Simplicial Objects

Jie Wu

Department of Mathematics
National University of Singapore

December 20-23, 2007, Fudan University
Simplicial Objects and Homotopy Groups

Δ-Objects and Homology

Simplicial Sets and Homotopy

Simplicial Groups

Braids and Homotopy Groups
Definitions

- A **Δ-set** means a sequence of sets $X = \{X_n\}_{n \geq 0}$ with faces $d_i : X_n \to X_{n-1}$, $0 \leq i \leq n$, such that

$$d_i d_j = d_j d_{i+1} \quad (1)$$

for $i \geq j$, which is called the **Δ-identity**.

- One can use coordinate projections for catching Δ-identity:

$$d_i : (x_0, \ldots, x_n) \longrightarrow (x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

- A **Δ-map** $f : X \to Y$ means a sequence of functions $f : X_n \to Y_n$

for each $n \geq 0$ such that $f \circ d_i = d_i \circ f$.

- A Δ-set $G = \{G_n\}_{n \geq 0}$ is called a **Δ-group** if each G_n is a group, and each face d_i is a group homomorphism.
Δ-set is a contravariant functor

- Let \mathcal{O}^+ be the category whose objects are finite ordered sets and whose morphisms are functions $f : X \to Y$ such that $f(x) < f(y)$ if $x < y$.
- The objects in \mathcal{O}^+ are given by $[n] = \{0, 1, \ldots, n\}$ for $n \geq 0$ and the morphisms in \mathcal{O}^+ are generated by $d^i : [n - 1] \to [n]$ the ordered embedding missing i.
- **Proposition.** Let S denote the category of sets. Δ-sets are one-to-one correspondent to contravariant functors from \mathcal{O}^+ to S.
- a Δ-group means a contravariant functor from \mathcal{O}^+ to the category of groups.
- More abstractly, for any category \mathcal{C}, a Δ-object over \mathcal{C} means a contravariant functor from \mathcal{O}^+ to \mathcal{C}. In other words, a Δ-object over \mathcal{C} means a sequence of objects over \mathcal{C}, $X = \{X_n\}_{n \geq 0}$ with faces $d_i : X_n \to X_{n-1}$ as morphisms in \mathcal{C}.
Example of Δ-sets

- The n-simplex $\Delta^+[n]$, as a Δ-set, is as follows:

 $$\Delta^+[n]_k = \{(i_0, i_1, \ldots, i_k) \mid 0 \leq i_0 < i_1 < \cdots < i_k \leq n\}$$

 for $k \leq n$ and $\Delta^+[n]_k = \emptyset$ for $k > n$. The face $d_j: \Delta^+[n]_k \to \Delta^+[n]_{k-1}$ is given by

 $$d_j(i_0, i_1, \ldots, i_k) = (i_0, i_1, \ldots, \hat{i}_j, \ldots, i_k),$$

 that is deleting i_j. Let $\sigma_n = (0, 1, \ldots, n)$. Then any elements in $\Delta[n]$ can be written an iterated face of σ_n.

- **Proposition.** Let X be a Δ-set and let $x \in X_n$ be an element. Then there exists a unique Δ-map, called the **representing map** of x,

 $$f_x: \Delta^+[n] \to X$$

 such that $f_x(\sigma_n) = x$.
Abstract Simplicial Complexes

• An **abstract simplicial complex** \(K \) is a collection of finite nonempty sets, such that if \(A \) is an element in \(K \), so is every nonempty subset of \(A \).

• The element \(A \) of \(K \) is called a **simplex** of \(K \); its **dimension** is one less than the number of its elements. Each nonempty subset of \(A \) is called a **face** of \(A \).

• Let \(K \) be an abstract simplicial complex with vertices ordered. Let \(K_n \) be the set of \(n \)-simplices of \(K \). Define the faces \(d_i: K_n \rightarrow K_{n-1}, \quad 0 \leq i \leq n \), as follows. If \(\{a^0, a^1, \ldots, a^n\} \) is an \(n \)-simplex of \(K \) with \(a^0 < a^1 < \cdots < a^n \), then define

\[
d_i\{a^0, a^1, \ldots, a^n\} = \{a^0, a^1, \ldots, a^{i-1}, a^{i+1}, \ldots, a^n\}.
\]

• **Proposition.** Let \(K^\Delta = \{K_n\}_{n \geq 0} \) with faces defined as above. Then \(K^\Delta \) is a \(\Delta \)-set.
Polyhedral

- A Δ-set X is called **polyhedral** if there exists an abstract simplicial complex \mathcal{K} such that $X \cong \mathcal{K}^\Delta$.

