$. Hence $x = \lambda + \lambda^{-1} \in [-2, 2]$, again $\phi \notin (\Phi_\mu)_Q$. Now suppose $|\lambda| \neq 1$. If $|\lambda| < 1$ then $|y_n| \to 0$ as $n \to \infty$, whereas if $|\lambda| > 1$ then $|y_n| \to 0$ as $n \to -\infty$. Hence $\Omega_\phi(2)$ is infinite and $\phi \notin (\Phi_\mu)_Q$.

The following lemma, together with Lemma 3.7, will imply that if $\Omega_\phi(2) = \emptyset$ then there will be a sink.

Lemma 3.11. (Lemma 3.4 in [5]) Suppose β is an infinite ray in Σ consisting of a sequence, $(e_n)_{n \in \mathbb{N}}$, of edges of Σ such that the arrow on each e_n assigned by ϕ is directed towards e_{n+1}. Then β meets at least one region X with $|\phi(X)| < 2$.

Proof. The same proof used for Lemma 3.4 of [5] works here with a slight refinement for its last part as follows. Suppose that all regions X which are incident to β have $|\phi(X)| \geq 2$. Then by the argument there, for n sufficiently large, there are directed edges $\alpha_\phi(e_n) = (X, Y; Z \to W)$ in β with $X \cap Z \subseteq \beta$ and $Y \cap W \subseteq \beta$ so that (where \simeq means ‘arbitrarily close to’) $z/xy \simeq 1/2, x^2 \simeq 4$ and $y^2 \simeq 8$. Hence $z^2 \simeq 4$ and $xyz \simeq 2z^2 \simeq 8$. Thus $\mu = x^2 + y^2 + z^2 - xyz \simeq 4$ which is impossible since we have assumed that $\mu \neq 4$.

Note that if the path β in Lemma 3.11 above does not eventually lie in the boundary of a fixed region, then β meets infinitely many regions X with $|\phi(X)| < 2$.

Proof of Theorem 3.1(1). If $\Omega_\phi(2) = \emptyset$, then Lemmas 3.7 and 3.11 tell us that there must be a sink. We now apply Lemma 3.8. This proves Theorem 3.1(1).

Fibonacci function. We recall now the definition given in [5] for the Fibonacci function F_μ associated to an edge $e \in E(\Sigma)$, and the definition for a function $f : \Omega \to [0, \infty)$ to have an upper/lower Fibonacci bound.
Lemma 3.12.

Let $\vec{e} \in \vec{E}(\Sigma)$ with underlying edge e. For $X \in \Omega^0(\vec{e})$ we define $d(X) = d_{\vec{e}}(X)$ to be the number of edges in the shortest path joining the head of \vec{e} to X. Given any $Z \in \Omega^- (\vec{e})$, there are precisely two regions $X, Y \in \Omega^0(\vec{e})$ meeting Z and satisfying $d(X) < d(Z)$ and $d(Y) < d(Z)$. Note that X, Y, Z all meet in a vertex.

Now we can define the Fibonacci function $F_{\vec{e}}: \Omega \to \mathbb{N}$ with respect to an edge e as follows. We orient e arbitrarily as \vec{e} and define $F_{\vec{e}}: \Omega^0(\vec{e}) \to \mathbb{N}$ by $F_{\vec{e}}(W) = 1$ for $W \in \Omega^0(e)$ and $F_{\vec{e}}(Z) = F_{\vec{e}}(X) + F_{\vec{e}}(Y)$ for $Z \in \Omega^-(\vec{e})$ where $X, Y \in \Omega^0(\vec{e})$ are the two regions meeting Z and satisfying $d(X) < d(Z)$ and $d(Y) < d(Z)$. Now we define $F_{\vec{e}}(X) = F_{\vec{e}}(X)$ for $X \in \Omega^0(\vec{e})$ and $F_{\vec{e}}(X) = F_{-\vec{e}}(X)$ for $X \in \Omega^+(\vec{e})$. See Figure 3 where the values $F_{\vec{e}}(X)$ are given for some $X \in \Omega$.

The functions $F_{\vec{e}}$ provide a means for measuring the growth rates of functions defined on subsets of Ω. The following lemma can be easily proved by induction. Its corollary shows that the concept of upper and lower Fibonacci bound is independent of the edge e used.

Lemma 3.12. (Lemma 2.1.1 in [5]) Suppose $f: \Omega^0(\vec{e}) \to [0, \infty)$ where $\Omega^0(e) = \{X_1, X_2\}$.

1. If f satisfies $f(Z) \leq f(X) + f(Y) + c$ for some fixed constant c and arbitrary $X, Y, Z \in \Omega^0(\vec{e})$ meeting at a vertex and satisfying $d(X) < d(Z)$ and $d(Y) < d(Z)$, then $f(X) \leq (M + c)F_{\vec{e}}(X) - c$ for all $X \in \Omega^0(\vec{e})$, where $M = \max\{f(X_1), f(X_2)\}$.

2. If f satisfies $f(Z) \geq f(X) + f(Y) - c$ for some fixed constant c where $0 < c < m = \min\{f(X_1), f(X_2)\}$ and arbitrary X, Y, Z as in part (1), then $f(X) \geq (m - c)F_{\vec{e}}(X) + c$ for all $X \in \Omega^0(\vec{e})$.

Corollary 3.13. (Corollary 2.1.2 in [5]) Suppose $f: \Omega \to [0, \infty)$ satisfies an inequality of the form $f(Z) \leq f(X) + f(Y) + c$ for some fixed constant c, whenever $X, Y, Z \in \Omega$ meet at a vertex. Then for any given edge $e \in E(\Sigma)$, there is a constant $K > 0$, such that $f(X) \leq K F_{\vec{e}}(X)$ for all $X \in \Omega$.

Note that for any edge $e' \in E(\Sigma)$, $f = F_{e'}$ satisfies the hypotheses of Corollary 3.13, with $c = 0$. Thus for any two edges $e, e' \in E(\Sigma)$, there is some constant $K = K(e, e') > 0$ such that

$$K^{-1} F_{\vec{e}}(X) \leq F_{\vec{e'}}(X) \leq K F_{\vec{e}}(X)$$

for all $X \in \Omega$. Hence the properties in the following definitions are independent of the choices the edge $e \in E(\Sigma)$.

Fibonacci bounds. Suppose $f: \Omega \to [0, \infty)$, and $\Omega' \subseteq \Omega$. We say that
has an upper Fibonacci bound on \(\Omega' \) if there is some constant \(\kappa > 0 \) such that \(f(X) \leq \kappa F_\mu(X) \) for all \(X \in \Omega' \);
has an lower Fibonacci bound on \(\Omega' \) if there is some constant \(\kappa > 0 \) such that \(f(X) \geq \kappa F_\mu(X) \) for all but finitely many \(X \in \Omega' \);
has Fibonacci growth on \(\Omega' \) if it has both upper and lower Fibonacci bounds on \(\Omega' \); and
has Fibonacci growth if \(f \) has Fibonacci growth on all of \(\Omega \).

Note that if \(\Omega' \) is the union of a finite set of subsets \(\Omega_1, \ldots, \Omega_m \subseteq \Omega \), then \(f \) has an upper (lower) Fibonacci bound if and only if it has an upper (lower) Fibonacci bound on each of \(\Omega_i \).

Upper Fibonacci bounds. The following lemma tells us that for an arbitrary \(\mu \)-Markoff map \(\phi \), the function \(\log^+ |\phi| \) always has an upper Fibonacci bound on \(\Omega \). Hence we only need to consider criteria for it to have a lower Fibonacci bound on certain branches of the binary tree \(\Sigma \).

Lemma 3.14. If \(\phi \in \Phi_\mu \), then \(\log^+ |\phi| \) has an upper Fibonacci bound on \(\Omega \).

Proof. By Corollary 3.13 we only need to show that for an arbitrary \(\mu \)-Markoff map \((x, y, z) \)

\[
\log^+ |z| \leq \log 4 + \log^+ |\mu| + \log^+ |x| + \log^+ |y|. \tag{27}
\]

If \(|z| \leq 2|x| \) or \(|z| \leq 2|y| \) then (27) holds already. So we suppose \(|z| \geq 2|x| \) and \(|z| \geq 2|y| \). Then since \(\mu + xyz = x^2 + y^2 + z^2 \) we have

\[
|\mu| + |xyz| \geq |z|^2 - |x|^2 - |y|^2
\]

\[
= |z|^2/2 + (|z|^2/4 - |x|^2) + (|z|^2/4 - |y|^2)
\]

\[
\geq |z|^2/2.
\]

Hence \(|z|^2 \leq 4|xyz| \) or \(|z|^2 \leq 4|\mu| \) according to whether \(|\mu| \leq |xyz| \) or \(|xyz| \leq |\mu| \). Thus

\[
|z| \leq 4|xy| \text{ or } |z| \leq |z|^2 \leq 4|\mu|
\]

(since we may assume \(|z| \geq 1 \)) from which (27) follows easily. \(\square \)

Lower Fibonacci bounds. The lower Fibonacci bounds are more interesting since, as the following proposition shows, they give the convergence of certain series, in particular, the absolute convergence of series on the left hand side of (18) since we have \(|h(x)| = O(|x|^{-s}) \) as \(|x| \to \infty \).

Proposition 3.15. (Proposition 2.1.4 in [5]) If \(f : \Omega \to [0, \infty) \) has a lower Fibonacci bound, then \(\sum_{X \in \Omega} f(X)^{-s} \) converges for all \(s > 2 \) (after excluding a finite subset of \(\Omega \) on which \(f \) takes the value 0). \(\square \)

Corollary 3.16. If \(\phi \in (\Phi_\mu)_Q \), then for any \(t > 0 \), the series \(\sum_{X \in \Omega} |\phi(X)|^t \) converges absolutely. \(\square \)

The following lemma and corollary of [5] hold with the same proofs there, giving a criterion for \(\log^+ |\phi| \) to have a lower Fibonacci bound on certain branches of \(\Sigma \).
Lemma 3.17. (Lemma 3.5 and Corollary 3.6 in [5]) Suppose $\vec{e} \in \vec{E}(\Sigma)$ is such that $\alpha_{\phi}(e) = \vec{e}$ and $\Omega^0(e) \cap \Omega_{\phi}(2) = \emptyset$. Then $\Omega^0(\vec{e}) \cap \Omega_{\phi}(2) = \emptyset$ and the arrow on each edge of Σ^- is directed towards e.

Furthermore, $\log |\phi(X)| \geq (m - \log 2)F_{\epsilon}(X)$ for all $X \in \Omega^0(\vec{e})$, where $m = \min\{\log |\phi(X)| : X \in \Omega^0(e)\} > \log 2$. \square

Corollary 3.18. (Corollary 3.7 in [5]) If $\Omega_{\phi}(2) = \emptyset$, then there is a unique sink, and $\log^+ |\phi|$ has a lower Fibonacci growth. \square

To prove Theorem 3.3 we expand somewhat on Lemma 3.17 and consider the case where $\Omega^0(\vec{e}) \cap \Omega_{\phi}(2) = \emptyset$ and exactly one of the two regions in $\Omega^0(e)$ has norm no greater than 2.

Lemma 3.19. (Lemma 3.8 in [5]) Suppose $\vec{e} \in \vec{E}(\Sigma)$ is such that $\alpha_{\phi}(e) = \vec{e}$ and $\Omega^0(\vec{e}) \cap \Omega_{\phi}(2) = \{X_0\}$ where $X_0 \in \Omega^0(\vec{e})$ with $x_0 \notin [-2, 2]$. Then $\log^+ |\phi|$ has a lower Fibonacci bound on $\Omega^0(\vec{e})$.

Proof. The proof of Lemma 3.8 in [5] applies. We repeat it here. Let $(\vec{e}_n)_{n=0}^{\infty}$ be the sequence of directed edges lying in the boundary of X_0 and in $\Omega^0(\vec{e})$ so that $\vec{e}_0 = \vec{e}$ and \vec{e}_n is directed away from \vec{e}_{n+1}. For $n \geq 1$, let v_n be the vertex incident on both e_{n-1} and e_n, and let e_n be the third edge (distinct from e_{n-1} and e_n) incident on v_n and directed towards v_n. For $n \geq 0$, let Y_n be the region such that $Y_n \cap X_0 = e_n$. See Figure 4 for an illustration. Thus $\Omega^0(\vec{e}) = \{X_0\} \cup \bigcup_{n=1}^{\infty} \Omega^0(\vec{e}_n)$.

By Lemma 3.9, $|y_n|$ grows exponentially as $n \to \infty$, and so $\log |y_n| \geq cn$ for some $c > 0$. Hence we have $\log^+ |\phi(X)| \geq cnF_{\epsilon}(X)$ for all $n \geq 1$ and for all $X \in \Omega^0(\vec{e}_n)$. Thus it follows easily (using Lemma 3.12(2)) that $\log^+ |\phi|$ has a lower Fibonacci bound on $\Omega^0(\vec{e})$. \square

Proof of Theorem 3.3. The proof of Theorem 3.3 is then the same as that of Theorem 2 in [5]. We sketch it as follows. By Lemma 3.14, we only need to show that $\log^+ |\phi|$ has a lower Fibonacci bound on Ω. If $\Omega_{\phi}(2)$ has at most one element, the conclusion follows easily by Corollary 3.18 and Lemma 3.19. Hence we suppose $\Omega_{\phi}(2)$ has at least two elements.

Recall that $\Omega_{\phi}(2) \subseteq \Omega$ is finite and $\bigcup \Omega_{\phi}(2)$ is connected. Let T be the (finite) subtree of Σ spanned by the set of edges e such that $\Omega^0(e) \subseteq \Omega_{\phi}(2)$. Let $C = C(T)$ be the circular set of directed edges given by T. Note that $\Omega = \bigcup_{\vec{e} \in C} \Omega^0(\vec{e})$. Hence it suffices to show that $\log^+ |\phi|$ has a lower Fibonacci bound on $\Omega^0(\vec{e})$ for
every $\vec{e} \in C$. Then the conclusion of Theorem 3.3 follows by the following claim, Lemma 3.17 and Lemma 3.19.

Claim. For each $\vec{e} \in C$, we have $\vec{e} = \alpha(\vec{e})$, $\Omega^- (\vec{e}) \cap \Omega_\phi(2) = \emptyset$ and $\Omega^0 (\vec{e}) \cap \Omega_\phi(2)$ has at most one element.

