INTERPRETING WEAK KÖNIG’S LEMMA USING THE ARITHMETIZED COMPLETENESS THEOREM

TIN LOK WONG

Abstract. We present a previously unpublished proof of the conservativity of WKL$_0$ over IΣ$_1$ using the Arithmetized Completeness Theorem, which, in particular, constitutes an ω-interpretation of WKL$_0$ in IΣ$_1$. We also show that WKL$_0^*$ is interpretable in I∆$_0 + \text{exp.}$

IΣ$_1$ and WKL$_0$ are prominent theories in the study of arithmetic and the foundations of mathematics [3, 8]. The intimate connections between these theories can best be seen from a fundamental and influential theorem of Leo Harrington’s which states that every countable model of IΣ$_1$ expands to a model of WKL$_0$. This theorem, in particular, implies WKL$_0$ is conservative over IΣ$_1$.

In this short note, we demonstrate how (several strengthenings due independently to Hájek [2] and Avigad [1] of) Harrington’s theorem can be established simply by putting together a number of standard facts in the literature. While the usual proof of Harrington’s theorem is based on tree forcing [8, Section IX.2], our approach uses instead a version of the Arithmetized Completeness Theorem, which can be proved by a forcing argument in which the conditions are binary strings of bounded lengths.

The notation in this paper is more or less standard. Unless otherwise stated, ‘definable’ means ‘parametrically definable’. We assume familiarity with Hájek–Pudlák [3] and some acquaintance with Simpson [8]. Nevertheless, let us first briefly review some basic definitions and facts.

The language for first-order arithmetic L_1 has symbols 0, 1, $+$, \times, \leq. A bounded quantifier is one of the form $Qx \leq t$, where $Q \in \{\forall, \exists\}$ and t is a term not involving x. An L_1 formula is Δ_0 if all the quantifiers it contains are bounded. Formulas of the form $\exists b \varphi(i, x)$ where $\varphi \in \Delta_0$ are called Σ_1. A formula θ is Δ_1 if, modulo logical equivalence, both θ and $\neg \theta$ are Σ_1. The closure of Σ_1 under Boolean operations and bounded quantification is denoted $\Delta_0(\Sigma_1)$. Axiomatize IΣ$_1$ by the theory of the non-negative parts of discretely ordered rings (commonly referred to as PA$^-$) and the induction scheme for Σ_1 formulas. Define IΔ$_0$ similarly. The theory BΣ$_1$ consists of IΔ$_0$ and the Σ_1 collection scheme, which asserts that

$$\forall z \forall a \left(\forall x \leq a \exists y \varphi(x, y, z) \rightarrow \exists b \forall x \leq a \exists y \leq b \varphi(x, y, z) \right)$$

2010 Mathematics Subject Classification. Primary 03C62, 03F25, 03H15.

Part of this paper was presented at the Logic Colloquium in Vienna, Austria in July 2014.

The author would like to thank Ali Enayat for his encouragements, and for pointing out the connections with interpretations and speed-ups. He is also grateful to Enayat, the anonymous referee, and the editor for suggesting a number of improvements in the presentation of this paper. The author was financially supported by Austrian Science Fund (FWF) project P24654-N25 while this research was carried out.
whenever \(\varphi \in \Sigma_1 \). We denote by \(\exp \) a fixed \(\mathcal{L}_1 \) sentence expressing the totality of \(x \mapsto 2^x \) over \(\Delta_0 \). It is commonly known [3, Sections I.1(c), IV.1(f), and V.1(a)] that \(\Sigma^0_1 = \Sigma^0_1 + \exp \) and \(B \Sigma^1_1 \not\exp \). Within \(\Delta_0 + \exp \), the usual operations on sequences and syntactical objects are well behaved [3, Section V.3].

The language for second-order arithmetic \(\mathcal{L}^\Pi \) has a first-order sort for numbers and a second-order sort for sets of numbers. We write \(L \) for \(\mathcal{L}^\Pi \) sequences and syntactical objects are well behaved [3, Section V.3].

Pairs \((a, b)\) are \(\Sigma^0_1 \)-definable in \(\mathcal{L}^\Pi \). The language \(\mathcal{L}_1 \) has a copy of \(\mathcal{L}_1 \) on the first-order sort, and a membership relation linking the two sorts. All \(\mathcal{L}^\Pi \) structures are required to satisfy the axiom of extensionality. The definitions of \(\Sigma^0_0, \Sigma^0_1, \Delta^0_1, \Pi^0_0, \Pi^0_1, \ldots \) are analogous to those of \(\Delta_0, \Sigma_1, \Delta_1, \Pi_0, \Pi_1, \ldots \), except that we now allow the appearance of second-order variables. Weak König’s Lemma asserts that every unbounded \(0 \)-tree has an unbounded branch. The theory \(WKL^*_0 \) consists of \(\Sigma^0_1 + \exp \), the \(\Delta^0_1 \) comprehension scheme, and Weak König’s Lemma. Define \(\text{WKL}_0 = WKL^*_0 + \Sigma^0_1 \). The following theorem shows that \(\text{WKL}_0 \) is conservative over \(\Sigma_1 \), i.e., every \(\mathcal{L}_1 \) sentence provable in \(\text{WKL}_0 \) is already provable in \(\Sigma_1 \).