- **Exercise** In general, a Δ-set may not be polyhedral. Let $X = \Delta^+[1] \cup_{\Delta^+[1]} \Delta^+[1]$ be the union of two copies of $\Delta^+[1]$ by identifying the vertices. Show that X is not polyhedral.

- Let X be a Δ-set and let 2^{X_0} be the set of all subsets of X_0. Define

$$
\phi: \bigsqcup_{n \geq 0} X_n \longrightarrow 2^{X_0}
$$

by setting $\phi(x) = \{f_x(0), f_x(1), \ldots, f_x(n)\}$ for $x \in X_n$.

- **Theorem.** Let X be a Δ-set. Then X is polyhedral if and only if the following holds:

1. There exists an order of X_0 such that, for each $x \in X_n$,

$$
f_x(0) \leq f_x(1) \leq \cdots \leq f_x(n).
$$

2. The function $\phi: \bigcup_{n \geq 0} X_n \longrightarrow 2^{X_0}$ is one-to-one.
\(\Delta\)-complex

- The standard **geometric** \(n\)-simplex \(\Delta^n\) is defined by
\[
\Delta^n = \{ (t_0, t_1, \ldots, t_n) \mid t_i \geq 0 \text{ and } \sum_{i=0}^{n} t_i = 1 \}.
\]

Define \(d^i : \Delta^{n-1} \to \Delta^n\) by setting
\[
d^i(t_0, t_1, \ldots, t_{n-1}) = (t_0, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n-1}).
\]

- A **\(\Delta\)-complex structure** on a space \(X\) is a collection of maps
\[
\mathcal{C}(X) = \{ \sigma_\alpha : \Delta^n \to X \mid \alpha \in J_n \ n \geq 0 \}.
\]
such that

1. \(\sigma_\alpha|_{\text{Int}(\Delta^n)} : \text{Int}(\Delta^n) \to X\) is injective, and each point of \(X\) is in the image of exactly one such restriction \(\sigma_\alpha|_{\text{Int}(\Delta^n)}\).

2. For each \(\sigma_\alpha \in \mathcal{C}(X)\), each face
\[
\sigma_\alpha \circ d^i \in \mathcal{C}(X).
\]

3. A set \(A \subseteq X\) is open if and only if \(\sigma_\alpha^{-1}(A)\) is open in \(\Delta^n\) for each \(\sigma_\alpha \in \mathcal{C}(X)\).
Δ-set from Δ-complex

- Let X be a $Δ$-complex. Define

 $$C_n^Δ(X) = \{\sigma_\alpha : \Delta^n \to X \mid \alpha \in J_n\} \subseteq C(X)$$

 with $d_i : C_n^Δ(X) \to C_{n-1}^Δ(X)$ given by

 $$d_i(\sigma_\alpha) = \sigma_\alpha \circ d^i$$

 for $0 \leq i \leq n$.

- $C^Δ(\Delta) = \{C_n^Δ(\Delta)\}_{n \geq 0}$ is a $Δ$-set.
Geometric Realization of Δ-sets

- Let K be a Δ-set. The **geometric realization** $|K|$ of K is defined to be

$$|K| = \bigsqcup_{x \in K_n, n \geq 0} (\Delta^n, x) / \sim = \bigsqcup_{n=0}^\infty \Delta^n \times K_n / \sim,$$

where (Δ^n, x) is Δ^n labeled by $x \in K_n$ and \sim is generated by $(z, d_i x) \sim (d^i z, x)$ for any $x \in K_n$ and $z \in \Delta^{n-1}$ labeled by $d_i x$.

- For any $x \in K_n$, let $\sigma_x : \Delta^n = (\Delta^n, x) \to |K|$ be the canonical characteristic map. The topology on K is defined by $A \subseteq |K|$ is open if and only if the pre-image $\sigma_x^{-1}(A)$ is open in Δ^n for any $x \in K_n$ and $n \geq 0$.