To prove the claim, let $\vec{e} = (X,Y,Z \to W) \in C(T)$. If one of X and Y, say X, is in $\Omega_\phi(2)$ then $Y,Z \notin \Omega_\phi(2)$ and $W \in \Omega_\phi(2)$ by the definition of T. Hence in this case $\vec{e} = \alpha(\vec{e})$, $\Omega^- (\vec{e}) \cap \Omega_\phi(2) = \emptyset$ and $\Omega^0 (\vec{e}) \cap \Omega_\phi(2)$ has one element, X. Now suppose neither X nor Y is in $\Omega_\phi(2)$ then $W \in \Omega_\phi(2)$ and $Z \notin \Omega_\phi(2)$ since $\bigcup \Omega_\phi(2)$ is connected. Thus in this case $\vec{e} = \alpha(\vec{e})$, $\Omega^0 (\vec{e}) \cap \Omega_\phi(2) = \emptyset$. This proves the claim, completing the proof of the theorem.

The definition of $H(x)$. To prove Theorem 3.2, that is, $(\Phi_\mu)_Q$ is an open subset of Φ_μ, we introduce a continuous function $H : C \setminus ([−2, 2] \cup \{±\sqrt{\mu}\}) \to R_0$ so that for any $\phi \in \Phi_\mu$ and $X \in \Omega$, if $(Y_n)_{n \in Z}$ is the bi-infinite sequence of regions meeting X, then there are integers $n_1 \leq n_2$ such that $|y_n| \leq H(x)$ if and only if $n_1 \leq n \leq n_2$, and $|y_n|$ is monotonically decreasing for $n \in (−\infty, n_1)$ and monotonically increasing for $n \in [n_2, \infty)$.

Lemma 3.20. For $x \neq \pm \sqrt{\mu}$ and $x \notin [−2, 2]$, $H(x)$ can be chosen as

$$H(x) = \sqrt{\frac{x^2 - \mu}{x^2 - 4}} \frac{2|\lambda(x)|^2}{|\lambda(x)| - 1},$$

where

$$\lambda(x) = \frac{x}{2} \left(1 + \sqrt{1 - \frac{4}{x^2}}\right) = e^{l(x)/2}.
$$

Proof. Let us write $\lambda = \lambda(x)$. Then $|\lambda| > 1$ since $x \notin [−2, 2]$. As explained before Lemma 3.9, there exist A,B with $AB = (x^2 - \mu)/(x^2 - 4)$ such that $y_n = A\lambda^n + B\lambda^{-n}$. Note that since we can replace A,B respectively by $A\lambda^{n}, B\lambda^{-m}$ for $m \in Z$, we may assume that $\sqrt{|AB||\lambda|^{-1}} \leq |A|, |B| \leq \sqrt{|AB||\lambda|}$, that is,

$$\sqrt{\frac{x^2 - \mu}{x^2 - 4}} \left|\lambda\right|^{-1} \leq |A|, |B| \leq \sqrt{\frac{x^2 - \mu}{x^2 - 4}} \left|\lambda\right|.
$$

(Note that this argument fails for $x = \pm \sqrt{\mu}$ since in that case we have $AB = 0$.)

In the rest of the proof we assume that $n > 0$.

Claim. If

$$|\lambda|^{2n-1} \geq \left|\lambda\right| + 1,$$

then $|y_{n+1}| \geq |y_n|$ and $|y_{-n-1}| \geq |y_{-n}|$.

To prove the claim, note that

$$|y_{n+1}| \geq |A||\lambda|^{n+1} - |B||\lambda|^{-n-1} \text{ and } |y_n| \leq |A||\lambda|^{n} + |B||\lambda|^{-n}.
$$

Thus $|y_{n+1}| \geq |y_n|$ if

$$|A||\lambda|^{n+1} - |B||\lambda|^{-n-1} \geq |A||\lambda|^{n} + |B||\lambda|^{-n}$$

or equivalently

$$|\lambda|^{2n+1} \geq \left|\frac{B}{A}\right| \left|\lambda\right| + 1.$$
Since \(|B|/|A| \leq |\lambda|^2\), we have \(|y_{n+1}| \geq |y_n|\) if \(|\lambda|^{2n-1} \geq (|\lambda| + 1)/(|\lambda| - 1)\). The other inequality \(|y_{n-1}| \geq |y_n|\) can be similarly proved.

We continue the proof of Lemma 3.20. Note that

\[
|y_n| \leq |A||\lambda|^n + |B||\lambda|^{-n} \\
\leq \sqrt{\frac{x^2 - \mu}{x^2 - 4}} |\lambda|(|\lambda|^n + |\lambda|^{-n}) \\
\leq \sqrt{\frac{x^2 - \mu}{x^2 - 4}} |\lambda|(|\lambda|^n + 1).
\]

Hence if

\[
|y_n| \geq H(x) = \sqrt{\frac{x^2 - \mu}{x^2 - 4}} |\lambda|\left(\frac{|\lambda| + 1}{|\lambda| - 1} + 1\right)
\]

then \(|\lambda|^n \geq \frac{|\lambda|+1}{|\lambda|-1}\). Hence (30) holds. It follows from the claim that \(|y_{n+1}| \geq |y_n|\).

Similarly, if \(|y_{n-1}| \geq H(x)\) then \(|y_{n-1}| \geq |y_n|\).

\[\square\]

Remark. We observe from the proof that we always have \(|y_0| < H(x)|\).

On the other hand, for \(x \in [-2, 2]\) or \(x = \pm \sqrt{\mu}\), we set \(H(x) = \infty\). By replacing \(H(x)\) by \(\max\{H(x), 2\}\), we may assume that \(H(x) \geq 2\). Hence \(H\) is continuous on \(C \setminus \{\pm \sqrt{\mu}\}\) (but is not continuous at \(\pm \sqrt{\mu}\) if \(\mu \notin [0, 4]\)).

The definition of \(T(t)\). Now for each \(\phi \in \Phi_\mu\) and \(t \geq 0\), we define a subtree \(T(t)\) of \(\Sigma\) as follows. First, for each \(X \in \Omega\) with \(x = \phi(X) \notin [-2, 2]\) and \(x \neq \pm \sqrt{\mu}\), and for \(r \geq H(x) \geq 2\), we set

\[J_r(X) = \bigcup\{X \cap Y_n \mid |y_n| \leq r\} \bigcup \{X \cap Y_n \mid |y_n| \leq r\}.
\]

It is an subarc of \(\partial X\) determined by \(\phi\) with the property that if \(e\) is any edge in \(\partial X\) not lying in \(J_r(X)\) then the arrow on \(e\) assigned by \(\phi\) points towards \(J_r(X)\).

Note that \(J_r(X)\) contains at least one edge by the observation we have just made after the proof of Lemma 3.20.

Now, for given \(t \geq 0\), let \(T(t) = T_\phi(t)\) be the union of all the arcs \(J_{H(x)+t}(X)\) as \(X\) varies in \(\Omega(2+t) = \Omega_\phi(2+t)\).

It can be shown (by the argument of Lemma 3.11, [5]) that \(T(t)\) is connected, hence a subtree of \(\Sigma\). It follows that \(T(t)\) has the following nice property.

\textbf{Lemma 3.21.} If \(T(t) \neq \emptyset\), then the arrow on any edge not in the subtree \(T(t)\) points towards \(T(t)\). \[\square\]

Actually, by Theorem 3.1(1), we have

\textbf{Lemma 3.22.} \(T(t) \neq \emptyset\) for any \(\phi \in \Phi_\mu\) and for any \(t \geq m(\mu) - 2\), where \(m(\mu) > 2\) is a constant such that \(\Omega_\phi(m(\mu)) \neq \emptyset\) for all \(\phi \in \Phi_\mu\). \[\square\]

Alternatively, we can describe \(T(t)\) directly in terms of its edges.

\textbf{Lemma 3.23.} An edge \(e = X \cap Y\) is an edge of \(T(t)\) if and only if either \(|x| \leq 2 + t\) and \(|y| \leq H(x) + t\) or \(|y| \leq 2 + t\) and \(|x| \leq H(y) + t\). \[\square\]
Thus we have the following lemma which gives a finite criterion for recognizing that a given μ-Markov map ϕ lies in $(\Phi, \mu)_Q$. This generalizes Lemma 3.15 in [5], and the proof there also works here.

Lemma 3.24. For any fixed $t \geq 0$, $\phi \in (\Phi, \mu)_Q$ if and only if $T_\phi(t)$ is finite. \hfill \square

Now we can give the proof of Theorem 3.2 by showing that this criterion is an open property.

Proof of Theorem 3.2. The proof is essentially the same as that of Theorem 3.16, [5], which states that $(\Phi, \mu)_Q$ is an open subset of Φ. Here we supply a bit more details.

Fix any $t_1 > m(\mu) - 2$. Suppose $\phi \in (\Phi, \mu)_Q$ and write $T(t)$ for $T_\phi(t)$. By Lemma 3.24, $T(t_1)$ is a finite subtree of Σ. We may choose $t_2 > t_1$ large enough so that $T(t_2)$ contains $T(t_1)$ in its interior, that is, it contains $T(t_1)$, together with all the edges of the circular set $C(T(t_1))$. Note that $T(t_2)$ is also a finite subtree of Σ.

For any given $\phi' \in (\Phi, \mu)$, we write $T'(t)$ for $T_{\phi'}(t)$.

Claim. If ϕ' is sufficiently close to ϕ, then $T'(t_1) \cap T(t_2) \subseteq T(t_1)$.

To prove the claim, choose $e = X \cap Y \in T(t_2) \setminus T(t_1)$. We may assume $|\phi(X)| \leq 2 + t_2$ and $|\phi(Y)| \leq H(x) + t_2$ since $e \in T(t_2)$. Then either $|\phi(X)| > 2 + t_1$ or $|\phi(Y)| > H(x) + t_2 + t_1$ since $e \notin T(t_1)$. Thus if ϕ' is sufficiently close to ϕ, we have either $|\phi(x)| > 2 + t_1$ or $|\phi(Y)| > 2 + t_1$, hence $e \notin T'(t_1)$. This proves the claim since there are only finitely many edges e in $T(t_2) \setminus T(t_1)$.

Since $T(m(\mu) - 2)$ is a non-empty subtree of $T(t_2)$ and $t_1 > m(\mu) - 2$, it follows that $T'(t_1) \cap T(t_2) \subseteq T(m(\mu) - 2) \neq \emptyset$, provided that ϕ' is sufficiently close to ϕ.

Since $T'(t_1) \cap T(t_2) \subseteq T(t_1)$ and $T(t_1)$ is contained in the interior of $T(t_2)$, we know that $T(t_2)$ contains a connected component of $T'(t_1)$.

Since $T'(t_1)$ is connected, we must have $T'(t_1) \subseteq T(t_2)$. Therefore $T'(t_1)$ is finite, and so $\phi' \in (\Phi, \mu)_Q$. This proves Theorem 3.2. \hfill \square

Proof of Theorem 2.3. This is equivalent to showing that PSL(2, Z) acts properly discontinuously on $(\Phi, \mu)_Q$, that is, for any compact subset K of $(\Phi, \mu)_Q$, the set $\{H \in \text{PSL}(2, \mathbb{Z}) \mid HK \cap K \neq \emptyset\}$ is finite. Suppose not. Then there exists a sequence of distinct $H_i \in \text{PSL}(2, \mathbb{Z})$ and $\phi_i \in K$ such that $H_i(\phi_i) \in K$. Passing to a subsequence, by the compactness of K, we may assume that $\phi_i \to \phi \in K$, $H_i \to \infty$, and $H_i(\phi_i) \to \phi' \in K$. Now, as in the proof of Theorem 3.2, we have the tree $T_{\phi}(t_1)$ of ϕ is finite for some $t_1 > 0$, and that $T_{\phi}(t_1)$ is contained in the finite tree $T_{\phi'}(t_2)$, for some $t_2 > t_1$ and for all i sufficiently large. This implies that the same constant κ can be used in the lower Fibonacci bound for all ϕ_i for i sufficiently large, and hence $H_i(\phi_i) \to \infty$ as $i \to \infty$ (where we use the identification of Φ, μ with the character variety $\{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^2 + z^2 - xyz = \mu\}$ to make sense of $\phi \to \infty$). This contradicts $H_i(\phi_i) \to \phi' \in K$. \hfill \square

Proof of Proposition 2.4. Again we prove the equivalent statement for the action of PSL(2, Z) on Φ. Suppose that $\phi \in \Phi$ does not satisfy the extended BQ-conditions, then either $\phi(X) \in (-2, 2)$ for some $X \in \Omega$ or $\Omega_{\phi}(2)$ is infinite. In the first case, since the values of ϕ on the neighbors of X are bounded by Lemma 3.9(2), we can find an infinite sequence H_i of parabolic elements in PSL(2, Z) all fixing X such that $H_i(\phi)$ converges to $\phi_0 \in \Phi$ (here it is possible that $H_i(\phi) = \phi_0$...
for all i). In the latter case, there are infinitely many edges $e \in E(\Sigma)$ such that $\Omega^0(e) \subset \Omega_\phi(2)$. Passing to a subsequence if necessary, this implies that there is an infinite sequence of vertices $v_i \in V(\Sigma)$ such that if X_i, Y_i and Z_i are the regions in Ω meeting at v_i, then (x_i, y_i, z_i) converges to (x_0, y_0, z_0) satisfying \eqref{eq:14}, hence there exists an infinite sequence of distinct H_i such that again $H_i(\phi)$ converges. \hfill \Box

Note that for ϕ satisfying the extended BQ-conditions, for any sequence of distinct elements H_i in $\text{PSL}(2, \mathbb{Z})$, $H_i(\phi) \to \infty$.

4. Proof of Theorem 3.5

In this section we prove Theorem 3.5 by defining the ϕ-weight $\psi(\vec{e})$ for each directed edge $\vec{e} \in \vec{E}(\Sigma)$ and then following through the proof of Theorem 2 in \cite{5}.

The geometric meaning of $\psi(\vec{e})$ is given in Appendix A, the reader interested in the geometric motivation for the definition of ψ is advised to look there first.

The functions l and h again. For $x \in \mathbb{C}$, recall that $l(x)/2 \in \mathbb{C}/2\pi i \mathbb{Z}$ is defined by $l(x)/2 = \cosh^{-1}(x/2)$. In particular, $\Re(l(x)/2) \geq 0$.

