Brunnian Braids and the Homotopy Groups (Jie Wu)

Let M be a manifold and let

 $F(M,n) = \{(x_1, x_2, \dots, x_n) \in M \times M \times \dots \times M \mid x_i \neq x_j \text{ for } i \neq j\}$

be the ordered configuration space. The symmetric group S_n acts on F(M, n) by permuting coordinates. The unordered configuration space B(M, n) is defined to be the quotient of F(M, n) by the action of S_n . The braid group $B_n(M)$ of n strings over M is defined to be the fundamental group of B(M, n). When $M = D^2$ is the disk, then $B_n(D^2)$ is the classical Artin braid group.

An intuitive description of $B_n(M)$ is as follows. Let β be an element in $B_n(M)$ represented by a loop λ in B(M, n). Since $F(M, n) \to B(M, n)$ is a covering, the loop λ admits a unique path lifting $\tilde{\lambda}$ to F(M, n). More precisely, let (q_1, q_2, \ldots, q_n) be a base point in F(M, n), that is, q_1, q_2, \ldots, q_n are n distinguished points in M. Then $\tilde{\lambda}$ is a path in F(M, n) staring with (q_1, q_2, \ldots, q_n) and ending with a permutation $(q_{l_1}, q_{l_2}, \ldots, q_{l_n})$. From the path $\tilde{\lambda} : [0, 1] \to F(M, n), t \mapsto (\lambda_1(t), \lambda_2(t), \ldots, \lambda_n(t)),$ we obtain n paths $\lambda_1, \ldots, \lambda_n : [0, 1] \to M$ with the property that $\lambda_i(t) \neq \lambda_j(t)$ for $i \neq j$ and $0 \leq t \leq 1$. In other words, we obtain n strings $\lambda_1, \ldots, \lambda_n$ in the cylinder $M \times [0, 1]$ from the points q_1, \ldots, q_n to q_{l_1}, \ldots, q_{l_n} , respectively.

A braid $\beta \in B_n(M)$ is called *Brunnian* if β becomes trivial when we remove ANY one of its strings. Let $Br_n(M)$ be the set of Brunnian braids of n strings over M. Then $Br_n(M)$ is a group under composition of strings.

Let $j: D^2 \to S^2$ be the canonical inclusion of the disk into the sphere, that is, j is the homeomorphism of the disk onto the upper hemisphere. Then j induces a group homomorphism $j_*: \operatorname{Br}_n(D^2) \to \operatorname{Br}_n(S^2)$.

Problem: Determine the cokernel of j_* : $\operatorname{Br}_n(D^2) \to \operatorname{Br}_n(S^2)$. In other words, determine the Brunnian braids in the cylinder $S^2 \times I$ modulo the Brunnian braids in the sub-cylinder $D^2 \times I \subseteq S^2 \times I$.

Note. 1. The image of $j_* \colon \operatorname{Br}_n(D^2) \to \operatorname{Br}_n(S^2)$ is a normal subgroup.

2. If $n \ge 5$, the cokernel of j_* : $\operatorname{Br}_n(D^2) \to \operatorname{Br}_n(S^2)$ is isomorphic to the homotopy group $\pi_{n-1}(S^3)$. This explains why the answer of above problem will be extremely interesting in homotopy theory. This also explains that the above problem might be very hard.

3. The kernel of $j_*: \operatorname{Br}_n(D^2) \to \operatorname{Br}_n(S^2)$ is isomorphic to $\operatorname{Br}_{n+1}(S^2)$ for $n \ge 5$.

1