- **Proposition.** Let K be a Δ-set. Then $|K|$ is Δ-complex.
Homology of Δ-sets

- A chain complex of groups means a sequence $C = \{C_n\}$ of groups with differential $\partial_n: C_n \to C_{n-1}$ such that $\partial_n \circ \partial_{n+1}$ is trivial, that is $\text{Im}(\partial_{n+1}) \subseteq \text{Ker}(\partial_n)$ and so the homology is defined by
 $$H_n(C) = \text{Ker}(\partial_n)/\text{Im}(\partial_{n+1}),$$
 which is a coset in general.

- **Proposition.** Let G be a Δ-abelian group. Define
 $$\partial_n = \sum_{i=0}^{n} (-1)^i d_i: G_n \to G_{n-1}.$$
 Then $\partial_{n-1} \circ \partial_n = 0$, that is, G is a chain complex under ∂_*.

- Let X be a Δ-set. The homology $H_*(X; G)$ of X with coefficients in an abelian group G is defined by
 $$H_*(X; G) = H_*(\mathbb{Z}(X) \otimes G, \partial_*),$$
 where $\mathbb{Z}(X) = \{\mathbb{Z}(X_n)\}_{n \geq 0}$ and $\mathbb{Z}(X_n)$ is the free abelian group generated by X_n.
Simplicial and Singular Homology

• Let X be a Δ-complex. Then **simplicial homology** of X with coefficients in an abelian group G is defined by

$$H^\Delta_*(X; G) = H_*(C^\Delta_*(X); G).$$

• For any space X, define

$$S_n(X) = \text{Map}(\Delta^n, X)$$

be the set of all continuous maps from Δ^n to X with

$$d_i = d^{i*} : S_n(X) = \text{Map}(\Delta^n, X) \longrightarrow S_{n-1}(X) = \text{Map}(\Delta^{n-1}, X).$$

for $0 \leq i \leq n$. Then $S_*(X) = \{S_n(X)\}_{n \geq 0}$ is a Δ-set. The **singular homology** $H_*(X; G) = H_*(S_*(X); G).$
Definition

- **A simplicial set** means a Δ-set X together with a collection of **degeneracies** $s_i : X_n \to X_{n+1}$, $0 \leq i \leq n$, such that

 $$d_j d_i = d_{i-1} d_j$$ \hspace{1cm} (2)

 for $j < i$,

 $$s_j s_i = s_{i+1} s_j$$ \hspace{1cm} (3)

 for $j \leq i$ and

 $$d_j s_i = \begin{cases}
 s_{i-1} d_j & j < i \\
 \text{id} & j = i, i+1 \\
 s_i d_{j-1} & j > i+1.
 \end{cases}$$ \hspace{1cm} (4)

 The three identities for $d_i d_j$, $s_j s_i$ and $d_i s_j$ are called the **simplicial identities**.

- **A simplicial map** f means a sequence of functions $f : X_n \to Y_n$ such that $d_i f = f d_i$ and $s_i f = f s_i$.

- One can use **deleting-doubling coordinates** for catching simplicial identities.
Simplicial Set is a Functor

• Let \mathcal{O} be the category: objects: finite ordered sets; morphisms: functions $f : X \to Y$ such that $f(x) \leq f(y)$ if $x < y$. The objects in \mathcal{O} are $[n] = \{0, \ldots, n\}$ for $n \geq 0$, same as the objects in \mathcal{O}^+. The morphisms in \mathcal{O} are generated by d^i, which is defined in \mathcal{O}^+, and the following morphism $s^i : [n + 1] \to [n]

\[
s^i = \begin{pmatrix}
0 & 1 & \cdots & i - 1 & i & i + 1 & i + 2 & \cdots & n + 1 \\
0 & 1 & \cdots & i - 1 & i & i & i + 1 & \cdots & n
\end{pmatrix}
\]

for $0 \leq i \leq n$, that is, s^i hits i twice.

• Exercise. simplicial sets are one-to-one correspondent to contravariant functors from \mathcal{O} to \mathcal{S}.