Lemma 4.1. If $x \notin [-2, 2]$ then

$$e^{-l(x)/2} = xh(x). \tag{31}$$

Proof. Note that $\Re(l(x)/2) > 0$ since $x \notin [-2, 2]$. Hence $|e^{l(x)/2}| > |e^{-l(x)/2}|$ and $|x^{-1}e^{l(x)/2}| > |x^{-1}e^{-l(x)/2}|$. On the other hand, $\cosh\left(l(x)/2\right) = x/2$ implies that $e^{l(x)/2} + e^{-l(x)/2} = x$.

Hence

$$\left(\frac{e^{l(x)/2}}{x}\right)^2 - \left(\frac{e^{l(x)/2}}{x}\right) + \frac{1}{x^2} = 0$$

and

$$\left(\frac{e^{-l(x)/2}}{x}\right)^2 - \left(\frac{e^{-l(x)/2}}{x}\right) + \frac{1}{x^2} = 0.$$

Then $|x^{-1}e^{-l(x)/2}| < |x^{-1}e^{l(x)/2}|$ implies that

$$x^{-1}e^{-l(x)/2} = \frac{1}{2} \left(1 - \sqrt{1 - \frac{4}{x^2}}\right) = h(x).$$

This proves Lemma 4.1. \hfill \Box

The function Ψ. We define a function

$$\Psi : \mathbb{C}^3 \to \mathbb{C}$$

as follows. Given $x, y, z \in \mathbb{C}$, set

$$\mu = x^2 + y^2 + z^2 - xyz \quad \text{and} \quad \nu = \cosh^{-1}(1 - \mu/2).$$
Then \(\Psi(x, y, z) \in \mathbb{C} \) is defined by
\[
\Psi(x, y, z) = \log \frac{xy + (e^\nu - 1)z}{(x^2 - \mu)^{1/2}(y^2 - \mu)^{1/2}},
\] (32)
or equivalently, by the following two equations:
\[
cosh \Psi(x, y, z) = \frac{xy - (\mu/2)z}{(x^2 - \mu)^{1/2}(y^2 - \mu)^{1/2}},
\] (33)
\[
sinh \Psi(x, y, z) = \frac{(\sinh \nu)z}{(x^2 - \mu)^{1/2}(y^2 - \mu)^{1/2}}.
\] (34)

Remarks.

(i) Notational convention. In this paper, for a complex number \(u \in \mathbb{C} \), we use the notation \(u^{1/2} \) (as opposed to \(\sqrt{u} \)) to mean either (once and for all) choice of one of the two square roots of \(u \).

(ii) Note that if \(x^2, y^2 \neq \mu \) then \(xy + (e^\nu - 1)z = [xy - (\mu/2)z] + [(\sinh \nu)z] \neq 0 \) since
\[
[xy - (\mu/2)z]^2 = (x^2 - \mu)(y^2 - \mu) + [(\sinh \nu)z]^2.
\] (35)
Hence \(\Psi(x, y, z) \) is defined if \(x^2, y^2 \neq \mu \), or equivalently, \(y^2 + z^2 \neq xyz \) and \(x^2 + z^2 \neq xyz \).

(iii) Note that the value \(\Psi(x, y, z) \) depends on the choices of the square roots in its expression, thus it is only well-defined modulo \(\pi i \) without specifying the choices of the square roots. However, in Proposition 4.2 below, the appropriate sums there do not depend on the choices of square roots and hence are well-defined modulo \(2\pi i \) with arbitrary (once and for all) choices of the square roots.

(iv) It can be checked that
\[
\left. \frac{\partial}{\partial \nu} \right|_{\nu=0} 2 \Psi(x, y, z) = \frac{z}{xy}.
\] (36)

Some properties of the function \(\Psi \). The function \(\Psi \) defined above has the following nice properties.

Proposition 4.2. Let \(\mu = x^2 + y^2 + z^2 - xyz \), \(\nu = \cosh^{-1}(1 - \mu/2) \) and suppose \(\mu \neq 0, 4 \) in each of the following cases.

(i) For \(x, y, z \in \mathbb{C} \) with \(x^2, y^2, z^2 \neq \mu \),
\[
\Psi(y, z, x) + \Psi(z, x, y) + \Psi(x, y, z) = \nu \mod 2\pi i.
\] (37)

(ii) For \(x, y, z, w \in \mathbb{C} \) with \(z + w = xy \) and \(x^2, y^2 \neq \mu \),
\[
\Psi(x, y, z) + \Psi(x, y, w) = \nu \mod 2\pi i.
\] (38)

(iii) For \(x, y \in \mathbb{C}\setminus\{0\} \), and
\[
z = \frac{xy}{2} \left(1 - \sqrt{1 - 4 \left(\frac{1}{x^2} + \frac{1}{y^2} - \frac{\mu}{x^2y^2} \right) } \right),
\] (39)
we have
\[
\lim_{y \to \infty} 2\Psi(x, y, z) = h(x) \mod 2\pi i.
\] (40)
(iv) If \(\phi \in (\Phi_\mu)_Q \) then there is a constant \(C = C(\phi) > 0 \) such that
\[
|2\Psi(x, y, z) - h(x)| \leq C|y|^{-2}, \tag{41}
\]
for all \(x = \phi(X), X \in \Omega; \|y\| \) sufficiently large; and \(z \) given by (39).

Proof. One can prove (i)–(iii) by direct calculations. For details, see §2.6 of [35].

(iv) The estimate (41) follows from the fact that
\[
|\log(1 + u)| \leq 2|u| \quad \text{for } u \in \mathbb{C} \text{ with } |u| \leq 1/2
\]
and the following calculations:
\[
2\Psi(x, y, z) - h(x) = \log \frac{x^2 y^2 [1 + (e^{\nu} - 1)(z/xy)]^2}{(x^2 - \mu)(y^2 - \mu)} - \log \frac{x^2 [1 + (e^{\nu} - 1)h(x)]^2}{x^2 - \mu} - \log \frac{y^2 [1 + (e^{\nu} - 1)(z/xy)]^2}{y^2 - \mu} = \log \left(1 + \frac{\mu}{y^2 - \mu}\right) + 2 \log \left(1 + \frac{(e^{\nu} - 1)|z/xy - h(x)|}{1 + (e^{\nu} - 1)h(x)}\right),
\]
(note that the above are true equalities in \(\mathbb{C} \) without modulo \(2\pi i \): the first one is because of (39) and the other two because each expression after the log symbol is sufficiently close to 1 provided that \(|y| \) is sufficiently large)
\[
|z/xy - h(x)| = \left|\sqrt{1 - 4/x^2} - \sqrt{1 - 4/x^2 - 4/y^2 + 4\mu/x^2y^2}\right| / 2 \\
\leq 2|y|^{-2}|1 - \mu/x^2| / \sqrt{|1 - 4/x^2|},
\]
since by our convention the square roots here all have nonnegative real parts, and for \(\phi \in (\Phi_\mu)_Q \), the image \(\phi(\Omega) \) is discrete.

Proof of Theorem 3.5. The proof now follows essentially the same line as that of Theorem 3, [5], with \(\psi(\bar{e}) = z/xy \) there now replaced by \(\Psi(x, y, z) \in \mathbb{C} \). We write it out with details as follows, taking care of multiples of \(2\pi i \). Note that this difficulty does not occur in [5].

Suppose \(\phi \in (\Phi_\mu)_Q \) where \(\mu \neq 0, 4 \). We write \(h = h_\tau \) where \(\tau = \mu - 2 \). Then \(\log^+ |\phi| \) has Fibonacci growth and the sum in (18) converges absolutely since \(h(x) = O(|x|^{-2}) \) as \(|x| \to \infty \) and since \(\sum_{X \in \Omega} |\phi(X)|^{-2} \) converges absolutely by Corollary 3.16.

On the other hand, since \(\Omega_\mu(2) \) is finite, as in the proof of Theorem 3.3, there is a finite subtree \(T \) of \(\Sigma \) with the property that for each edge not in \(T \), its arrow assigned by \(\phi \) points towards \(T \).

Let \(C_n, n \geq 0 \) be the set of directed edges \(\bar{e} = \alpha_\phi(e) \) at a distance \(n \) away from \(T \) (that is, \(e \notin T \), and the minimal arc in \(\Sigma \) from the head of \(\bar{e} \) to \(T \) consists of \(n \) edges). It is easy to see that for each \(n \geq 0, C_n \) is a circular set.

Now let \(\Omega_n, n \geq 0 \) be the set of regions \(X \) such that \(X \in \Omega^n(\bar{e}) \) for some edge \(\bar{e} \in C_n \). (Actually, each such region \(X \) intersects \(C_n \) in exactly two edges.) Note that \(\Omega_n \) forms a nested sequence with respect to inclusion, that is, \(\Omega_n \subset \Omega_{n+1} \) for
all $n \geq 0$ and furthermore, $\Omega = \bigcup_{n=0}^{\infty} \Omega_n$. On the other hand, all the $C_n, n \geq 0$ are disjoint. Note also that

$$\sum_{X \in \Omega} h(\phi(X)) = \lim_{n \to \infty} \sum_{X \in \Omega_n} h(\phi(X)).$$

For each $\vec{e} = (X, Y; \to Z) \in C_n$, we have defined

$$\psi(\vec{e}) = \psi(x, y, z) = \log \frac{1 + (e^\nu - 1)(z/xy)}{\sqrt{1 - \mu/x^2} \sqrt{1 - \mu/y^2}} \in C.$$

It is easy to see from (37) and (38) that $\sum_{\vec{e} \in C_n} \psi(\vec{e}) = \nu \mod 2\pi i$. Furthermore, we have:

Claim. $\tilde{\nu} := \lim_{n \to \infty} \sum_{\vec{e} \in C_n} \psi(\vec{e}) \in C$ exists.

To prove the claim, it suffices to show that $\sum_{\vec{e} \in C_n} \psi(\vec{e}) = \sum_{\vec{e} \in C_{n+1}} \psi(\vec{e})$ for sufficiently large n. Consider any $\vec{e} = (X, Y; W \to Z) \in C_n$. Let $\vec{e}_X = (Y, W; \to X)$ and $\vec{e}_Y = (X, W; \to Y)$. Then $\vec{e}_X, \vec{e}_Y \in C_{n+1}$. It is easy to see that when n is sufficiently large, $|w|$ and one of $|x|, |y|, \text{say } |x|$, are sufficiently large. It follows from the definition of the edge weight $\psi(\vec{e}_Y)$ that $|\psi(\vec{e}_Y)|$ is sufficiently small. Since $\psi(\vec{e}) = \psi(\vec{e}_X) + \psi(\vec{e}_Y) \mod 2\pi i$ by Proposition 4.2, we know that in fact $\psi(\vec{e}) = \psi(\vec{e}_X) + \psi(\vec{e}_Y)$ without the modulo $2\pi i$ restriction, for each $\vec{e} \in C_n$. This proves the claim.

Now for each $\vec{e} \in C_{n+1}$, we write $\vec{e} = (X, Y; \to Z)$, where we assume $X \in \Omega_n$ and $Y \in \Omega_{n+1} \setminus \Omega_n$. Here $z = \phi(Z)$ satisfies (39) since \vec{e} points towards Z. Note that as \vec{e} ranges over C_{n+1}, each $X \in \Omega_n$ gets counted twice. Since $\phi \in (\Phi, \pi, Q, \mu)$, $|y| = |\phi(Y)|$ will be sufficiently large if n is. Thus by (41) we have, as $n \to \infty$,

$$2 \left| \sum_{X \in \Omega_n} h(\phi(X)) - \tilde{\nu} \right| = \left| \sum_{X \in \Omega_n} 2 h(x) - \sum_{\vec{e} \in C_{n+1}} 2 \psi(\vec{e}) \right|$$

$$= \left| \sum_{\vec{e} \in C_{n+1}} \left(h(x) - 2 \psi(\vec{e}) \right) \right|$$

(where $\vec{e} = (X, Y; \to Z)$ with $X \in \Omega_n, Y \in \Omega_{n+1} \setminus \Omega_n$)

$$\leq \sum_{\vec{e} \in C_{n+1}} \left| h(x) - 2 \psi(\vec{e}) \right|$$

$$\leq \sum_{Y \in \Omega_{n+1} \setminus \Omega_n} \text{constant} \cdot |\phi(Y)|^{-2} \to 0,$$

since $\sum_{Y \in \Omega_{n+1} \setminus \Omega_n} |\phi(Y)|^{-2} \to 0$ (as $n \to \infty$) by the convergence of

$$\sum_{Y \in \Omega} |\phi(Y)|^{-2} = \lim_{n \to \infty} \sum_{Y \in \Omega_n} |\phi(Y)|^{-2}.$$

Hence

$$\sum_{X \in \Omega} h(\phi(X)) = \lim_{n \to \infty} \sum_{X \in \Omega_n} h(\phi(X)) = \tilde{\nu}.$$ (42)

This proves Theorem 3.5. \qed

Similar to the estimate (41), we have (with the same assumption there)

$$|\psi(\vec{e}) - \hat{h}(x)| \leq C|y|^{-2},$$ (43)
Then Proposition 3.6 can be similarly proved using (43).

Proof of Proposition 3.6. By Proposition 3.4, we know that \(\sum_{X \in \Omega^-(\vec{e})} h(\phi(X)) \) and \(\sum_{X \in \Omega^+(\vec{e})} 2\hat{h}(\phi(X)) \) both converge absolutely, and they have a difference a multiple of \(2\pi i \) since \(h = 2\hat{h} \mod 2\pi i \). Thus we only need to evaluate
\[
\sum_{X \in \Omega^+(\vec{e})} \hat{h}(\phi(X)) + \sum_{X \in \Omega^-(\vec{e})} 2\hat{h}(\phi(X)).
\]
We apply the same arguments as the proof of Theorem 3.5.

Let \(C'_n \) be the set of directed edges \(\vec{e}' \) in \(\Sigma^-(\vec{e}) \) at a distance \(n \) from \(\vec{e} \) (that is, \(\vec{e}' \subseteq \Sigma^-(\vec{e}) \) and the minimal arc in \(\Sigma \) from the head of \(\vec{e}' \) to the tail of \(\vec{e} \) has exactly \(n \) edges). Then \(C_n = C'_n \cup \{-\vec{e}'\} \) is a circular set. By the assumption on \(\vec{e} \), we know that, when \(n \) is sufficiently large, \(\vec{e}' = \alpha \phi(e') \) for every \(\vec{e}' \in C'_n \).