Theorem 1 (Hájek, Avigad). Every \(M \models \Sigma_1 \) expands to \((M, \mathcal{X}) \models \text{WKL}_0 \).

Proof. First, it is well known [3, Corollary I.4.34(2)] that \(\Sigma_1 \) proves the consistency of \(\Delta_0 + \exp \). Second, the Low Arithmetized Completeness Theorem in Hájek–Pudlák [3, Theorem I.4.27] tells us that, provably in \(\Sigma_1 \), every \(\Delta_1 \)-definable consistent theory has a definable model all of whose \(\Sigma^1_1 \) properties are \(\Delta_0(\Sigma_1) \)-definable. These two facts together yield \(K \models \Delta_0 + \exp \) properly extending \(M \) such that whenever \(\bar{e} \in K \) and \(\theta \) is an \(\mathcal{L}_1 \) formula,

\[
\{ \bar{x} \in M : K \models \theta(\bar{v}, \bar{x}, \bar{c}) \text{ for some } \bar{v} \in M \} \text{ is } \Delta_0(\Sigma_1) \text{-definable in } M.
\]

As is usual in Arithmetized Completeness Theorem constructions (for example, that in Paris [6, page 254]), the embedding \(M \to K \) hinges on the observation that every \(a \in M \) is represented by a term \(\bar{a} \) in \(\mathcal{L}_1 \). The image of this embedding is closed downwards because \(\Delta_0 + \exp \vdash \forall \bar{x} \leq \bar{a} \bigwedge_{i \leq a} x = i \) for all \(a \), provably in \(\Sigma_1 \).

Let us say that an element \(c \in K \) codes a subset \(A \subseteq M \) if

\[
A = \{ i \in M : \text{ith digit in the binary expansion of } c \text{ is } 1 \}.
\]

Denote the collection of all subsets of \(M \) coded in \(K \) by \(\text{Cod}(K/M) \). A standard overspill argument [9, Theorem 4.8] shows \((M, \text{Cod}(K/M)) \models \text{WKL}^*_0 \). For the sake of completeness, we include a sketch of this argument here. Consider \(\Delta^1_0 \) comprehension. If \(A \subseteq M \) that is \(\Delta^1_0 \)-definable in \((M, \text{Cod}(K/M)) \), then its \(\Delta^1_0 \)-ness overspills into \(K \setminus M \), producing a bound which enables \(K \) to see \(A \) in a \(\Delta_0 \) way. Bounded \(\Delta_0 \) comprehension, available in \(K \) from \(\Delta_0 + \exp \), then gives what we want. Next, if \(B \) is an unbounded \(0 \)-tree in \((M, \text{Cod}(K/M)) \), then its code contains a node whose length is in \(K \setminus M \) by overspill, and the predecessors of such a node trace an unbounded branch in \(B \). This shows Weak König’s Lemma in \((M, \text{Cod}(K/M)) \).

It remains to prove \((M, \text{Cod}(K/M)) \models \Sigma^1_1 \). Notice for each \(\varphi \in \Sigma^0_0 \), we can find \(\psi \in \Delta_0 \), simply by replacing set parameters by their codes, such that if \(A \in \text{Cod}(K/M) \) coded by \(\bar{c} \in K \), then for all \(\bar{x} \in M \),

\[
(M, \text{Cod}(K/M)) \models \varphi(\bar{x}, \bar{A}) \iff K \models \psi(\bar{x}, \bar{c}).
\]
Hence, every Σ^0_1 property of $(M, \text{Cod}(K/M))$ translates to a $\Delta^0_0(\Sigma_1)$ property of M by (\ast). Since Σ_1 proves the induction scheme for $\Delta^0_0(\Sigma_1)$ formulas [3, Lemma I.2.14], this implies $(M, \text{Cod}(K/M)) \models \Sigma^0_1$, as required. □

A similar proof was independently discovered by F. Félix Lara-Martín [personal communication]. It solves the second part of Problem 1 in Paris [6]. Analogous arguments for higher levels of the arithmetic hierarchy can be found in Paris’s paper. The original proofs by Hájek and Avigad both go via an ω-interpretation of WKL$_0$ in Σ_1. The reader may consult Section III.1(a) of Hájek–Pudlák [3] for background information about interpretations.