• Let \mathcal{C} be a category. A simplicial object over \mathcal{C} means a contravariant functor from \mathcal{O} to \mathcal{C}, i.e. a sequence of objects $X = \{X_n\}_{n \geq 0}$ with face morphisms $d_i : X_n \to X_{n-1}$ and degeneracy morphisms $s_i : X_n \to X_{n+1}$, $0 \leq i \leq n$, such that the three simplicial identities hold.
Geometric Realization

- Let X be a simplicial set. Then its geometric realization $|X|$ is a CW-complex defined by

$$|X| = \coprod_{n \geq 0} (\Delta^n, x)/ \sim = \coprod_{n=0}^{\infty} \Delta^n \times X_n / \sim,$$

where (Δ^n, x) is Δ^n labeled by $x \in X_n$ and \sim is generated by

$$(z, d_ix) \sim (d^i z, x)$$

for any $x \in X_n$ and $z \in \Delta^{n-1}$ labeled by d_ix, and

$$(z, s_ix) \sim (s^i z, x)$$

for any $x \in X_n$ and $z \in \Delta^{n+1}$ labeled by s_ix. Note that the points in (Δ^{n+1}, s_ix) and (Δ^{n-1}, d_ix) are identified with the points in (Δ^n, x).

- $|X|$ is a CW-complex.
The n-simplex $\Delta[n]$, as a simplicial set, is as follows:

$$\Delta[n]_k = \{(i_0, i_1, \ldots, i_k) \mid 0 \leq i_0 \leq i_1 \leq \cdots \leq i_k \leq n\}$$

for $k \leq n$. The face $d_j: \Delta[n]_k \to \Delta[n]_{k-1}$ is given by

$$d_j(i_0, i_1, \ldots, i_k) = (i_0, i_1, \ldots, \hat{i}_j, \ldots, i_k),$$

that is deleting i_j. The degeneracy $s_j: \Delta[n]_k \to \Delta[n]_{k+1}$ is defined by

$$s_j(i_0, i_1, \ldots, i_k) = (i_0, i_1, \ldots, i_j, i_j, \ldots, i_k),$$

that is doubling i_j. Let $\sigma_n = (0, 1, \ldots, n) \in \Delta[n]_n$. Then any elements in $\Delta[n]$ can be written as iterated compositions of faces and degeneracies of σ_n.

Let X be a simplicial set and let $x \in X_n$ be an element. Then there exists a unique simplicial map, called representing map of x,

$$f_x: \Delta[n] \to X$$
Basic Constructions

- **Cartesian Product:** $(X \times Y)_n = X_n \times Y_n$.
 $|X \times Y| \cong |X| \times |Y|$ under compact generated topology.

- **Milnor Theorem.** The geometric realization of a simplicial group is a topological group (under compactly generated topology).

- **Wedge:** $(X \vee Y)_n = X_n \vee Y_n$, union at the basepoint.
 $|X \vee Y| \cong |X| \vee |Y|$.

- **Smash Product:** $X \wedge Y = (X \times Y)/(X \vee Y)$.
 $|X \wedge Y| \cong |X| \wedge |Y|$ under compactly generated topology.
Mapping Space

- Let $\sigma_n = (0, 1, \ldots, n) \in \Delta[n]$ be the nondegenerate element.

 $d^i = f_{d_i\sigma_n} : \Delta[n-1] \to \Delta[n]$

 $s^i = f_{s_i\sigma_n} : \Delta[n+1] \to \Delta[n]$

- Let $\text{Map}(X, Y)_n = \text{Hom}_S(X \times \Delta[n], Y)$ and let

 $d_i = (\text{id}_X \times d^i)^* : \text{Map}(X, Y)_n \to \text{Hom}_S(X \times \Delta[n], Y)$

 $s_i = (\text{id}_X \times s^i)^* : \text{Map}(X, Y)_n \to \text{Hom}_S(X \times \Delta[n+1], Y)$

for $0 \leq i \leq n$. $\text{Map}(X, Y) = \{ \text{Map}(X, Y)_n \}_{n \geq 0}$ with d_i and s_i is a simplicial set, which is called the mapping space from X to Y.
Homotopy

- Let $I = \Delta[1]$. As a simplicial set,

$$I_n = \{ (\overbrace{t_{\frac{i}{n+1}}}, \ldots, \overbrace{t_{\frac{i}{n+1}}}) \mid 0 \leq i \leq n+1 \}$$

Given a simplicial set X, the simplicial subsets $X \times 0$ and $X \times 1$ of $X \times I$ are given by $(X \times 0)_n = \{ (x, t_0) \mid x \in X_n \}$, $(X \times 1)_n = \{ (x, t_1) \mid x \in X_n \}$.