Let \(\Omega_n := \Omega_n\Omega^-(\vec{e}) \) be the set of regions \(X \) in \(\Omega^0(\vec{e}) \) such that \(X \subseteq \Omega(\vec{e}') \) for some \(\vec{e}' \in C'_n \). Then \(\Omega_n \subseteq \Omega_{n+1} \) and \(\Omega^0(\vec{e}) = \bigcup_{n=0}^{\infty} \Omega_n \). Thus
\[
\sum_{X \in \Omega^+(\vec{e})} h(\phi(X)) = \lim_{n \to \infty} \sum_{X \in \Omega_n} h(\phi(X)).
\]
By (37) and (38), we have \(\hat{\psi}(\vec{e}) = \sum_{\vec{e}' \in C'_n} \hat{\psi}(\vec{e}') \mod 2\pi i \) for all \(n \geq 0 \). Similar to the claim in the proof of Theorem 3.5, we can prove that

Claim. \(\hat{\psi}(\vec{e}) := \lim_{n \to \infty} \sum_{\vec{e}' \in C'_n} \psi(\vec{e}') \in C \) exists.

Thus for \(n \) sufficiently large we have from (43)
\[
\left| \hat{\psi}(\vec{e}) - \sum_{\vec{e}' \in C'_n} \hat{\psi}(\vec{e}') - \sum_{X \in \Omega^-} 2\hat{h}(\phi(X)) \right|
= \left| \sum_{\vec{e}' \in C'_n} \hat{\psi}(\vec{e}') - \sum_{X \in \Omega^-} \hat{h}(\phi(X)) - \sum_{X \in \Omega^-} 2\hat{h}(\phi(X)) \right|
= \left| \sum_{\vec{e}' \in C'_n} \left[\hat{\psi}(\vec{e}') - \hat{h}(\phi(X)) \right] \right|
(\text{where } \vec{e}' = (X, Y; \to Z) \text{ with } X \in \Omega_n \text{ and } Y \in \Omega_{n+1} \backslash \Omega_n)
\leq \sum_{\vec{e}' \in C'_n} \left| \hat{\psi}(\vec{e}') - \hat{h}(x) \right|
\leq \sum_{Y \in \Omega_{n+1} \backslash \Omega_n} \text{constant} \cdot |\phi(Y)|^{-2} \to 0,
\]
since \(\sum_{Y \in \Omega_{n+1} \backslash \Omega_n} |\phi(Y)|^{-2} \to 0 \) (as \(n \to \infty \)) by the convergence of
\[
\sum_{Y \in \Omega^0(\vec{e})} |\phi(Y)|^{-2} = \lim_{n \to \infty} \sum_{Y \in \Omega_n} |\phi(Y)|^{-2}.
\]
Hence
\[
\hat{\psi}(\vec{e}) = \sum_{X \in \Omega^+(\vec{e})} \hat{h}(\phi(X)) + \lim_{n \to \infty} \sum_{X \in \Omega_n} 2\hat{h}(\phi(X))
= \sum_{X \in \Omega^+(\vec{e})} \hat{h}(\phi(X)) + \sum_{X \in \Omega^-} 2\hat{h}(\phi(X)). \tag{44}
\]
This proves Proposition 3.6 since $\tilde{\psi}(\vec{e}) = \psi(\vec{e}) \mod 2\pi i$.

5. Variations to once-punctured torus bundles

In this section we generalize Bowditch’s variations in [4] of McShane’s identity. Bowditch’s variations in [4] of McShane’s identity are for complete, finite volume hyperbolic 3-manifolds fibering over the circle, with fiber the once-punctured torus. These complete structures can be deformed to incomplete structures, as shown by Thurston in [34], and in certain cases, one can perform hyperbolic Dehn surgery to obtain closed (complete) hyperbolic 3-manifolds. The main result of this section is that a further variation of the Bowditch’s identities holds for these deformations satisfying the relative BQ-conditions (to be defined later), and hence for the closed hyperbolic 3-manifolds obtained by hyperbolic Dehn surgery on such manifolds (Theorems 5.3, 5.4 and Corollary 5.5). Briefly, this is done as follows. Let M be a once-punctured torus bundle over the circle with non-trivial monodromy H which is an hyperbolic element in $\text{SL}(2, \mathbb{Z})$ identified with the mapping class group of the once-punctured torus. Starting with a complete, finite volume hyperbolic structure on M, and by considering the holonomy representation restricted to the fundamental group of the fiber, Bowditch [4] constructed a Markoff map which is stabilized by the cyclic subgroup $\langle H \rangle < \text{SL}(2, \mathbb{Z})$. His variations of McShane’s identity (Theorems 5.1 and 5.2) are obtained by studying the Markoff map modulo the action of $\langle H \rangle$. If we deform the complete hyperbolic structure on M to an incomplete one and look again at the holonomy representation restricted to the fiber, we get a generalized Markoff map, with the same stabilizer group $\langle H \rangle$. We then obtain further variations of the McShane-Bowditch identities (Theorems 5.3 and 5.4) for these deformations, which also hold for almost all of the closed hyperbolic 3-manifolds obtained by hyperbolic Dehn surgery on these manifolds (Corollary 5.5).

5.1. Bowditch’s settings for torus bundles. Let M be an orientable 3-manifold which fibers over the circle, with the fiber a once-punctured torus, T. Suppose that M has a complete finite-volume hyperbolic structure.

Let \mathcal{S} be the set of closed geodesics in M which are homotopic in M to simple closed curves in the fiber. Geometrically, to each $\sigma \in \mathcal{S}$, we associate its complex length, $l(\sigma) \in \mathbb{C}/2\pi i\mathbb{Z}$, where $\Re l(\sigma)$ is the (real) hyperbolic length of σ and $\Im l(\sigma)$ is the rotational component, i.e. the angle through which a normal vector turns when parallel transported once around the closed geodesic γ. In particular, $e^{l(\sigma)} \in \mathbb{C}$ is well-defined. Then Bowditch obtained

Theorem 5.1. (Theorem A in [4])

$$\sum_{\sigma \in \mathcal{S}} \frac{1}{1 + e^{l(\sigma)}} = 0,$$

where the sum converges absolutely.

The curves in \mathcal{S} fall naturally into two classes, \mathcal{S}_L and \mathcal{S}_R, as follows. Recall that \mathcal{C} is the set of free homotopy classes of non-trivial non-peripheral simple closed curves on T and can be thought of as the set of rational points in the projective lamination space, \mathcal{P}, of T, which in this case is a circle. The mapping class group MCG of T acts on \mathcal{P} preserving the set \mathcal{C}. The monodromy $H \in$
MCG of M generates an infinite cyclic subgroup, $\langle H \rangle$, of the mapping class group. This subgroup, or H, has two fixed points in \mathcal{P}, namely the stable and unstable laminations, μ_s and μ_u, of the monodromy. These two points separate \mathcal{P} into two open intervals. Since μ_s and μ_u are irrational points, this gives a natural partition of \mathcal{P} into two subsets, \mathcal{P}_L and \mathcal{P}_R, which in turn partitions \mathcal{P} into two subsets, \mathcal{P}_L and \mathcal{P}_R.

If we restrict the sum appearing in Theorem 5.1 to one or other of \mathcal{P}_L and \mathcal{P}_R, we will get the same answer up to change of signs. Bowditch showed (see Theorem 5.2) that this number turns out essentially to be the modulus of the cusp of M.

More precisely, since M has a single parabolic cusp, M is homeomorphic to the interior of a compact manifold $M \cup \partial M$, with one toroidal boundary component, ∂M. Then ∂M carries a natural Euclidean structure, well-defined up to similarity, which arises from identifying ∂M with a horocycle. If M has positive monodromy, we may represent ∂M as the quotient of \mathbb{C} with the Euclidean metric by the lattice $\mathbb{Z} \oplus \lambda \mathbb{Z}$, generated by the translations $\zeta \mapsto \zeta + 1$ and $\zeta \mapsto \zeta + \lambda$ corresponding to the meridian and longitude respectively, where the longitude is defined as the intersection of two leaves, one from each of the two foliations of M determined by the stable and unstable laminations. We call $\lambda = \lambda(M)$ the modulus of the cusp. We can suppose that $\Im[\lambda(M)] > 0$. If M has negative monodromy, we define $\lambda(M)$ as the modulus of the cusp of the sister of M. In this setting Bowditch showed

Theorem 5.2. (Theorem B in [4])

$$\sum_{\sigma \in \mathcal{P}_L} \frac{1}{1 + e^{l(\sigma)}} = \pm \lambda(M),$$

where the sign depends only on our conventions of orientation.

Natural ideal triangulations. Recall the setting of §3. Let us fix an ordered pair of free generators a, b of Γ so that the algebraic intersection number of the corresponding ordered pair of oriented simple closed curves C_a, C_b on T is equal to +1. Note that the commutator $[a, b] = aba^{-1}b^{-1}$ is peripheral.

The mapping class group \mathcal{MCG} of T may be identified as $\text{SL}(2, \mathbb{Z})$ which acts naturally on $\mathbb{H}^2, \Sigma, \Omega, \mathcal{P}$ and \mathcal{F}. In each case, the kernel is given by the elliptic involution, so the induced action of $\text{PSL}(2, \mathbb{Z})$ is faithful. An element $H \in \text{SL}(2, \mathbb{Z})$ is hyperbolic if it has two fixed points μ_u and μ_s in \mathcal{P}, namely the stable and unstable laminations. The points μ_u and μ_s are joined by a bi-infinite arc $\beta \subseteq \Sigma$, which is translated by H in the direction of μ_u. The path β can be described combinatorially in terms of the “right-left” decomposition of the matrix H. Note that some conjugate of H can be written as a product of the matrices

$$L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

which correspond to Dehn twists about C_b and C_a respectively. This decomposition is well-defined up to cyclic reordering, and the sequence of Ls and Rs is the same as the periodic sequence of left and right turns of β in Σ. For more details, see [6]. Note that β partitions Ω into two subsets, Ω_L and Ω_R, which lie on, respectively, the left and right of β. These correspond to the subsets, \mathcal{F}_L and \mathcal{F}_R of \mathcal{F} described earlier.
Now, if we take a homeomorphism, η, of T representing the mapping class H, we may form the mapping torus, M_H, which is given by $(T \times [0,1])/_\sim$, where \sim identifies $(x,1)$ with $(\eta(x),0)$ for all $x \in T$. The manifold M_H has a natural compactification by adjoining a toroidal boundary, ∂M_H. The compactified manifold, $M_H \cup \partial M_H$, as described in [13], has a natural ideal triangulation arising from the left-right decomposition of H. This can briefly be summarized as follows. Associated with each vertex of Σ is an ideal triangulation of T (the edges of which are dual to the simple closed curves corresponding to the three complementary regions incident to the vertex). Moving along an edge in the tree corresponds to performing a (dual) Whitehead move. If we traverse a period of the path β, we get a sequence of Whitehead moves which take us from a given triangulation to its image under η. Each Whitehead move gives rise to an ideal simplex in $T \times [0,1]$, and so, after identifying $T \times \{0\}$ with $T \times \{1\}$ via the relation \sim, we obtain an ideal triangulation of M_H. This ideal triangulation gives us, in particular, a triangulation of the boundary, ∂M_H. As in [13], we may describe the combinatorial structure of this triangulation lifted to the universal cover, \mathbb{R}^2, of ∂M_H. First, we describe the case of positive monodromy. To do this, consider the bi-infinite sequence of vertices of Σ lying along the arc $\beta \subseteq \Sigma$. This sequence is dual to a sequence of ideal triangles in our tessellation of \mathbb{H}^2. The union of these triangles gives a bi-infinite strip invariant under the transformation H. We transfer this strip homeomorphically to the vertical strip $[0,1] \times \mathbb{R}$ in \mathbb{R}^2, so that the transformation H is conjugated to the map $[(x,y) \mapsto (x,y+1)]$. We extend this to a triangulation of \mathbb{R}^2 by a process of repeated reflection in the pair of vertical lines which form the boundary of this strip. The triangulation of ∂M_H is given by the quotient by the group generated by $[(x,y) \mapsto (x,y+1)]$ and $[(x,y) \mapsto (x+4,y)]$. It is not hard to see that these transformations describe, respectively, the longitude and meridian of ∂M_H. Note that the triangulation is in fact invariant under the map $[(x,y) \mapsto (x+2,y)]$. Up to this symmetry, there are two “vertical” lines in the triangulation. The bi-infinite sequence of vertices along one of these lines corresponds to sequence of regions of Ω which meet β and all lie either in Ω_L, or in Ω_R. Two vertices are joined by an edge in this triangulation if and only if the corresponding regions are adjacent. Thus the “vertical” edges correspond to regions meeting on the same side of β, whereas all the other edges correspond to regions meeting on opposite sides of β. The picture where the monodromy is negative is similar, except that in this case, ∂M_H is given as a quotient of \mathbb{R}^2 by the group generated by $[(x,y) \mapsto (x+2,y+1)]$ and $[(x,y) \mapsto (x+4,y)]$. The “longitude” might be thought of as a “half of” the curve given by $[(x,y) \mapsto (x,y+2)]$. Now, it follows from the work of Thurston [33] that $M = M_H$ admits a complete finite-volume hyperbolic structure. See also [23] for an alternative proof and exposition. This structure is unique by Mostow rigidity. Note that ∂M_H carries a Euclidean structure, well defined up to similarity, obtained for example by identifying it with a horocycle in M_H. In this hyperbolic structure, we may realize each tetrahedron in our ideal triangulation of M as a hyperbolic ideal tetrahedron. In this way we get a “hyperbolic ideal triangulation” of M. This gives rise to a Euclidean realization of the combinatorial triangulation of ∂M_H. Note that Parker [24] has prove that this hyperbolic ideal triangulation of M obtained above is indeed positively oriented, hence is a genuine hyperbolic ideal triangulation. Thus we have a resulting geometric triangulation of ∂M_H which will be used to prove the variations of McShane’s identity.
Regarding \mathbb{T} as a fibre of M, we get an identification of $\Gamma = \pi_1(\mathbb{T})$ as a normal subgroup of $\pi_1(M)$. In fact, $\pi_1(M)$ is an HNN extension of Γ with stable letter t so that $tg^{-1} = H_*(g)$ for all $g \in \Gamma$, where H_* is the automorphism of Γ induced by the monodromy H. We also get an identification of \mathcal{F} with the quotient, $\Omega/\langle H \rangle$, of Ω under the cyclic group, $\langle H \rangle$, generated by H. Clearly, H respects the partition of Ω as $\Omega_L \sqcup \Omega_R$, and we may identify \mathcal{F} with $\Omega_L/\langle H \rangle$ and \mathcal{F} with $\Omega_R/\langle H \rangle$.

