Geometric ergodicity for Stochastic Lattice Models

Xin T Tong

Joint work with Andrew J, Majda
CIMS

Tuesday 18th August, 2015
Outline

1. MJO \Rightarrow Stochastic Lattice \Rightarrow PDMP.
2. Geometric ergodicity under Wasserstein distance.
3. An abstract theorem and application.
MJO: dominant mode of tropical intraseasonal variability.

Media source: youtube and NCAR
Failure of GCM

Key features:

1. Slow eastward phase speed 5 m/s.
2. Dispersion: $d\omega/dt \approx 0$.
3. Horizontal quadruple structure.
4. Intermittent MJO events.
5. Wave trains: generation and demise.

from Lin et al. (2006)
Skeleton Models

- **Key features:**
 1. Slow eastward phase speed 5m/s.
 2. Dispersion: \(d\omega/dt \approx 0 \).
 3. Horizontal quadruple structure.
 4. Intermittent MJO events.
 5. Wave trains: generation and demise.

- **Skeleton model:**

\[
\begin{align*}
\partial_t u - yv - \partial_x \theta &= 0, \\
yu &= \partial_y \theta, \\
\partial_t \theta - (\partial_x u + \partial_y v) &= \bar{H}a - s^\theta \\
\partial_t q + \bar{Q}(\partial_x u + \partial_y v) &= -\bar{H}a + s^q, \\
[\partial_t a &\approx \Gamma qa].
\end{align*}
\]

\(u \): zonal \(v \): meridional \(\theta \): temp \(q \): moisture, \(a \): synoptic activity.
Truncations on the y, z direction, discretization on the x direction

$(u, v, q, \theta) \Rightarrow (K_i, R_i, Z_i)_{i \leq N}$ follows an ODE,

$a \Rightarrow (A_i)_{i \leq N}$ is a birth/death process.

\[
\begin{align*}
\dot{K}_i + D_x^+ K_i &= (s_i^\theta - \bar{H} A_i)/2 - \bar{d} K_i, \\
\dot{R}_i - D_x^- R_i/3 &= (s_i^\theta - \bar{H} A_i)/3 - \bar{d} R_i, \\
\dot{Z}_i &= (s_i^\theta - \bar{H} A_i)(1 - \bar{Q}) - \bar{d} Z_i,
\end{align*}
\]

\[
\frac{d}{dh} \mathbb{P}(A_i(t + h) = A_i + 1 | \mathcal{F}_t) = \gamma Q_i^+ A_i + 1_{A_i=0},
\]

\[
\frac{d}{dh} \mathbb{P}(A_i(t + h) = A_i - 1 | \mathcal{F}_t) = \gamma Q_i^- A_i,
\]

\[Q_i := Z_i - \bar{Q}(K_i + R_i)\]
Transformation formulas

Continuous version:

\[u = \cos z [(K - R)\phi_0 + R\phi_2 / \sqrt{2}] , \quad v = 4 \cos z(\partial_x R + S^\theta - \bar{H} A)\phi_1 / 3\sqrt{2} , \]
\[\theta = - \sin z [(K + R)\phi_0 + R\phi_2 / \sqrt{2}] , \quad q = Q\phi_0 \sin z , \]
\[p = \cos z [(K + R)\phi_0 + R\phi_2 / \sqrt{2}] , \quad w = (\partial_x u + \partial_y v) \sin z , \]

with Hermite functions:

\[\phi_0 = \sqrt{2}(4\pi)^{-1/4} \exp(-y^2 / 2) , \]
\[\phi_1 = 2y(4\pi)^{-1/4} \exp(-y^2 / 2) , \]
\[\phi_2 = (2y^2 - 1)(4\pi)^{-1/4} \exp(-y^2 / 2) . \]
Dynamical systems based on lattice structures, consist of

- ODE systems $X_t = (X_{i,t})_{i \in I}$ with neighboring interaction representing partial derivatives.
- A Markov jump process $Y_t = (Y_{i,t})_{i \in I}$ on a countable space.