- Let $f, g : X \rightarrow Y$ be simplicial maps. We call f homotopic to g if there is a simplicial map

$$F : X \times I \rightarrow Y$$

such that $F|_{X \times 0} = f$ and $F|_{X \times 1} = g$ in which case write $f \simeq g$. If A is a simplicial subset of X and $f, g : X \rightarrow Y$ are simplicial maps such that $f|_A = g|_A$, we call f homotopic to g relative to A, denoted by $f \simeq g \text{ rel } A$, if there is a homotopy $F : X \times I \rightarrow Y$ such that $F|_{X \times 0} = f$, $F|_{X \times 1} = g$ and $F|_{A \times I} = f$.
Fibrant Simplicial Set

- Let X be a simplicial set. The elements

$$x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \in X_{n-1}$$

are called **matching faces** with respect to i if

$$d_j x_k = d_k x_{j+1}$$

for $j \geq k$ and $k, j + 1 \neq i$. A simplicial set X is called **fibrant** (or **Kan complex**) if it satisfies the following homotopy extension condition for each i:

Let $x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \in X_{n-1}$ be any elements that are matching faces with respect to i. Then there exists an element $w \in X_n$ such that $d_j w = x_j$ for $j \neq i$.

- **Theorem.** Let X and Y be simplicial sets. If Y is fibrant, then $[X, Y] = \text{Hom}_S(X, Y)/\sim$ is the same as $[|X|, |Y|]$.
Simplicial Fibration

- A simplicial map \(p: E \to B \) is called a (Kan) fibration if for every commutative diagram of simplicial maps

\[
\begin{array}{ccc}
\Lambda^k[n] & \xrightarrow{i} & E \\
\downarrow & & \downarrow^{p} \\
\Delta[n] & \xrightarrow{\theta} & B
\end{array}
\]

there is a simplicial map \(\theta: \Delta[n] \to X \) (the dotted arrow) making the diagram commute, where \(i \) is the inclusion of \(\Lambda^k[n] \) in \(\Delta[n] \). Let \(v \in B_0 \) be a vertex. Then \(F = p^{-1}(v) \), that is \(F = \{ p^{-1}(s^n v) \}_{n \geq 0} \) is called a fibre of \(p \) over \(v \).

- Let \(p: E \to B \) be a fibration and let \(F = p^{-1}(\ast) \) be the fibre. Suppose that \(E \) or \(B \) is fibrant. Then there is a long exact sequence on homotopy groups.
Moore Paths and Moore Loops

• Let X be a pointed simplicial set. The **Moore Path** is defined by setting

$$(PX)_n = \{ x \in X_{n+1} \mid d_1 d_2 \cdots d_{n+1} x = \ast \}$$

with faces $d^P_i = d^{X}_{i+1} |_{(PX)_n} : (PX)_n \to (PX)_{n-1}$ and
degeneracies $s^P_i = s^{X}_{i+1} |_{(PX)_n} : (PX)_n \to (PX)_{n+1}$ for $0 \leq i \leq n$.

• **Proposition.** $|PX|$ is contractible. If X is fibrant, $PX \to X$ is a fibration.

• Let X be a pointed fibrant simplicial set. The **Moore loop** ΩX is defined to be the fibre of $p_X : PX \to X$. More precisely,

$$(\Omega X)_n = \{ x \in X_{n+1} \mid d_1 d_2 \cdots d_{n+1} x = \ast \text{ and } d_0 x = \ast \}$$

with faces $d^\Omega_i = d^{X}_{i+1}$ and degeneracies $s^\Omega_i = s^{X}_{i+1}$ for $0 \leq i \leq n$.
Moore Postnikov System

