1. Find the interval of convergence of each of the following power series:

 i) \[\sum_{n=1}^{\infty} \frac{(-2x)^n}{n^3}. \]

 ii) \[\sum_{n=1}^{\infty} \frac{3^n (x-2)^n}{n+1}. \]

 iii) \[\sum_{n=1}^{\infty} \frac{(1-3x)^n}{n}. \]

2. (a) By computing derivatives, find the Taylor series of \(f(x) = e^{2x} \) at \(x = 4 \). Write down also the Taylor polynomial \(T_3(f, 4) \).

 (b) Using the standard power series, find the Taylor series of the following functions at the indicated points:

 (i) \(f(x) = \sin^2(4x), \quad x_0 = 0 \),

 (ii) \(f(x) = \frac{1}{(x+1)(2x+1)}, \quad x_0 = 1 \). (Hint: Use partial fractions)

3. (i) By integrating from \(t = 0 \) to \(t = x \) the power series \(\frac{1}{1+t} = \sum_{n=0}^{\infty} (-1)^n t^n, \quad |t| < 1 \), show that

 \[\ln(1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^n+1 x^n}{n} \]

 for all \(|x| < 1 \).

 (ii) Use part (i) to find the Taylor series of \(\ln(1 + 2x^2) \) at \(x_0 = 0 \).

4. Use Taylor’s Theorem to show that

 \[\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \quad \text{for all} \ x \in \mathbb{R}. \]

5. Use the method of power series and the alternating series estimation to estimate the integral’s value

 \[\int_{0}^{0.2} \sin(x^2)dx. \]

 with an error of magnitude less than \(10^{-8} \).