Simplest tropical climate model, η_i represents the CIN,

$$\begin{align*}
\frac{dK_i}{dt} + D_x^+ K_i &= -\frac{\bar{d} + d_\theta + d_{sh}}{2} K_i - \frac{d_\theta + d_{sh} - \bar{d}}{2} R_i - (d_\theta \theta_{eq,i} + d_{sh} \theta_{s,i} + P_i), \\
\frac{dR_i}{dt} - D_x^- R_i &= -\frac{\bar{d} + d_\theta + d_{sh}}{2} R_i - \frac{d_\theta + d_{sh} - \bar{d}}{2} K_i - (d_\theta \theta_{eq,i} + d_{sh} \theta_{s,i} + P_i), \\
\frac{dZ_i}{dt} &= -dq Z_i + \frac{d_\theta + d_{sh} - dq}{2} \bar{Q}(K_i + R_i) + \bar{Q}(d_\theta \theta_{eq,i} + d_{sh} \theta_{s,i}) + dq q_{s,i} - (1 - \bar{Q}) P_i, \\
P_i &= \frac{l - \eta_i}{\tau cl} \left(Z_i + \frac{\alpha + \bar{Q}}{2} (K_i + R_i) - \bar{q} \right)^+, \\
\frac{d}{dh} \mathbb{P}(\eta_i(t + h) = \eta_i + 1|\mathcal{F}_t) &= \frac{l - \eta_i}{\tau I}, \\
\frac{d}{dh} \mathbb{P}(\eta_i(t + h) = \eta_i - 1|\mathcal{F}_t) &= \frac{\eta_i}{\tau I} \exp \left(-2U_0 \frac{\eta_i - 1}{l - 1} + \bar{\gamma}q_i - h_0 \right).
\end{align*}$$
Mathematical setup

- Piecewise deterministic Markov process (PDMP): an ODE $X_t \in \mathbb{R}^d$ coupled with a Markov jump process Y_t in a countable state space F:
 \[
 \begin{cases}
 dX_t = -b(X_t, Y_t)dt \\
 \mathbb{P}(Y_{t+h} = \tilde{y}|Z_t) = \lambda(Z_t, \tilde{y})h + o(h)
 \end{cases}
 \]

 Notation: $Z_t = (X_t, Y_t)$ and $z = (x, y)$. $\bar{\lambda}(z) := \sum_{\tilde{y} \neq y} \lambda(z, \tilde{y})$.

- Piecewise deterministic: given jump times t_i and jump sites y_i
 \[X_t = \Psi^{y_n}_{t-t_n} \circ \Psi^{y_{n-1}}_{t_n-t_{n-1}} \circ \cdots \circ \Psi^{y_0}_{t_1} X_0.\]

- Ideal models for intermittent phenomenon: different dynamical regimes between jump times.
Possible simplifications:

- **Constant rate:** $\lambda(x, y, y') = \lambda(y, y')$, Y_t is a Markov process by itself.
- **Bounded rates:** the total rate $\bar{\lambda}(z) = \sum_{y'} \lambda(z, y')$ is bounded from above (and away from zero).
- **Piecewise contraction:** flow generated by each regime is contracting $|\Psi^y_t x - \Psi^y_t x'| \leq e^{-\gamma t} |x - x'|$, e.g.

 \[
 \langle b(x, y) - b(x', y), x - x' \rangle \leq -\gamma |x - x'|^2.
 \]

Stochastic lattice models: non-constant rates, unbounded rates, piecewise contracting

\[
\begin{align*}
\dot{K}_i + D_x^+ K_i &= (s_i^\theta - \tilde{H} A_i)/2 - \tilde{d} K_i, \\
\dot{R}_i - D_x^- R_i/3 &= (s_i^\theta - \tilde{H} A_i)/3 - \tilde{d} R_i, \\
\dot{Z}_i &= (s_i^\theta - \tilde{H} A_i)(1 - \bar{Q}) - \tilde{d} Z_i, \\
Q_i := Z_i - \bar{Q}(K_i + R_i)
\end{align*}
\]

\[
\begin{align*}
c_a &= \gamma Q_i^+ A_i + 1_{A_i=0}, \\
c_d &= \gamma Q_i^- A_i,
\end{align*}
\]
Possible simplifications:

- **Constant rate:** $\lambda(x, y, y') = \lambda(y, y')$, Y_t is a Markov process by itself.