Let X be a simplicial set. For each $n \geq 0$, define the equivalence relation \sim_n on X as follows: For $x, y \in X_q$, we call $x \sim_n y$ if each iterated face of x of dimension $\leq n$ agrees with the correspondent iterated face of y. Define

$$P_nX = X / \sim_n$$

for each $n \geq 0$. Then we have the tower

$$X \longrightarrow \cdots \longrightarrow P_nX \longrightarrow P_{n-1}X \longrightarrow \cdots \longrightarrow P_0X$$

called Moore-Postnikov system of X or coskeleton filtration of X.
Theorem

Let X be a pointed fibrant simplicial set and let

$$p_n: X \to P_n(X)$$

be the projection. Then

- each $p_n: X \to P_nX$ is a fibration, each P_nX is fibrant, and for each $n \geq m$, the projection $P_nX \to P_mX$ is a fibration.
- $p_n^*: \pi_q(X) \to \pi_q(P_nX)$ is an isomorphism for $q \leq n$.
- Let $q > n$ and let x be a spherical element in $(P_nX)_q$. Then $x = \ast$. In particular, $\pi_q(P_nX) = 0$ for $q > n$.
- Let E_nX be the fibre of the projection $P_nX \to P_{n-1}X$. Then E_nX is an Eilenberg-MacLane complex of $K(\pi_n(X), n)$.
Moore Chain Complex

- Let G be a simplicial group. Define

$$N_n G = \bigcap_{j=1}^{n} \ker(d_j : G_n \to G_{n-1}).$$

Then $NG = \{N_n G, d_0\}$ is a chain complex.

- **Moore Theorem.** $H_n(NG) = \pi_n(G) \cong \pi_n(|G|)$.
- **Moore cycles:** $Z_n G = \bigcap_{j=0}^{n} \ker(d_j : G_n \to G_{n-1})$.
- **Moore boundaries:** $B_n G = d_0(N_{n+1} G)$.
- $\pi_n(|G|) = Z_n G / B_n G$.
- The key point here is that the geometric homotopy group $\pi_n(|G|)$ can be given by the homology of the chain complex NG.

Abelian Simplicial Groups

- Let G be a simplicial abelian groups. Define

$$\partial_n : G_n \to G_{n-1}$$

by setting

$$\partial_n(x) = \sum_{j=0}^{n} (-1)^j d_j x.$$

As we have seen for abelian Δ-groups, (G, ∂) becomes a chain complex. Thus for a simplicial abelian group G we have two chain complexes (NG, d_0) and (G, ∂). Let $x \in N_n G$. Then $\partial(x) = d_0 x$ because $d_j x = 0$ for $j > 0$, and so (NG, d_0) is a chain subcomplex of (G, ∂).

- **Theorem.** Let G be a simplicial abelian group. Then the inclusion

$$(NG, d_0) \to (G, \partial)$$

induces an isomorphism on homology

$$H_*(NG, d_0) \cong H_*(G, \partial).$$
Hurewicz Theorem

- Let X be a simplicial set. Let $\mathbb{Z}(X) = \{\mathbb{Z}(X_n)\}_{n \geq 0}$ be the sequence of the free abelian group generated by X_n. Then $\mathbb{Z}(X)$ is a simplicial abelian group. The integral homology of X is defined by

$$H_*(X) = \pi_*(\mathbb{Z}(X)) \cong H_*(\mathbb{Z}(X), \partial).$$

- **Hurewicz homomorphism** The map $\tilde{j}: X \to \mathbb{Z}(X), \ x \mapsto x - *$ induces a group homomorphism $h_n = \tilde{j}_*: \pi_n(X) \to \pi_n(\mathbb{Z}(X)) = H_n(X)$ for any fibrant simplicial set X and $n \geq 1$.

- Let X be a fibrant simplicial set with $\pi_i(X) = 0$ for $i < n$ with $n \geq 2$. Then $\tilde{H}_i(X) = 0$ for $i < n$ and

$$h_n: \pi_n(X) \to \tilde{H}_n(X)$$

is an isomorphism.
Group Homology

- Let G be a monoid. Let WG be the simplicial set given by

$$(WG)_n = \{(g_0, g_1, \ldots, g_n) \mid g_i \in G\} = G^{n+1}$$

with faces and degeneracies given by

$$d_i(g_0, \ldots, g_n) = \begin{cases} (\ldots, g_{i-1}, g_i g_{i+1}, g_{i+2}, \ldots) & \text{if } i < n \\ (g_0, \ldots, g_{n-1}) & \text{if } i = n \end{cases}$$

$$s_i(g_0, \ldots, g_n) = (g_0, g_1, \ldots, g_i, e, g_{i+1} \ldots, g_n).$$

- Let R be a commutative ring and let M be an $R(G)$-module. Then we have the simplicial abelian group

$$R(WG) \otimes_{R(G)} M.$$

- The homology of G with coefficients in M is then defined by

$$H_*(G; M) = \pi_*(R(WG) \otimes_{R(G)} M) \cong H_*(R(WG) \otimes_{R(G)} M, \partial).$$
Milnor’s Construction

- A pointed set S means a set S with a basepoint \ast. Denote by $F[S]$ the free group generated by S subject to the relation $\ast = 1$.