Definition. An interpretation of an \mathcal{L}_I theory in an \mathcal{L}_I theory is an ω-interpretation if its restriction to the first-order sort is the identity interpretation.

Essentially, an ω-interpretation of an \mathcal{L}_I theory T in an \mathcal{L}_I theory T_0 is a uniform recipe for expanding every $M \models T_0$ to $(M, X) \models T$. Hájek’s ω-interpretation [2, Section 3] employs a notion of ‘very low’ sets with respect to which Weak König’s Lemma is true. Avigad’s ω-interpretation [1] involves a formalization of the usual forcing proof. While the former of these is slightly cleaner, the latter has the advantage of being applicable also to general models $(M, X) \models \Sigma^0_1$, not only the ones in which X is finite. Upon closer inspection, one sees that our proof is uniform enough to give rise to an ω-interpretation too. Notice our ω-interpretation, unlike theirs, is iteration-free.

Theorem 2 (Hájek, Avigad). There is an ω-interpretation of WKL$_0$ in Σ_1.

Proof. By looking into the proof of the Low Arithmetized Completeness Theorem, the reader can verify that the definition (of the elementary diagram) of K in our proof of Theorem 1 does not depend on M. Since every element of K codes a set in $\text{Cod}(K/M)$, we can use the definition of K as the interpretation of the second-order sort. The membership relation is interpreted accordingly. (We do not have a choice on how the other symbols are interpreted.) □

As shown by Simpson and Smith [9, Theorem 4.6], an analogue of Theorem 1 holds at the $\mathcal{B}_I + \text{exp}$ level: every countable model $M \models \mathcal{B}_I + \text{exp}$ expands to $(M, X) \models \text{WKL}_0$. It is not known whether the countability condition can be omitted here. In particular, it is not known whether there is an ω-interpretation of WKL$_0^*$ in $\mathcal{B}_I + \text{exp}$. What we can prove here is that WKL$_0^*$ is interpretable in $\mathcal{B}_I + \text{exp}$. Since $\mathcal{B}_I + \text{exp}$ is interpretable in $\mathcal{I}_0 + \text{exp}$ [2, Theorem 2.4], this is equivalent to interpretability in $\mathcal{I}_0 + \text{exp}$. It answers Question (5) in Hájek [2].

Corollary 3. There is an interpretation of WKL$_0^*$ in $\mathcal{I}_0 + \text{exp}$.

Proof. We only describe how to make a model of WKL$_0^*$ from a model of $\mathcal{I}_0 + \text{exp}$. Modulo the finite axiomatizability of \mathcal{I}_0 [3, Theorem I.2.52], it is straightforward to check that this description gives rise to an interpretation.

Take any $M \models \mathcal{I}_0 + \text{exp}$. If $M \models \mathcal{I}_0$, then apply Theorem 2. Suppose $M \not\models \mathcal{I}_0$. Follow Kołodziejczyk–Yokoyama [5, Lemma 9] to find a parameter-free Σ_1-definable proper cut I of M that is closed under $x \mapsto 2^x$. Then $(I, \text{Cod}(M/I)) \models \text{WKL}_0^*$ as in our proof of Theorem 1. This is the model we want. □
Having known the conservativity of a stronger theory T over a weaker theory T_0, the natural question is then whether T helps make proofs of theorems of T_0 significantly shorter. Ignjatovic [4, Chapter 3] observed that ω-interpretations can be utilized to obtain negative answers to such questions.

Definition. Let T_0 be (an axiomatization of) a theory, and T be an extension of T_0, possibly in a bigger language. We say T has at most polynomial speed-up over T_0 if there exists $n \in \mathbb{N}$ such that for every proof from T with ℓ symbols of a theorem of T_0, there exists a proof from T_0 with at most $\ell^n + n$ symbols of the same conclusion.

It does not matter whether we mean sequence-proofs or tree-proofs here because these two notions are polynomially related to each other [7, Theorem 4.1]. With sequence-proofs in mind, it is easy to see that for every finitely axiomatized L_1-theory T, if one has an ω-interpretation of T in an L_1 theory T_0, then T has at most polynomial speed-up over T_0.

Corollary 4 (Hájek, Avigad). WKL$_0$ has at most polynomial speed-up over IΣ$_1$.

Proof. Since WKL$_0$ is finitely axiomatizable [8, Lemma VIII.2.10], this follows directly from Theorem 2. □

We do not know whether WKL$_0^*$ has at most polynomial speed-up over I∆$_0$ + exp.

References

4. Aleksandar Džordje Ignjatovic, Fragments of first and second-order arithmetic and length of proofs, ProQuest LLC, Ann Arbor, MI, 1990, Thesis (Ph.D.)–University of California, Berkeley. MR 2685328

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Austria
E-mail address: tin.lok.wong@univie.ac.at