- **Bounded rates:** the total rate $\bar{\lambda}_t(z) = \sum_{y'} \lambda(z, y')$ is bounded from above (and away from zero).

- **Piecewise contraction:** flow generated by each regime is contracting $|\Psi^y_t x - \Psi^y_t x'| \leq e^{-\gamma t}|x - x'|$, e.g.

 $$\langle b(x, y) - b(x', y), x - x' \rangle \leq -\gamma |x - x'|^2.$$

Stochastic lattice models: non-constant rates, unbounded rates, piecewise contracting

$$\begin{align*}
\dot{K}_i + D^+_x K_i &= \left(s^\theta_i - \bar{H} A_i\right)/2 - \bar{d} K_i, \\
\dot{R}_i - D^-_x R_i/3 &= \left(s^\theta_i - \bar{H} A_i\right)/3 - \bar{d} R_i, \\
\dot{Z}_i &= (s^\theta_i - \bar{H} A_i)(1 - \bar{Q}) - \bar{d} Z_i, \\
Q_i &:= Z_i - \bar{Q}(K_i + R_i)
\end{align*}$$

\begin{align*}
c_a &= \gamma Q_i^+ A_i + 1_{A_i = 0}, \\
c_d &= \gamma Q_i^- A_i.
\end{align*}$$
A stochastic process Z_t is geometrically ergodic, if

$$d(P_t^* \mu, P_t^* \nu) \leq e^{-\gamma t} C_{\mu,\nu}.$$

Indicates uniqueness of invariant measure π, and

$$d(P_t^* \mu, \pi) \leq e^{-\gamma t} C_{\mu,\pi}.$$

Important consequence: Birkhoff ergodic theorem:

$$\frac{1}{t} \int_0^t f(Z_s) ds \xrightarrow{t \to \infty} \int f(z) \pi(dz).$$
Wasserstein distance

Wasserstein-1 distance generated by d:

$$d(\mu, \nu) = \inf \int d(z, z') C_{\mu, \nu}(dz, dz')$$

Coupling: $C_{\mu, \nu}$ has marginal distributions μ and ν.

$$d(P^*_t \mu, P^*_t \nu) = \inf C^{\mu, \nu} d(Z_t, Z'_t).$$
Discrete distance, $d(z, z') = 1_{z \neq z'}$, leads to total variation distance.

$$d(\mu, \nu) = \int |\mu(x) - \nu(x)| dx.$$

Geometric distance, e.g. $d(x, x') = |x - x'|$.

Our distance:

$$d(z, z') = \sqrt{|x - x'|^2 + 1_{y \neq y'}}.$$

Euclidean distance is better for contracting process, e.g.

$$dX_t = -X_t dt.$$
Classical total variation distance (Meyn, Tweedie, Mattingly, Stuart)

- Find a Lyapunov function V with compact sublevel sets,

\[\mathbb{E}V(Z_t) \leq Ce^{-\gamma t}V(Z_0) + K. \]

Absorbing ball property: recurrence to $\{V \leq M\}$.

- Reachability: two processes from two points in $\{V \leq M\}$, can get to the same point with probability bounded from below.
Framework for proving geometric ergodicity

General Wasserstein distance (Hairer, Mattingly, Stuart)

- Find a Lyapunov function V with compact sublevel sets,

$$\mathbb{E} V(Z_t) \leq C e^{-\gamma t} V(Z_0) + K.$$

Absorbing ball property: recurrence to $\{V \leq M\}$.

- Reachability: two processes from two points in $\{V \leq M\}$, can get close with probability bounded from below.

- Asymptotic coupling: points close enough can get closer:

$$d(P_{t_0}^* \delta_z, P_{t_0}^* \delta_{z'}) < \frac{1}{2} d(z, z') \quad \text{if} \quad d(z, z') < \epsilon.$$
Theorem (Majda and T.)

