Foulkes Conjecture in Representation Theory and its relations in Rational Homotopy Theory (Jie Wu)

Let Σ_n be the symmetric group and let F be a field. Let $(\xi^m)^k = F \otimes_{\Sigma_m \wr \Sigma_k} F(\Sigma_{km})$, where $\Sigma_m \wr \Sigma_k$ is the wreath product. Let $\{\alpha^{\lambda}\}$ be the set of irreducible Σ_{km} -module.

Foulkes Conjecture: Let k < m. Suppose that F is of characteristic 0. Then

$$\dim(\operatorname{Hom}_{\Sigma_{km}}((\xi^k)^m, \alpha^{\lambda})) \leq \dim(\operatorname{Hom}_{\Sigma_{km}}((\xi^m)^k, \alpha^{\lambda}))$$

for any λ .

Note: The following statements are equivalent:

- 1) Foulkes Conjecture.
- 2) Let k < m and let F be of characteristic zero. Then $(\xi^k)^m$ is isomorphic to a submodule of $(\xi^m)^k$.
- 3) Let k < m and let F be of characteristic zero. Then $(\xi^k)^m$ is an Σ_{km} -summand of $(\xi^m)^k$.
- 4) Let k < m and let F be of characteristic zero. Then $(\xi^k)^m$ is isomorphic to a quotient Σ_{km} -module of $(\xi^m)^k$.
- 5) Let k < m and let F be of characteristic zero. Then $\Lambda_m(\Lambda_k(V))$ is a **functorial** summand of $\Lambda_k(\Lambda_m(V))$ for any vector space V, where $\Lambda_n(V)$ is the set of free homogeneous polynomial of degree n generated by V.
- 6) Let k < m and let F be of characteristic zero. Then $\Lambda_m(\Lambda_k(V))$ is a **functorial** quotient of $\Lambda_k(\Lambda_m(V))$ for any vector space V.
- 7) Let k < m and let F be of characteristic zero. Then there is a **functorial** monomorphism from $\Lambda_m(\Lambda_k(V))$ to $\Lambda_k(\Lambda_m(V))$ for any vector space V.
- 8) Let k < m and let X runs over all suspension spaces. Then $\operatorname{Sp}^m(\operatorname{Sp}^k(X))$ is a **functorial rational** retract of $\operatorname{Sp}^k(\operatorname{Sp}^m(X))$ for any suspension X, where $\operatorname{Sp}^n(X)$ is the **reduced symmetric product** of X.

By rational representation theory of symmetric groups, statements 1-4 are equivalent each other.

Statements 5-7 follow from statements 1-4 because

$$\Lambda_m(\Lambda_k(V)) = (\xi^k)^m \otimes_{\Sigma_{km}} V^{\otimes km}$$

for any k, m, V, where Σ_n acts on $V^{\otimes n}$ by permuting factors.

Statements 1-4 follow from statements 5-7 by choosing V to be the km-dimensional vector space with a basis x_1, \dots, x_{km} . Notice that $(\xi^k)^m$ is isomorphic to the submodule $\Lambda_m(\Lambda_k(V))$ generated by the monomials $x_{\sigma_1}x_{\sigma_2}\cdots x_{\sigma_{km}}$ for $\sigma \in \Sigma_{km}$.

Statement 8 follows from statements 1-7 by using geometric realization. Statements 1-7 follow from statement 8 by taking homology.