The hyperbolic structure on M may be described by a representation, $\tilde{\rho} : \pi_1(M) \to \PSL(2, \mathbb{C})$. It follows from [9] that $\tilde{\rho}$ lifts to a representation $\rho : \pi_1(M) \to \SL(2, \mathbb{C})$.

Restricting our attention to the fibre subgroup $\Gamma < \pi_1(M)$, we define a Markoff map $\phi : \Omega \to \mathbb{C}$ by $\phi(X) = \text{tr} \rho(g)$, where $g \in \Gamma$ represents the simple closed curve on \mathbb{T} corresponding to the region $X \in \Omega$. Clearly, ϕ is invariant under the $\langle H \rangle$-action, and so gives rise to a well-defined map $\Omega/\langle H \rangle \to \mathbb{C}$ which we also denote by ϕ. We write $[X]$ for the orbit of X under $\langle H \rangle$. If $\sigma \in \mathcal{F}$ corresponds to $[X] \in \Omega/\langle H \rangle$, then the complex length, $l(\sigma)$, of σ is determined by the formula $l(\sigma) = l(\phi([X])) = 2 \cosh^{-1}(\phi([X])^2/2)$. Thus $h(\phi([X])) = 1/(1 + e^{l(\sigma)})$, where $h : \mathbb{C} \setminus [-2, 2] \to \mathbb{C}$ is defined by $h(x) = (1 - \sqrt{1 - 4/x^2})/2$ as in §3. Here we take the square root with positive real part, corresponding to the fact that $\Re(l(\sigma)) > 0$.

In these terms Bowditch’s Theorems 5.1 and 5.2 can be respectively expressed as the identities:

$$\sum_{[X] \in \Omega/\langle H \rangle} h(\phi([X])) = 0,$$

$$\sum_{[X] \in \Omega_L/\langle H \rangle} h(\phi([X])) = \lambda(\partial M).$$

5.2. Incomplete hyperbolic torus bundles. In this subsection we consider once-punctured torus bundles over the circle, but now with incomplete hyperbolic structures.

Let M be a once-punctured torus bundle over the circle such that the holonomy $H \in \mathcal{MCG}$ is pseudo-Anosov. Then as described in the previous subsection, M can be given a complete, finite volume hyperbolic structure, and in fact, M can be decomposed into a collection of ideal hyperbolic tetrahedra. Hence we may obtain M by gluing a collection of ideal hyperbolic tetrahedra with suitable edge invariants. Now we consider an incomplete hyperbolic structure on M obtained by changing the edge invariants while keeping the consistency conditions as described by Thurston [34]. We can also regard this incomplete structure as being obtained by deforming the complete hyperbolic structure slightly in the representation space of $\pi_1(M)$.

The developing image of M, with this incomplete hyperbolic structure, in \mathbb{H}^3 misses some lines in \mathbb{H}^3. We may assume the z-axis $[0, \infty]$ is among them. Consider, for $\epsilon > 0$ sufficiently small, an ϵ-neighborhood N of $[0, \infty]$ in \mathbb{H}^3, i.e. a solid cone around the z-axis. Its boundary ∂N is the ϵ-equidistant surface with center the z-axis, hence has a similarity structure. Actually, we can identify this similarity surface ∂N with $\mathbb{C} \setminus \{0\}$, where the identification is given by orthogonal projection in \mathbb{H}^3 from $\mathbb{C} \setminus \{0\}$ onto the z-axis via lines normal to it. Note that $N \setminus [0, \infty]$ projects onto a neighborhood of ∂M in M, hence ∂N projects onto ∂M. In this way ∂M gets a similarity structure from the (incomplete) hyperbolic structure of M.

Recall the combinatorial triangulation of M described in §5.1. Now this triangulation of M is realized similarly by a “hyperbolic ideal triangulation” and ∂M gets an induced conformal triangulation. This triangulation can be thought of as
being deformed from the triangulation in the complete case when we deform the complete structure on M into an incomplete one.

This incomplete hyperbolic structure on M is given by a representation $\hat{\rho} : \pi_1(M) \to \text{PSL}(2, \mathbb{C})$ which lifts to a representation $\rho : \pi_1(T) \to \text{SL}(2, \mathbb{C})$. Restricted to $\Gamma = \pi_1(T) \triangleleft \pi_1(M)$, we obtain a μ-representation $\rho : \Gamma \to \text{SL}(2, \mathbb{C})$ for some $\mu \in \mathbb{C}$ with $\mu \neq 4$. Let $\nu = \cosh^{-1}(1 - \mu/2)$ as in §3.

Lifting the similarity structure on ∂M to $\mathbb{C}\{0\}$, we get a triangulation of $\mathbb{C}\{0\}$ which is invariant under the transformations $\zeta \mapsto e^{\nu} \zeta$ and $\zeta \mapsto e^{\lambda} \zeta$ if M has positive monodromy. These two transformations give respectively the meridian and longitude of ∂M, similar to the complete case in §5. If M has negative monodromy then the two transformations are given by $\zeta \mapsto e^{\nu^+\lambda} \zeta$.

Note that $\nu \in \mathbb{C}/2\pi i\mathbb{Z}$ is half of the complex length of the ρ-image of a peripheral simple closed curve on the punctured torus T, the fiber of M.

We assume the notation introduced in the beginning of this section. In particular, for each closed geodesic $\sigma \in \mathcal{S}$, its complex length $l(\sigma) \in \mathbb{C}/2\pi i\mathbb{Z}$ is defined now under the given incomplete hyperbolic structure.

We say that M (with the incomplete hyperbolic structure) has discrete length spectrum on the puncture-torus fiber T if for each $\kappa > 0$ there are only finitely many free homotopy classes of simple closed curves on T such that their geodesic realizations in M have length $\leq \kappa$. We will see later that M has this property if it is obtained from the unique complete finite volume hyperbolic structure by a sufficiently small deformation (Theorem 5.8). Then we have the following results corresponding to Bowditch’s Theorems 5.1 and 5.2.

Theorem 5.3. Suppose M (with incomplete hyperbolic structure) has discrete length spectrum on its torus fiber. Then

$$\sum_{\sigma \in \mathcal{S}} \log \left(\frac{e^{\nu} + e^{l(\sigma)}}{e^{-\nu} + e^{l(\sigma)}} \right) = 0 \mod 2\pi i,$$ \hspace{1cm} (47)

where the sum converges absolutely.

Theorem 5.4. Suppose M (with incomplete hyperbolic structure) has discrete length spectrum on its torus fiber. Then

$$\sum_{\sigma \in \mathcal{L}} \log \left(\frac{e^{\nu} + e^{l(\sigma)}}{e^{-\nu} + e^{l(\sigma)}} \right) = \pm \lambda \mod 2\pi i,$$ \hspace{1cm} (48)

where the sign depends only on our conventions of orientation and where λ is the complex length of the chosen longitude.

As a corollary we have

Corollary 5.5. Let M be a once-punctured torus bundle over the circle with pseudo-Anosov monodromy and let $M(p/q)$ be the closed 3-manifold obtained from M by performing Dehn surgery on ∂M with surgery slope $p/q \in \mathbb{Q}$. Then, except for a finite number of surgery slopes, $M(p/q)$ has a hyperbolic structure and, moreover, the following identity holds:

$$\sum_{\sigma \in \mathcal{L}} \log \left(\frac{e^{\nu} + e^{l(\sigma)}}{e^{-\nu} + e^{l(\sigma)}} \right) = \pm \lambda \mod 2\pi i,$$ \hspace{1cm} (49)
where the meanings of λ, ν and \mathcal{E}_L etc are defined as before for the (incomplete) hyperbolic structure on M induced from that of $M(p/q)$ and the sign depends only on our conventions of orientation.

Remark. We may weaken the condition of discrete length spectrum in the above results to the condition that the set $\{\gamma \in \mathcal{S} \mid \Re I(\gamma) \leq \log(3 + 2\sqrt{2})\}$ is finite, by a simple calculation.

5.3. Periodic generalized Markoff maps.

In this subsection we consider generalized Markoff maps which are invariant under a hyperbolic element of the mapping class group \mathcal{MCG} of T.

Consider the action of the mapping class group of T, $\mathcal{MCG} \cong \text{SL}(2, \mathbb{Z})$, and its induced action on Γ and on the space X_τ of τ-representations $\rho : \Gamma \to \text{SL}(2, \mathbb{C})$ modulo conjugation. Any $H \in \mathcal{MCG}$ induces an automorphism H_\ast of Γ, and H acts on X_τ by

$$H(\rho)(g) = \rho(H_\ast(g)).$$

for any $\rho \in X_\tau$ and $g \in \Gamma$. Bowditch [4] studied representations $\rho \in \mathcal{X}_\rho = X_{\tau, 2}$ stabilized by a cyclic subgroup $\langle H \rangle < \mathcal{MCG}$ generated by a hyperbolic element and proved a variation of the McShane’s identity for such representations. This result can be generalized for τ-representations as follows, and is equivalent to Theorem 5.3, with slightly weaker assumptions. The case $\tau = -2$ with h replaced by h is Bowditch’s variation (Theorem A in [4]).

Theorem 5.6. Suppose that a τ-representation $\rho : \Gamma \to \text{SL}(2, \mathbb{C})$, where $\tau \neq 2$, is stabilized by a hyperbolic element $H \in \text{SL}(2, \mathbb{Z}) \cong \mathcal{MCG}$ and ρ satisfies the BQ-conditions on $\hat{\Omega}/\langle H_\ast \rangle$, that is,

(i) $\text{tr} \rho(g) \notin [-2, 2]$ for all classes $[g] \in \hat{\Omega}/\langle H_\ast \rangle$, and

(ii) $|\text{tr} \rho(g)| \leq 2$ for only finitely many classes $[g] \in \hat{\Omega}/\langle H_\ast \rangle$.

Then we have

$$\sum_{[g] \in \hat{\Omega}/\langle H_\ast \rangle} h(\text{tr} \rho(g)) = 0,$$

where the function $h = h_\tau$ is defined by (9) and the sum converges absolutely.

We prove Theorem 5.6 by reformulating it in terms of generalized Markoff maps as follows.

Theorem 5.7. Suppose that $\phi \in \Phi_\mu$ ($\mu \neq 4$) is invariant under the action of a hyperbolic element $H \in \text{SL}(2, \mathbb{Z}) \cong \mathcal{MCG}$ and ϕ satisfies the BQ-conditions on $\hat{\Omega}/\langle H \rangle$, that is, (i) $\phi^{-1}([-2, 2]) = \emptyset$, and (ii) $|\phi([X])| \leq 2$ for only finitely many classes $[X] \in \hat{\Omega}/\langle H \rangle$. Then

$$\sum_{[X] \in \hat{\Omega}/\langle H \rangle} h(\phi([X])) = 0 \mod 2\pi i,$$

where the sum converges absolutely and the function $h = h_\tau$ is defined as in (9) with $\tau = \mu - 2$ and $\nu = \cosh^{-1}(-\tau/2)$.

Proof. The proof is essentially the same as that given by Bowditch in [4], except here we use the generalized function h and the generalized ϕ-weight $\psi(\bar{c})$ (this follows along the same lines as the proof for Theorem 3.3).
We also have the following openness result for μ-Markoff maps invariant under a fixed hyperbolic element $H \in \text{SL}(2, \mathbb{Z})$ and satisfying the relative BQ-conditions.

Theorem 5.8. Let Φ_H be the set of generalized Markoff maps invariant under a fixed hyperbolic element $H \in \text{SL}(2, \mathbb{Z})$ and Φ_H^μ be the subset satisfying the BQ-conditions on $\Omega/(H)$. Then Φ_H^μ is open in Φ_H.

Proof. This can be proved similarly as Theorem 3.2. For $\phi \in \Phi_H^\mu$ we construct the tree $T_\phi(t_1)$ which is invariant under H. $T_\phi(t_1)$ is not finite but $T_\phi(t_1)/(H)$ is a finite graph in the graph $\Sigma/(H)$. Note that $T_\phi(t_1)/(H)$ contains the spine of $\Sigma/(H)$ which is the projection of the invariant axis of H in Σ. Now if $\phi' \in \Phi_Q^\mu$ is sufficiently close to ϕ, then $T_{\phi'}(t_1)/(H) \subseteq T_{\phi}(t_2)/(H)$ for some given $t_2 > t_1$, hence, $\phi' \in \Phi_H^\mu$.

The above result tells us that M (with the incomplete hyperbolic structure) would continue to have discrete length spectrum on its torus fiber for sufficiently small deformations from the complete structure.

We may also reformulate Theorem 5.4 in terms of generalized Markoff maps.

Let $H \in \text{SL}(2, \mathbb{Z}) \cong \text{MCG}$ be the monodromy of the once-punctured torus bundle M over the circle. Let $\rho : \pi_1(M) \rightarrow \text{PSL}(2, \mathbb{C})$ be the representation for the hyperbolic structure on M and $\phi : \pi_1(M) \rightarrow \text{SL}(2, \mathbb{C})$ be a lift of the representation to $\text{SL}(2, \mathbb{C})$. Also denote by ρ its restriction to $\Gamma = \pi_1(\mathbb{T})$. Recall that we regard \mathbb{T} as the fiber of M. Suppose this $\rho : \Gamma \rightarrow \text{SL}(2, \mathbb{C})$ is a τ-representation and let $\phi \in \Phi_\mu$ be the corresponding μ-Markoff map, where $\mu = \tau + 2$. Then ϕ is invariant under H as defined in the statement of Theorem 5.7. With the notation above and in §3, Theorem 5.4 can be reformulated as follows.

Theorem 5.9. If M has discrete length spectrum on its torus fiber then

$$\sum_{[X] \in \Omega_1/(H)} h(\phi([X])) = \lambda \mod 2\pi i,$$

where the sum converges absolutely.

5.4. Proof of Theorem 5.4.

In this subsection we give the proof of Theorem 5.4.

In order to prove Theorem 5.4, we need to compute the sum on the left hand of (52). We shall assume that the monodromy is positive, the other case is similar. Let us fix an orientation on the meridian of ∂M consistent with the orientation of the fiber. We shall use the upper half-space model of \mathbb{H}^3, so that its ideal boundary is identified with the extended complex plane, $\mathbb{C}_\infty = \mathbb{C} \cup \{\infty\}$, which has $\text{PSL}(2, \mathbb{C})$ acting in the usual way. We can normalize our representation $\rho : \pi_1(M) \rightarrow \text{SL}(2, \mathbb{C})$ so that 0 and ∞ are the fixed points of the images of the meridian and longitude.

