Cuts closed under a specified family of functions

Tin Lok Wong

Ghent University, Belgium

23 September, 2012

*My current appointment is funded by the John Templeton Foundation.
Main theme

In a model of arithmetic, control under which functions an initial segment is closed.

Plan of talk

- Nonstandard models of arithmetic
- Closing under a function
- Avoiding closing under a function
- Reflections
Nonstandard arithmetic

- The **language for arithmetic** is \(\{0, 1, +, \times, <\} \).
- **Peano arithmetic (PA)** consists of the axioms for *discretely ordered semirings*, and the *induction axiom*

\[
\theta(0) \land \forall x (\theta(x) \rightarrow \theta(x + 1)) \rightarrow \forall x \theta(x)
\]

for each formula \(\theta(x) \).
- A **nonstandard** model of PA is a model not isomorphic to \(\omega \).
- Skolem (1934) showed that nonstandard models exist.
Fix a nonstandard model $M \models \text{PA}$.

Definition
A *cut* of M is a nonempty proper initial segment of M that is closed under $x \mapsto x + 1$.

Example
ω is the *standard cut* of M.

Definition
An element $a \in M$ is *nonstandard* if $a > \omega$.
Closing under definable functions

Definition
A function \(F : M \to M \) is \textit{definable} if
there is a formula \(\chi(x, y, z) \) and \(c \in M \) such that
\[
F(x) = y \iff M \models \chi(x, y, c)
\]
for all \(x, y \in M \).

Problem
How do we make cuts that are closed under a definable function \(F \)?

Assumption
All our functions \(F \) satisfy \(x \leq F(x) \leq F(x + 1) \) for all \(x \in M \).
Constructing a cut that is closed under \times

- Pick any nonstandard $a \in M$.
- Let $a^\omega = \sup\{a^k : k \in \omega\}$.
- Then a^ω is closed under \times.
- Notice a^ω is *not* closed under $x \mapsto x^x$.
Primitive recursive functions

Definition (Grzegorczyk)
Set
\[G_0(x) = x + 1, \]
\[G_{k+1}(x) = G_k^{(x)}(x) \quad \text{for all} \; k, x. \]

Fact
There is a formula \(\chi(k, x, y) \) representing \(G_k(x) = y \).

Constructing a cut that is closed under the \(G_k \)'s

- Pick any nonstandard \(a \in M \).
- Let \(G_\omega(a) = \sup\{G_k(a) : k \in \omega\} \).
- Then \(G_\omega(a) \) is closed under \(G_k \) for all \(k \in \omega \).
- Notice \(G_\omega(a) \) is not closed under \(x \mapsto G_x(x) \).
Question (informal)
Is $G_\omega(a)$ closed under any function “other than” the G_k’s?

Definition
Let $F, G : M \to M$ and I be a cut. Then F dominates G on I if $F(x) \geq G(x)$ for all large enough $x \in I$.

Question (formal)
Is there a definable $F : M \to M$ under which $G_\omega(a)$ is closed that dominates G_k on $G_\omega(a)$ for every $k \in \omega$?

Answer
Yes!
Diagonalization

\[F(x) = G_{d(x)}(x) \]

\[\begin{align*}
G_0(a) & \\
G_1(a) & \\
G_2(a) & \\
G_3(a) & \\
G_4(a) & \\
\cdots & \\
\end{align*} \]
What we know about $I = G_\omega(a)$

Summary

- I is the smallest cut that contains a and is closed under G_k for all $k \in \omega$.
- There exists a definable function $F: M \to M$ under which I is closed but dominates G_k on I for every $k \in \omega$.

Fact

The following are equivalent for a definable function $F: M \to M$.

- I is closed under F.
- F is dominated on I by $x \mapsto G_d(x)(x)$ for some definable function $d: M \to M$ that satisfies $d(I) = \omega$.
Closing exclusively

Definition
A cut I is closed *exclusively* under the G_k's if
- I is closed under G_k for every $k \in \omega$, and
- every definable function under which I is closed is dominated by G_k on I for some $k \in \omega$.

Question
Are there cuts that are closed exclusively under the G_k's?

Answer
Yes, at least when M is countable.
A cut I that is closed exclusively under the G_k’s

Search I in a countable nonstandard $M \models \text{PA}$

Consider a definable $F : M \rightarrow M$.

- Suppose I is to live between $a, b \in M$.
- We need $a \ll b$, i.e., $G_k(a) < b$ for all $k \in \omega$.

(a) Suppose $u \ll F(u)$ for some $u \in [a, b]$.

Then let I live between such u and $F(u)$.

(b) Suppose $u \not\ll F(u)$ for all $u \in [a, b]$.

Then $\max \{(\min k)(G_k(u) > F(u)) : u \in [a, b]\} \in \omega$.

So F is dominated by G_k on I for some $k \in \omega$.

Repeat with another definable function F' inside $[a', b']$.

Theorem

Every countable nonstandard model of PA contains continuum many cuts that are closed exclusively under the G_k’s.
Existentially closed models

- Existentially closed models are a counterpart of algebraically closed fields in model theory.
- They are models that satisfy a maximal number of \exists formulas.
- “A cut I not being closed under a function F” is existential:

 $$\exists x \in I \ \exists y > I \ y = F(x).$$

Theorem

A cut I of M is closed exclusively under the G_k’s if and only if (M, I) is an existentially closed model of the theory

$$\text{PA} + \{I \text{ is a cut}\}$$
$$+ \{\forall x \in I \ \exists y \in I \ y = G_k(x) : k \in \omega\}.$$
Recall \(a \ll b \) means \(G_k(a) < b \) for all \(k \in \omega \).

We interpret \(a \ll b \) as “[\(a, b \] is large”.

Let \(I \) be a cut that is closed exclusively under the \(G_k \)’s.

Then \(M \) is homogeneous at \(I \), in the sense that every formula \(\theta \) that is satisfied arbitrarily close to \(I \) is satisfied densely in a neighbourhood of \(I \) with respect to \(\ll \).

Question

Can the model \(M \) be homogeneous in a larger region?

Answer (Kaye, W)

Yes, when \(M \) is countable arithmetically saturated.
Conclusion

What we saw

- There is a smallest cut $G_\omega(a)$ that contains a given $a \in M$ and is closed under a given definable family $(G_k)_{k \in \omega}$ of functions.
- This $G_\omega(a)$ is not closed exclusively under the G_k’s.
- There exist cuts that are closed exclusively under the G_k’s.
- This property is equivalent to being existentially closed.

Future work

- Automorphism group
- Independence results