For piecewise contracting processes, it suffices to check the following:

- There is a Lyapunov function $V(x, y)$ that dominates $|x|^2, \bar{\lambda}(x, y)$ and $\partial_x \lambda(x, y, y')$.

- There is a regime y_c that is reachable from other points, i.e. $P^z(Y_t = y_c) > 0$ for a time t.

Then there is geometric ergodicity under the Wasserstein distance generated by

$$d(z, z') = \sqrt{|x - x'|^2 + \mathbb{1}_{y \neq y'}}.$$
Lyapunov function can be obtained from notions of energy

\[E = \sum_{i} \frac{1}{2} \left[2K_i^2 + 3R_i^2 + \frac{(Z_i + 1)^2}{(1 - Q)Q} \right] + \frac{\bar{H}\Delta A\eta_i}{\Gamma Q} + 1. \]

\[
\begin{cases}
\dot{K}_i + D^+_{x} K_i = \left(s_i^\theta - \bar{H} A_i \right)/2 - \bar{d}K_i, \\
\dot{R}_i - D^-_{x} R_i/3 = \left(s_i^\theta - \bar{H} A_i \right)/3 - \bar{d}R_i, \\
\dot{Z}_i = \left(s_i^\theta - \bar{H} A_i \right)(1 - Q) - \bar{d}Z_i, \\
Q_i := Z_i - \bar{Q}(K_i + R_i)
\end{cases}
\]

dissipative energy

\[\mathcal{L}E = \lim_{t \to 0} \frac{1}{t} [\mathbb{E}E_t - \mathbb{E}E_0] \leq -\gamma E + \sum k_v(s_i^\theta) \]

\[\mathbb{E}E_t \leq e^{-\gamma t}E_0 + \gamma^{-1}\left[\sum k_v(s_i^\theta) \right]. \]

In order to dominate all the terms, use \(E^3 \) instead.
Nontrivial exercise to show $A_i \equiv 1$ is reachable.

\[
\begin{align*}
\dot{K}_i + D_x^+ K_i &= (s_i^\theta - \bar{H} A_i)/2 - \bar{d} K_i, \\
\dot{R}_i - D_x^- R_i/3 &= (s_i^\theta - \bar{H} A_i)/3 - \bar{d} R_i, \\
\dot{Z}_i &= (s_i^\theta - \bar{H} A_i)(1 - \bar{Q}) - \bar{d} Z_i, \\
Q_i &= Z_i - \bar{Q}(K_i + R_i)
\end{align*}
\]

In fact, could stuck if $s_i^\theta = \bar{H} A_i$, which is uninteresting.

$\sum s_i^\theta$ not being a multiple of $\bar{H} A_i$ avoids it.

Basic idea:

- For each fixed $y = (A_i)$, investigate its corresponding attractor.
- At attractor we can change some values of A_i to 1.
Theorem (Majda and T.)

For the stochastic skeleton MJO model with $\sum s_i^\theta$ not being a multiple of $\bar{H}A_i$, the model is geometrically ergodic under the distance

$$d(z, z') = \sqrt{|x - x'|^2 + 1_{y \neq y'}}.$$

A similar theorem for the simplest tropical model also exist, but requires additional condition to obtain a Lyapunov function.
Stochastic lattice models as a tool to capture intermittent features.

- They are PDMP with unbounded rates, and in many cases piecewise contracting.
- They are geometrically ergodic under a Wasserstein distance, if there is a dominating Lyapunov function and reachability of one state.
The restrictive piecewise contraction condition can be replaced by a "contraction on average" condition.

Simulation theory of the stochastic lattice model:

- Convergence in finite time:
 \[d(P_T^*\mu, \hat{P}_T^*\mu) = O(\sqrt{\Delta}). \]

- Convergence to the equilibrium measure:
 \[d(\pi, \hat{P}_{nT}^*\mu) \to 0. \]
Geometric Ergodicity for Piecewise Contracting Processes with Applications for Tropical Stochastic Lattice Models, accepted by CPAM, Feb 2015.
Links and slides can be found at www.cims.nyu.edu/~tong.

Thank you!