Then the developing map of the similarity structure on ∂M maps to $\mathbb{C} \setminus \{0\}$, the holonomy representation is given by the subgroup of $\rho(\pi_1(M))$ generated by the images of the meridian and the longitude.

Suppose a, b are free generators of the fibre group Γ such that the ordered pair of simple closed curves on \mathbb{T} that they represent have algebraic intersection number +1. The commutator, $[a, b] = aba^{-1}b^{-1}$ is peripheral in \mathbb{T}, and so represents a meridian of ∂M. Then $\rho([a, b])$ describes the translation $\zeta \mapsto e^{2\nu} \zeta$.

Now, to each region $X \in \Omega$, we shall associate an incomplete semi-infinite geodesic $\Delta(X)$ in the developing image of M in \mathbb{H}^3 so that $\Delta(X)$ is normal to the z-axis and has one end, $q(X)$, lying in the z-axis. Note that $\Delta(X)$ will be well-defined up to the action of $\zeta \mapsto e^{\nu} \zeta$, indeed all the geometric constructions are really defined up to the action of $\zeta \mapsto e^{\nu} \zeta$. Let $p(X) \in C \setminus \{0\}$ be the ideal point which is the orthogonal projection of $q(X)$ on $C \setminus \{0\}$ along the direction of $\Delta(X)$, we want to determine the position of $p(X)$, which will then determine $\Delta(X)$. This is done as follows. We know that X corresponds to some simple closed curve $\gamma(X)$ on T. Let $\delta(X)$ be an arc on T with both endpoints at the puncture such that $\gamma(X) \cap \delta(X) = \emptyset$. The homotopy class of $\delta(X)$ relative to its endpoints is well-defined. We are identifying T with a fibre of M, so T is naturally homotopy equivalent to the infinite cyclic cover of M. Under this equivalence, $\delta(X)$ has a unique realization as a geodesic $\Delta(X)$ in M whose developing images to \mathbb{H}^3 are normal to the missing lines. Choose a lift of $\Delta(X)$ to \mathbb{H}^3 which is normal to the z-axis. Any other choice of lift would give us an image of $\Delta(X)$ (hence an image of $p(X)$) under the cyclic action generated by $\zeta \mapsto e^{\nu} \zeta$.

Consider the bi-infinite sequence, $(X_j)_{j \in \mathbb{Z}}$, of all regions of Ω, adjacent to the invariant path in Σ under H. We may choose $\Delta(X_j)$ so that the transformation $\zeta \mapsto e^{\nu} \zeta$ acts on them as a shift. This is guaranteed by the geometric triangulation of ∂M described above.

It is not hard to see that in the geometric triangulation of $C \setminus \{0\}$, the vertex corresponding to X_j is given by one of the images of $p(X_j)$ under the action generated by $\zeta \mapsto e^{\nu} \zeta$, so we may as well assume that it actually equals $p_j = p(X_j)$. The choice of p_1 naturally determines that of p_{j-1} and p_{j+1}, and so, inductively, p_j for all $j \in \mathbb{Z}$. Now the sequence (p_j) is periodic under the transformation corresponding to the longitude of ∂M. This transformation is given by $\zeta \mapsto e^{\lambda} \zeta$, where $\lambda = \lambda(\partial M)$ is the length of the longitude. This corresponds to the action of $\langle H \rangle$ on Ω which has the effect of shifting the sequence (X_j). Let m be the number of steps through which this sequence is shifted. Thus, $\lambda = \log p_m - \log p_0 = \sum_{j=1}^{m} (\log p_j - \log p_{j-1}) \mod 2\pi i$. We thus want to compute the numbers $\log p_j - \log p_{j-1} \mod 2\pi i$. Let \vec{e}_j be the directed edge given by $X_j \cap X_{j-1}$, whose head lies in β and let C_k be the set $\{\vec{e}_1, \cdots, \vec{e}_m\}$ of directed edges.

Fix some $j \in \{1, \cdots, m\}$. Let $X = X_{j-1}$, $Y = X_j$, and let Z be the region at the head of \vec{e}_j. As described earlier, we can find free generators a, b for Γ which correspond, respectively, to the regions X and Y. Moreover, we can suppose that a and b are as described earlier and Z is represented by ab. By our discussion of the geometric meaning of Ψ in Appendix A, especially, by Lemma 6.10, we have

$$\log p_j - \log p_{j-1} = \Psi(x, y, z) \mod 2\pi i,$$

where $x = \text{tr} \rho(a) = \phi(X)$, $y = \text{tr} \rho(b) = \phi(Y)$ and $z = \text{tr} \rho(ab) = \phi(Z)$. Thus

$$\log p_j - \log p_{j-1} = \Psi(\vec{e}_j) \mod 2\pi i.$$
It follows that in $C/2\pi i \mathbb{Z}$ we have

$$
\lambda(\partial M) = \log p_m - \log p_0 = \sum_{j=1}^{m} (\log p_j - \log p_{j-1})
$$

$$
= \sum_{\sigma \in S_L} \psi(\bar{e}) = \sum_{\{X\} \in \mathfrak{H}/(H)} \mathfrak{h}(\phi([X]))
$$

$$
= \sum_{\sigma \in S_L} \log \left(\frac{e^{\nu} + e^{\ell(\sigma)}}{e^{-\nu} + e^{\ell(\sigma)}} \right).
$$

This proves Theorem 5.4 under certain choices of the orientations involved. \hfill \square

Proof of Corollary 5.5. By Thurston’s Hyperbolic Dehn Surgery Theorem (see [34]), $\overline{M}(p/q)$ has a complete hyperbolic structure for all but a finite number of surgery slopes $p/q \in \mathbb{Q}$. By further excluding a finite number of slopes, we may assume that the induced incomplete hyperbolic structure on M is obtained by a slight deformation from the unique complete hyperbolic structure on M. By Theorem 5.8, M then has discrete length spectrum on its torus fiber \mathbb{T} and the conclusion follows from Theorem 5.4. \hfill \square

6. **Appendix A - Geometric meanings of the functions \mathfrak{h} and Ψ**

In this appendix we explore the geometric meaning of the gap function $\mathfrak{h}(x) = \mathfrak{h}_+(x)$ used earlier as well as the geometric meaning of the function $\Psi(x, y, z)$ defined and used in §4. In particular, the geometric meaning of $\Psi(x, y, z)$ was used in an essential way in §5.4.

Naturally oriented axes. To each $A \in \text{SL}(2, \mathbb{C}) \setminus \{\pm I\}$, we associate its *naturally oriented axis* $\mathbf{a}(A)$ as follows:

(i) when A represents a loxodromic (including hyperbolic) isometry of \mathbb{H}^3, the orientation of $\mathbf{a}(A)$ is directed from its repelling fixed ideal point to its attracting fixed ideal point;

(ii) when A represents an elliptic isometry of \mathbb{H}^3 but not an involution, the orientation of $\mathbf{a}(A)$ is defined so that it has rotation angle in $(0, \pi)$ with respect to $\mathbf{a}(A)$; and

(iii) when $A = (A_{ij})_{2 \times 2}$ is an involution, the orientation of $\mathbf{a}(A)$ is the same as Fenchel defined in [12], that is, $\mathbf{a}(A)$ is directed from $\text{Fix}^{-}(A)$ to $\text{Fix}^{+}(A)$, where the ideal fixed points $\text{Fix}^{-}(A)$ and $\text{Fix}^{+}(A)$ of A are distinguished as follows:

- $\text{Fix}^{-}(A) := (A_{11} - i)/A_{21}$ and $\text{Fix}^{+}(A) := (A_{11} + i)/A_{21}$ if $A_{21} \neq 0$;
- $\text{Fix}^{-}(A) := A_{12}i/2$ and $\text{Fix}^{+}(A) := \infty$ if $A_{21} = 0, A_{11} = i$; and
- $\text{Fix}^{-}(A) := \infty$ and $\text{Fix}^{+}(A) := -A_{12}i/2$ if $A_{21} = 0, A_{11} = -i$.

Remark. If A is an involution, then $\mathbf{a}(-A) = \mathbf{a}(A^{-1})$ has the opposite orientation as $\mathbf{a}(A)$. If A is not an involution, then $\mathbf{a}(-A) = \mathbf{a}(A)$ while $\mathbf{a}(A^{-1})$ has the opposite orientation as $\mathbf{a}(A)$.

Complex length $\Delta_n(l, m)$. Let us recall the complex length between oriented lines in \mathbb{H}^3 as defined by Fenchel in §V.3, [12]. Let $l, m, n \in \text{SL}(2, \mathbb{C})$ be involutions
(that is, \(l^2 = m^2 = n^2 = -I \)) representing oriented lines in \(\mathbb{H}^3 \) such that \(n \) is an oriented common normal to \(l \) and \(m \). (We say two oriented lines in \(\mathbb{H}^3 \) are normal to each other if they intersect orthogonally.) Then \(\Delta = \Delta_n(l, m) \in C/2\pi i\mathbb{Z} \), the complex length from \(l \) to \(m \) along \(n \), is defined by

\[
\cosh \Delta = - (1/2) \text{tr}(ml), \quad \sinh \Delta = - (i/2) \text{tr}(ml). \tag{53}
\]

Geometrically, \(\Re \Delta \in \mathbb{R} \) is the signed hyperbolic length from the point \(l \cap n \) to the point \(m \cap n \) measured in the direction of \(n \), and \(\Im \Delta \in (-\pi, \pi] \) is the angle rotated from the the direction of \(l \) to that of \(m \) measured along the direction of \(n \).

It is easy to see that, modulo \(2\pi i \), \(\Delta_n(-l, -m) = \Delta_n(l, m) \) and \(\Delta_n(-l, m) = \Delta_n(l, m) + \pi i \).

Geometric meaning of the gap function \(\mathcal{h} = \mathcal{h}_\tau \). The function \(\mathcal{h} = \mathcal{h}_\tau \) has the following geometric interpretation as the gap function as used in [29].

Let \(\phi \in \Phi_\mu \) be a \(\mu \)-Markoff map, where \(\mu \neq 0, 4 \), and \(\rho : \Gamma \to \text{SL}(2, \mathbb{C}) \) be the corresponding \(\tau \)-representation, where \(\tau = \mu - 2 \).

Let \(a, b \) be an arbitrary pair of generators of \(\Gamma \) and let \(X, Y \in \Omega \) be the two regions which correspond to \(a, b \) respectively. Let \(A = \rho(a), B = \rho(b) \). Then by our convention, \(x = \phi(X) = \text{tr}A, y = \phi(Y) = \text{tr}B \). Let \(z = \text{tr}BA \).

Consider the commutator \([B^{-1}, A^{-1}] = (B^{-1}A^{-1}BA) \). It follows from the trace identity (17) that \(\text{tr}[B^{-1}, A^{-1}] = x^2 + y^2 + z^2 - xyz - 2 = \mu - 2 = \tau \).

If \(A \) is loxodromic (including hyperbolic), so is \(B^{-1}A^{-1}B \). Let the attracting and repelling fixed points of \(A \) be respectively denoted as \(\text{Fix}^+(A) \) and \(\text{Fix}^-(A) \). Similarly we have \(\text{Fix}^+(B^{-1}A^{-1}B) \) and \(\text{Fix}^-(B^{-1}A^{-1}B) \).

We denote the oriented line in \(\mathbb{H}^3 \) which is normal to the axis \(a(B^{-1}A^{-1}BA) \) and has \(\text{Fix}^+(A) \) as its ending ideal point by \([a(B^{-1}A^{-1}BA), \text{Fix}^+(A)] \). Similarly, we have another oriented line \([a(B^{-1}A^{-1}BA), \text{Fix}^-(B^{-1}A^{-1}B)] \).

Then the complex length from the oriented line \([a(B^{-1}A^{-1}BA), \text{Fix}^+(A)] \) to \([a(B^{-1}A^{-1}BA), \text{Fix}^-(B^{-1}A^{-1}B)] \) along \(a(B^{-1}A^{-1}BA) \) is exactly given by \(\mathcal{h}(x) = \mathcal{h}_\tau(x) \). See Figure 5 for an illustration in the cases where the isometries \(A, B^{-1}A^{-1}B \) and \(B^{-1}A^{-1}BA \) have coplanar non-intersecting axes.

Lemma 6.1. With the above notation, we have

\[
\mathcal{h}_\tau(x) = \Delta_{a(B^{-1}A^{-1}BA)}([a(B^{-1}A^{-1}BA), \text{Fix}^+(A)], [a(B^{-1}A^{-1}BA), \text{Fix}^-(B^{-1}A^{-1}B)]). \tag{54}
\]

Remark. Here it is important to note that the gap value \(\mathcal{h}(x) \) is independent of the choice of \(b \) in the generating pair \(a, b \) of \(\Gamma \). Note also that \(\text{Fix}^-(B^{-1}A^{-1}B) = \text{Fix}^+(B^{-1}AB) \) and that \(B^{-1}AB \) is a conjugate of \(A \).

Lemma 6.1 is in fact a special case of the following general lemma.

Lemma 6.2. Let \(A, B \in \text{SL}(2, \mathbb{C}) \). Then the complex distance from the oriented line \([a(BA), \text{Fix}^+(A)] \) to the oriented line \([a(BA), \text{Fix}^-(B)] \) measured along the
Figure 5. The complex gap

oriented line \(a(BA)\) is given by

\[
2 \tanh^{-1} \left(\frac{\sinh \left(\frac{l(-BA)}{2} \right)}{\cosh \left(\frac{l(-BA)}{2} \right) + \exp \left(\frac{l(A)}{2} + \frac{l(B)}{2} \right)} \right) = \log \left(\frac{\exp \left(\frac{l(-BA)}{2} \right) + \exp \left(\frac{l(A)}{2} + \frac{l(B)}{2} \right)}{\exp \left(-\frac{l(-BA)}{2} \right) + \exp \left(\frac{l(A)}{2} + \frac{l(B)}{2} \right)} \right),
\]

(55)

where \(l(A)/2, l(B)/2, l(-BA)/2\) are the half translation lengths of \(A, B, -BA\) as defined by (4) in \(\S2\).

We omit the proof here. A detailed proof by cross-ratio calculations can be found in [35]. For another proof, one may adapt Mirzakhani’s proof in the real case as given in [22] to let it work for the general case here by using Fenchel’s cosine rule for oriented right angled hexagons given in \(\S VI.2\) of [12].

Geometric meaning of the function \(\Psi\). We first show the picture and give an informal treatment in the case where \(\phi\) corresponds to the holonomy representation \(\rho\) of a real hyperbolic one-holed torus \(T\) with geodesic boundary \(\partial T\). For the limiting case where the boundary is a cusp, see [5] or [1]. Let \(e \leftrightarrow (X, Y; Z, W)\), and let \(\gamma_X, \gamma_Y, \gamma_Z, \gamma_W\) be the simple closed geodesics on \(T\) corresponding to \(X, Y, Z\) and \(W\) respectively. \(\gamma_X\) and \(\gamma_Y\) intersect each other once, at a Weierstrass point of \(T\), and \(\gamma_Z\) and \(\gamma_W\) are the two unique simple closed geodesics which intersect both \(\gamma_X\) and \(\gamma_Y\) exactly once. The points of intersection of these geodesics are the Weierstrass points, there are exactly three, and each geodesic passes through two
Lemma 6.3. For $A \in \text{SL}(2, \mathbb{C})$, we have $a(KA^{-1}) = Ka(A)^{-1}$. In particular, when K is an involution, that is $K^2 = -I$, the conjugation is given by $A \mapsto -KA$.

\[\text{Figure 6. Intersections of } \delta_X, \delta_Y, \delta_Z, \delta_W \text{ with } \partial \mathbb{T} \]
Now consider the schematic figure as illustrated in Figure 7. It is easy to check that $RPQ \leftrightarrow QRP \leftrightarrow PQR \leftrightarrow RPQ$ by conjugation by Q,P,R respectively. Hence $a(RPQ) \leftrightarrow a(QRP) \leftrightarrow a(PQR) \leftrightarrow a(RPQ)$ by conjugation by Q,P,R respectively.

Right angled hexagons $H(l,m,n)$. We shall use the following notation for oriented common normals and right angled hexagons in \mathbb{H}^3.

(i) For each ordered pair of oriented lines l and m in \mathbb{H}^3, let $[l,m]$ denote a definitely chosen oriented common normal to them, so that $[l,m]$ and $[m,l]$ always have opposite directions. For example, we may assume $[l,m]$ is directed from l to m when l and m are disjoint.

(ii) Given oriented lines l, m, n in \mathbb{H}^3, we use $H(l,m,n)$ to denote the right angled hexagon in the sense of Fenchel [12] formed by the oriented lines

$$l; [l,m]; m; [m,n]; n; [n,l]$$

in this cyclic order.

Thus the oriented lines

$$a(RPQ); [a(RPQ),a(PQR)];$$
$$a(PQR); [a(PQR),a(QRP)];$$
$$a(QRP); [a(QRP),a(RPQ)],$$

in this cyclic order, form the right angled hexagon $H(a(RPQ),a(PQR),a(QRP))$. Since, as we have observed above, $a(RPQ) \leftrightarrow a(QRP) \leftrightarrow a(PQR) \leftrightarrow a(RPQ)$ by conjugation by Q,P,R respectively, we know $H(a(RPQ),a(PQR),a(QRP))$ has
the oriented lines \(\mathbf{a}(R), \mathbf{a}(P), \mathbf{a}(Q) \) as the ‘midpoints’ of its three sides, that is,
\[
\Delta_{\mathbf{a}(RPQ), \mathbf{a}(PQR)}(\mathbf{a}(RPQ), \mathbf{a}(R)) = \Delta_{\mathbf{a}(RPQ), \mathbf{a}(RPQ)}(\mathbf{a}(R), \mathbf{a}(PQR)) =: \tilde{c},
\]
\[
\Delta_{\mathbf{a}(PQR), \mathbf{a}(QRP)}(\mathbf{a}(PQR), \mathbf{a}(P)) = \Delta_{\mathbf{a}(PQR), \mathbf{a}(QRP)}(\mathbf{a}(P), \mathbf{a}(QRP)) =: \tilde{a},
\]
\[
\Delta_{\mathbf{a}(QRP), \mathbf{a}(RPQ)}(\mathbf{a}(QRP), \mathbf{a}(Q)) = \Delta_{\mathbf{a}(QRP), \mathbf{a}(RPQ)}(\mathbf{a}(Q), \mathbf{a}(RPQ)) =: \tilde{b}.
\]
Let the complex lengths of the other three sides of the right angled hexagon \(\mathbf{H}(\mathbf{a}(RPQ), \mathbf{a}(PQR), \mathbf{a}(QRP)) \) be denoted as
\[
\Delta_{\mathbf{a}(RPQ)}(\mathbf{a}(Q), \mathbf{a}(RPQ)) =: \alpha,
\]
\[
\Delta_{\mathbf{a}(PQR)}(\mathbf{a}(Q), \mathbf{a}(PQR)) =: \beta,
\]
\[
\Delta_{\mathbf{a}(QRP)}(\mathbf{a}(Q), \mathbf{a}(QRP)) =: \gamma.
\]
Also let
\[
\Delta_{\mathbf{a}(R)}(\mathbf{a}(Q), \mathbf{a}(R)) =: \tilde{p},
\]
\[
\Delta_{\mathbf{a}(P)}(\mathbf{a}(Q), \mathbf{a}(P)) =: \tilde{q},
\]
\[
\Delta_{\mathbf{a}(Q)}(\mathbf{a}(Q), \mathbf{a}(Q)) =: \tilde{r}.
\]
Then
\[
cosh \tilde{p} = (1/2) \operatorname{tr}(-RQ) = (1/2) \operatorname{tr}A = x/2,
\]
\[
cosh \tilde{q} = (1/2) \operatorname{tr}(-PR) = (1/2) \operatorname{tr}B = y/2,
\]
\[
cosh \tilde{r} = (1/2) \operatorname{tr}(-QP) = (1/2) \operatorname{tr}C = z/2.
\]
Now applying Fenchel’s cosine rules as in §VI.2 of \cite{[12]} to the right angled hexagons \(\mathbf{H}(\mathbf{a}(Q), \mathbf{a}(P), \mathbf{a}(QRP)) \) and \(\mathbf{H}(\mathbf{a}(RPQ), \mathbf{a}(PQR), \mathbf{a}(QRP)) \) respectively we have
\[
cosh \tilde{r} = \cosh \tilde{a} \cosh \tilde{b} + \sinh \tilde{a} \sinh \tilde{b} \cosh \gamma, \quad (56)
\]
\[
cosh 2\tilde{c} = \cosh 2\tilde{a} \cosh 2\tilde{b} + \sinh 2\tilde{a} \sinh 2\tilde{b} \cosh \gamma. \quad (57)
\]
Claim.
\[
\frac{\cosh \tilde{a}}{\cosh \tilde{p}} = \frac{\cosh \tilde{b}}{\cosh \tilde{q}} = \frac{\cosh \tilde{c}}{\cosh \tilde{r}} = \kappa, \quad (58)
\]
where \(\kappa^2 = 4/\mu \).
To prove the claim, multiplying \(4 \cosh \tilde{a} \cosh \tilde{b} \) to both sides of (56) gives
\[
4 \cosh \tilde{a} \cosh \tilde{b} \cosh \tilde{r} = 4 \cosh^2 \tilde{a} \cosh^2 \tilde{b} + \sinh 2\tilde{a} \sinh 2\tilde{b} \cosh \gamma.
\]
Comparing with (57) gives
\[
4 \cosh \tilde{a} \cosh \tilde{b} \cosh \tilde{r} - \cosh 2\tilde{c} = 4 \cosh^2 \tilde{a} \cosh^2 \tilde{b} - \cosh 2\tilde{a} \cosh 2\tilde{b}.
\]
After simplification we have
\[
(2 \cosh \tilde{a})(2 \cosh \tilde{b})(2 \cosh \tilde{r}) = (2 \cosh \tilde{a})^2 + (2 \cosh \tilde{b})^2 + (2 \cosh \tilde{c})^2 - 4. \quad (59)
\]
Similarly we have
\[
(2 \cosh \tilde{a})(2 \cosh \tilde{q})(2 \cosh \tilde{c}) = (2 \cosh \tilde{a})^2 + (2 \cosh \tilde{b})^2 + (2 \cosh \tilde{c})^2 - 4, \quad (60)
\]
\[(2 \cosh \tilde{p})(2 \cosh \tilde{b})(2 \cosh \tilde{c}) = (2 \cosh \hat{a})^2 + (2 \cosh \hat{b})^2 + (2 \cosh \hat{c})^2 - 4. \quad (61)\]

Hence from (59)–(61) we have

\[\frac{\cosh \hat{a}}{\cosh \hat{p}} = \frac{\cosh \hat{b}}{\cosh \hat{q}} = \frac{\cosh \hat{c}}{\cosh \hat{r}}. \quad (62)\]

Let the common value in (62) be denoted \(\kappa\). Then

\[2 \cosh \hat{a} = \kappa \cosh \hat{p} = \kappa x, \quad 2 \cosh \hat{b} = \kappa \cosh \hat{q} = \kappa y, \quad 2 \cosh \hat{c} = \kappa \cosh \hat{r} = \kappa z. \]

Now from (59) we have

\[\kappa^2 xyz = \kappa^2(x^2 + y^2 + z^2) - 4, \]

and hence (recalling that \(\mu = x^2 + y^2 + z^2 - xyz\))

\[\kappa^2 = 4/\mu. \quad (63)\]

This proves the claim.

It follows from the above proof that

Lemma 6.4.

\[\cosh \gamma = \frac{z/2 - xy/\mu}{(x^2/\mu - 1)^{1/2}(y^2/\mu - 1)^{1/2}}, \quad (64)\]

where the square roots do not necessarily have nonnegative real parts.

Actually, from (56), we have (since \(\kappa^2 = 4/\mu\))

\[\cosh \gamma = \frac{\cosh \tilde{r} - \cosh \tilde{a} \cosh \tilde{b}}{\sinh \tilde{a} \sinh \tilde{b}}\]

\[= \frac{z/2 - \kappa (x/2) \kappa (y/2)}{([\kappa x/2)^2 - 1]^{1/2}([\kappa y/2)^2 - 1]^{1/2}}\]

\[= \frac{z/2 - xy/\mu}{(x^2/\mu - 1)^{1/2}(y^2/\mu - 1)^{1/2}}.\]

As an immediate corollary, we have

Corollary 6.5.

\[\sinh \gamma = \pm \frac{(\sinh \nu) z/\mu}{(x^2/\mu - 1)^{1/2}(y^2/\mu - 1)^{1/2}}. \quad (65)\]

The rest of this section is devoted to the determination of the sign in (65).

Geometrically, we have

Lemma 6.6. \((\alpha + \pi i) + (\beta + \pi i) + (\gamma + \pi i) = \nu \mod 2\pi i.\)

Proof. We refer to Figure 7. Consider the following right angled hexagons

\[H_1 := H(a(RPQ), a(PQR), a(QRP)), \]

\[H_2 := H(a(PQR), a(RPQ), a(-RQRPR)), \]

\[H_3 := H(a(RPRQPQR), a(-RQRPR), a(RPQ)). \]
It is easy to check that the conjugation by R maps H_1 to H_2, and the conjugation by RPR maps H_2 to H_3; thus the conjugation by PR maps H_1 to H_3. Since conjugations preserve the relevant complex lengths, we have
\[
\Delta_{a(RPQ)} ([a(PQR), a(RPQ)], [a(RPQ), a(-RQRPR)]) = \beta,
\]
\[
\Delta_{a(RPQ)} ([a(-RQRPR), a(RPQ)], [a(RPQ), a(RPRPQPR)]) = \gamma.
\]
Thus
\[
(\alpha + \pi i) + (\beta + \pi i) + (\gamma + \pi i)
\]
\[
= \Delta_{a(RPQ)} ([a(QRP), a(RPQ)], [a(RPQ), a(PQR)])
\]
\[
+ \Delta_{a(RPQ)} ([a(-RQRPR), a(RPQ)], [a(RPQ), a(RPRPQPR)]) + \pi i
\]
\[
= \Delta_{a(RPQ)} ([a(QRP), a(RPQ)], [a(RPQ), a(PQR)])
\]
\[
+ \Delta_{a(RPQ)} ([a(-RQRPR), a(RPQ)], [a(RPQ), a(RPRPQPR)]) + \pi i
\]
\[
= \Delta_{a(RPQ)} ([a(QRP), a(RPQ)], [a(RPQ), a(PQR)])
\]
\[
= \nu \mod 2 \pi i.
\]

The last equality follows from Lemmas 6.7 and 6.8 below, since it is easy to see that $\nu = \cosh^{-1}(-\tau/2)$ is the complex translation length of RPQ (recall that $[B^{-1}, A^{-1}] = -(RPQ)^2$ and $\tau = \text{tr}[[B^{-1}, A^{-1}]$) and that the conjugation by RPQ maps $[a(QRP), a(RPQ)]$ to $[a(RPRPQPR), a(RPQ)]$.

\[\]

Lemma 6.7. The complex translation length of $K \in \text{SL}(2, \mathbb{C})$ is given by
\[
l(K) = \cosh^{-1}\left(\frac{1}{2}\text{tr}(K^2)\right). \tag{66}\]

Proof. Recall that $l(K)/2 = \cosh^{-1}\left(\frac{1}{2}\text{tr}K\right)$. Hence
\[
\cosh l(K) = 2 \cosh^2(l(K)/2) - 1
\]
\[
= 2\left(\frac{1}{2}\text{tr}K\right)^2 - 1
\]
\[
= \frac{1}{2}(\text{tr}^2K - 2)
\]
\[
= \frac{1}{2}\text{tr}(K^2),
\]
from which (66) follows since $\Re l(K) \geq 0$.

Lemma 6.8. If $K \in \text{SL}(2, \mathbb{C})$ is non-parabolic and $L \in \text{SL}(2, \mathbb{C})$ is a line matrix such that $a(K) \perp a(L)$, then KLK^{-1} is also a line matrix and the complex translation length $l(K)$ of K is given by
\[
l(K) = \Delta_{a(K)}(a(L), a(KL^{-1})). \tag{67}\]

This is Lemma 2.17 in [35], with a proof given there.

Now we can determine the signs in the expressions (65) etc as follows.
Lemma 6.9.
\[\sinh \gamma = -\frac{(\sinh \nu) z}{(x^2/\mu - 1)^{1/2}(y^2/\mu - 1)^{1/2}} \] (68)
and similarly for \(\sinh \alpha \) and \(\sinh \beta \).

Proof. Let \(\Psi(x, y, z) \in \mathbb{C} \) be defined as in §4 by:
\[\Psi(x, y, z) = \log \frac{xy + (e^\nu - 1)z/\mu}{(x^2/\mu - 1)^{1/2}(y^2/\mu - 1)^{1/2}} \] (69)
or equivalently, by the following two equations:
\[\cosh \Psi(x, y, z) = \frac{[xy - (\mu/2)z]/\mu}{(x^2/\mu - 1)^{1/2}(y^2/\mu - 1)^{1/2}}, \] (70)
\[\sinh \Psi(x, y, z) = \frac{(\sinh \nu)z/\mu}{(x^2/\mu - 1)^{1/2}(y^2/\mu - 1)^{1/2}}. \] (71)

Similarly for \(\Psi(y, z, x) \), \(\Psi(z, x, y) \) \(\in \mathbb{C} \). We have from Proposition 4.2(i) that
\[\Psi(y, z, x) + \Psi(z, x, y) + \Psi(x, y, z) = \nu \mod 2\pi i. \]
On the other hand, it follows from Lemma 6.4 that
\[-\cosh \gamma = \cosh \Psi(x, y, z) \text{ etc} \]
and hence, modulo \(2\pi i \),
\[\alpha + \pi i = \pm \Psi(y, z, x), \quad \beta + \pi i = \pm \Psi(z, x, y), \quad \gamma + \pi i = \pm \Psi(x, y, z). \] (72)

Now applying Fenchel’s sine rule as in §VI.2 of [12] to the right angled hexagon
\[\mathbf{H}(a(RPQ), a(PQR), a(QRP)) \]
gives
\[\frac{\sinh \alpha}{\sinh 2\alpha} = \frac{\sinh \beta}{\sinh 2\beta} = \frac{\sinh \gamma}{\sinh 2\gamma}. \]

It follows from (65) together with \(\kappa z = 2 \cosh \hat{c} \) that the above common value is given by
\[\frac{\sinh \gamma}{\sinh 2\hat{c}} = \pm \frac{(\sinh \nu)\kappa z}{\kappa \sinh \hat{a} \sinh \hat{b} \sinh 2\hat{c}} = \pm \frac{(\sinh \nu)\kappa z}{\kappa \sinh \hat{a} \sinh \hat{b} \sinh \hat{c}}, \] (73)
(note that in (73) the \(\pm \) is the same as that in (65) etc) and hence the \(\pm \) in expressions (65) etc of \(\sinh \gamma, \sinh \alpha, \sinh \beta \) are constant. So are the signs in (72), that is, we have either, modulo \(2\pi i \),
\[\alpha + \pi i = \Psi(y, z, x), \quad \beta + \pi i = \Psi(z, x, y), \quad \gamma + \pi i = \Psi(x, y, z) \] (74)
or, modulo \(2\pi i \),
\[\alpha + \pi i = -\Psi(y, z, x), \quad \beta + \pi i = -\Psi(z, x, y), \quad \gamma + \pi i = -\Psi(x, y, z). \] (75)

Since we also have \((\alpha + \pi i) + (\beta + \pi i) + (\gamma + \pi i) = \nu \mod 2\pi i \) (Lemma 6.6) and \(\nu \neq 0 \) we may conclude that (74) must hold. This proves Lemma 6.9. \(\square \)

Note that
\[\alpha + \pi i = \Delta_{a(RPQ)}([a(RPQ), a(Q)], [a(R), a(RPQ)]) + \pi i \]
\[= \Delta_{a(RPQ)}([a(RPQ), a(Q)], [a(RPQ), a(R)]) \]
Lemma 6.10. Given Q, R, P such that Q is regarded as the “universal cover” of Q lifted holonomy representation. Draw will be that corresponding to the once-punctured hyperbolic torus which has A, A of $C = \rho : \Gamma \to \text{SL}(2, \mathbb{C})$ satisfy $tr A = x, tr B = y$ and $tr C = z$. Let $A' := [B^{-1}, A^{-1}], B' := [C^{-1}, B^{-1}], C' := [A^{-1}, C^{-1}]$. Then
\[
\Psi(y, z, x) = \Delta_a([-A'), [a(A'), a(Q)], [a(A'), a(R)]) \mod 2\pi i, \quad (76)
\]
\[
\Psi(z, x, y) = \Delta_a([-B'), [a(B'), a(R)], [a(B'), a(P)]) \mod 2\pi i, \quad (77)
\]
\[
\Psi(x, y, z) = \Delta_a([-C'), [a(C'), a(P)], [a(C'), a(Q)]) \mod 2\pi i, \quad (78)
\]
where $\Psi(y, z, x), \Psi(z, x, y), \Psi(x, y, z) \in \mathbb{C}$ are defined by (32).

7. Appendix B - Drawing the gaps

Here we explain how to visualize and draw correctly, for a given representation $\rho : \Gamma \to \text{SL}(2, \mathbb{C})$ satisfying the BQ-conditions, the gaps in the extended complex plane which is the ideal boundary of \mathbb{H}^3 in the upper half-space model.

Fix a pair of generators $a, b \in \Gamma$ and let (in this section only) $c := [b^{-1}, a^{-1}] = b^{-1}a^{-1}ba$. Then each element of Γ can be written uniquely as a reduced word in the letters a, b, a^{-1}, b^{-1}. For each $[g] \in \hat{\Omega}$, we wish to draw the gaps for an infinite set of representatives g_i in the class $[g]$, with respect to the axis $a(C)$ of the image $\tilde{C} = \rho(c)$ of the commutator c. These representatives are essentially the cyclically reduced words, and conjugates of the cyclically reduced word by the elements of the commutator subgroup. As discussed in the previous section, for each g_i, we need to produce a word $g'_i \in \Gamma$ which is a conjugate of g_i so that $(g'_i)^{-1}g_i = c$ in Γ. Hence we must have $g'_i = g_i c^{-1}$ after cancellation. We need to do this consistently so that all gaps are in their correct places viewed in the extended complex plane.

Constructing the ‘universal cover’ of $\hat{\Omega}$. From the above discussion, to draw the gaps with respect to a fixed commutator, we really need to construct the ‘universal cover’ of the rational projective lamination space $\hat{\Omega}$ as follows. We shall construct pairs of words $(L_{\frac{p}{q}}, R_{\frac{p}{q}})$ in Γ, parametrized by $\frac{p}{q} \in \mathbb{Q}$, where \mathbb{Q} is regarded as the “universal cover” of $\mathbb{Q} \cup \infty$. The particular representation we will draw will be that corresponding to the once-punctured hyperbolic torus which has lifted holonomy representation $\rho : \Gamma \to \text{SL}(2, \mathbb{C})$ such that
\[
A = \rho(a) = \begin{pmatrix} 0 & \sqrt{2}/2 \\ -\sqrt{2} & 2\sqrt{2} \end{pmatrix} \quad \text{and} \quad B = \rho(b) = \begin{pmatrix} \sqrt{2} & \sqrt{2}/2 \\ \sqrt{2} & \sqrt{2} \end{pmatrix}. \quad (79)
\]
Note that $C := \rho(c) = B^{-1}A^{-1}BA = \begin{pmatrix} -1 & 4 \\ 0 & -1 \end{pmatrix}$. See Figure 8, where we use $\tilde{a}, \tilde{b}, \tilde{c}$ to denote a^{-1}, b^{-1}, c^{-1} respectively and we label the attracting fixed points of A, A^{-1} by a, \tilde{a} respectively, and similarly for the other words.

First, we construct a bi-infinite sequence of pairs of reduced words $(L_n, R_n), n = \frac{m}{1} \in \mathbb{Z}$, inductively as follows.
Figure 8. The sequence of pairs of words and corresponding gaps
(i) Set $R_0 = a$ and $L_1 = b$.
(ii) We require

$$(L_n)^{-1} R_n = c$$

for all $n \in \mathbb{Z}$. Hence, for example, $L_0 = b^{-1} ab = ac^{-1}$ and $R_1 = a^{-1} ba = bc$.
(iii) Define

$L_{n+2} = (R_n)^{-1}$

or equivalently

$R_{n+2} = (L_n)^{-1}$

for $n \in \mathbb{Z}$. Hence $R_{n+2} = (R_n)^{-1} c$.

It is easy to check that the following relations hold for all $n \in \mathbb{Z}$:

$$[(L_{n+1})^{-1}, (R_n)^{-1}] = c,$$

and

$L_{n+4} = c^{-1} L_n c$.

Next, we generate the general $(L_{\frac{p}{q}}, R_{\frac{p}{q}})$ for all $\frac{p}{q} \in \mathbb{Q}$ by the following rule:

(iv) For $\frac{p+r}{q+s} \in \mathbb{Q}$, constructed from Farey neighbors $\frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$, where $\frac{p}{q} < \frac{r}{s}$, we define

$$L_{\frac{p+r}{q+s}} = R_{\frac{q}{q}} L_{\frac{r}{s}}, \quad R_{\frac{p+r}{q+s}} = L_{\frac{q}{q}} R_{\frac{r}{s}}. \quad (80)$$

Remark. We note that here $\frac{p}{q}$ in the index is not the slope of the free homotopy class $[L_{\frac{p}{q}}] = [R_{\frac{p}{q}}] \in \hat{\Omega}$. In fact the rationals in the interval $[0, 2)$ in our index set corresponds to the set $\mathbb{Q} \cup \{\infty\}$ of the slopes, via the Farey triangulation described, and the full set of rationals \mathbb{Q} in our index set corresponds to the universal cover. The reason we need to do this is because we need to consider the inner automorphisms by the commutator subgroup, for a careful treatment, see [14].

We can prove by induction that

(I) for any Farey neighbors $\frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$, where $\frac{p}{q} < \frac{r}{s}$, there is the commutator identity:

$$[(L_{\frac{r}{s}})^{-1}, (R_{\frac{q}{q}})^{-1}] = c; \quad (81)$$

(II) for all $\frac{p}{q} \in \mathbb{Q}$, there is the conjugation relation:

$$L_{\frac{p}{q}+2} = (R_{\frac{q}{q}})^{-1}. \quad (82)$$

and

$$L_{\frac{p}{q}+4} = c^{-1} L_{\frac{p}{q}} c. \quad (83)$$

Thus the pair of words $(L_{\frac{p}{q}}, R_{\frac{p}{q}})$ we constructed above are indeed conjugate to each other as the following lemma shows.

Lemma 7.1. For any Farey neighbors $\frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$, where $\frac{p}{q} < \frac{r}{s}$, we have

$$L_{\frac{q}{q}} = (L_{\frac{r}{s}})^{-1} R_{\frac{q}{q}} L_{\frac{r}{s}}. \quad (84)$$
Figure 9. Gaps for a (−0.8)-Markoff map with $x = 6, y = 3 + i$

Drawing the gaps. Now for each pair of words $(L_{\frac{p}{q}}, R_{\frac{p}{q}}), \frac{p}{q} \in \mathbb{Q}$, constructed as above, we draw a line segment in the extended complex plane connecting the attracting fixed points of $\rho(L_{\frac{p}{q}})$ and $\rho(R_{\frac{p}{q}})$ to indicate the gap corresponding to the pair. Of course these gaps should be measured against the commutator, in the case where the commutator is parabolic, we may normalize the picture so that the commutator fixes ∞, see Figure 8. When the commutator is loxodromic we may normalize so that the fixed points of the commutator C are 0 and ∞. The picture obtained for a particular generalized Markoff map $\phi \in (\Phi_{\mu})_Q$ is given in Figure 9 (with this normalization), and we have drawn some of the gaps for $\frac{p}{q}$ between 0 and 4. The complete picture for $\frac{p}{q} \in \mathbb{Q}$ can be obtained by applying the Möbius transformation $C = \rho(c)$ and its inverse on the given picture repeatedly.

The attracting fixed points. Finally we explain the formula to find the attracting fixed point for a given loxodromic (hyperbolic) $A \in \mathrm{SL}(2, \mathbb{C})$.

Let $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$. The two fixed points of A are the roots of quadratic equation $A_{21}z^2 + (A_{22} - A_{11})z - A_{12} = 0$, hence given by

$$z = \left[(A_{11} - A_{22}) \pm \sqrt{(A_{11} + A_{22})^2 - 4} \right] / 2.$$ \hspace{1cm} (85)

Recall that the square root here has been assumed to have positive real part.

In this form, however, it is not true that one sign gives always the attracting or always the repelling fixed point. We can rewrite it in the following form:

$$z = \left[(A_{11} - A_{22}) \pm (A_{11} + A_{22})\sqrt{1 - 4(A_{11} + A_{22})^{-2}} \right] / 2.$$ \hspace{1cm} (86)

Then corresponding to the plus and minus signs are respectively the attracting and repelling fixed points.

Lemma 7.2. Suppose $A \in \mathrm{SL}(2, \mathbb{C})$ is loxodromic/hyperbolic. Then

$$\text{Fix}^+(A) = \left[(A_{11} - A_{22}) + (A_{11} + A_{22})\sqrt{1 - 4(A_{11} + A_{22})^{-2}} \right] / 2; \hspace{1cm} (85)$$

$$\text{Fix}^-(A) = \left[(A_{11} - A_{22}) - (A_{11} + A_{22})\sqrt{1 - 4(A_{11} + A_{22})^{-2}} \right] / 2.$$ \hspace{1cm} (86)
Proof. This is true since we know that they correspond respectively the two eigenvalues of the matrix A:

$$\lambda^+ = (A_{11} + A_{22}) [1 + \sqrt{1 - 4(A_{11} + A_{22})^{-2}}]/2,$$

$$\lambda^- = (A_{11} + A_{22}) [1 - \sqrt{1 - 4(A_{11} + A_{22})^{-2}}]/2$$

which have respectively norms greater and less than 1.

References

[32] Ser Peow Tan, Yan Loi Wong and Ying Zhang, *Bowditch’s end invariants for two generator subgroups of $SL(2, C)$ and generalized Markoff maps*, in preparation.

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543

E-mail address: mattansp@nus.edu.sg; matwyl@nus.edu.sg; scip1101@nus.edu.sg

AND THE THIRD AUTHOR

Department of Mathematics, Yangzhou University, Yangzhou 225002, P. R. China

E-mail address: yingzhang@yzu.edu.cn