- Let X be a pointed simplicial set. Milnor’s construction is the simplicial group $F[X]$, where $F[X]_n = F[X_n]$ with face and degeneracy homomorphisms induced by the faces and degeneracies of X.

- **Theorem.** $|F[X]| \simeq \Omega \Sigma |X|$. The loop space of the suspension of $|X|$.

- **James’ Construction.** $J(X)$ is the free monoid generated by X subject to the relation $\ast = 1$.

- **Theorem.** If $|X|$ is path-connected, then the inclusion $|J(X)| \to |F[X]|$ is a homotopy equivalence.
Kan’s Construction

- For a reduced simplicial set X, let GX be the simplicial group defined by
 1. $(GX)_n$ is the quotient group of X_{n+1} subject to the relations:
 \[s_0x = 1 \]
 for every $x \in X_n$. Thus, as a group, $(GX)_n$ is the free group generated by $X_{n+1} \setminus s_0(X_n)$; or $(GX)_n = F[X_{n+1}/s_0(X_n)]$.
 2. The face and degeneracy operators are the group homomorphisms such that
 \[d_0^{GX}x = (d_1x)(d_0x)^{-1}, \]
 \[d_i^{GX}x = d_{i+1}x \text{ for } i > 0, \]
 \[s_i^{GX}x = s_{i+1}x \]
 for $x \in X_{n+1}$.
- **Theorem.** $|GX| \simeq \Omega|X|$.

Central Extension Theorem (-)

- **Proposition.** The action of G_0 on G by conjugation induces an action of $\pi_0(G)$ on $\pi_n(G)$ for each $n \geq 0$.

- We call a simplicial group G **n-simple** if $\pi_0(G)$ acts trivially on $\pi_n(G)$. A simplicial group G is called **simple** if it is n-simple for every n.

- **Theorem.** Let G be a simplicial group and let $n \geq 0$. Suppose that G is n-simple. Then the homotopy group $\pi_n(G)$ is contained in the center of G_n/B_nG.

- **Theorem.** Let G be a reduced simplicial group such that G_n is a free group for each n. Then there exits a unique integer $\gamma_G > 0$ such that $G_n = \{1\}$ for $n < \gamma_G$ and $\text{rank}(G_n) \geq 2$ for $n > \gamma_G$. Furthermore,

 $$\pi_n(G) \cong \mathbb{Z}(G_n/B_nG)$$

 for $n \neq \gamma_G + 1$.
Abelianization of Moore Chains

- Let G be a group. Write $G^{ab} = G/[G, G]$ for the **abelianization** of the group G. Now given a simplicial group G, we have a chain complex of (non-abelian in general) groups (Ng, d_0). Take the abelianization $(N_nG)^{ab}$ of N_nG for each n, the differential $d_0 : N_nG \rightarrow N_{n-1}G$ induces a homomorphism $d_0^{ab} : (N_nG)^{ab} \rightarrow (N_{n-1}G)^{ab}$ and so a chain complex of abelian groups $((Ng)^{ab}, d_0^{ab})$.

- **New Theorem.** Let G be a simplicial group such that (1) each G_n is a free group and (2) $\pi_0(G)$ acts trivially on each $\pi_n(G)$. Then there is a decomposition

$$H_n(((Ng)^{ab}) \cong \pi_n(G) \oplus A_n,$$

where A_n is a free abelian group. In particular, $\text{Tor}(H_\ast(((Ng)^{ab})) \cong \text{Tor}(\pi_\ast(G))$.

Simplicial Group $F[S^1] \simeq \Omega S^2$

Let S^1 be the simplicial 1-sphere. The elements in S_n^1 can be listed as follows.

$S_0^1 = \{\ast\}$, $S_1^1 = \{s_0\ast, \sigma\}$, $S_2^1 = \{s_0^2\ast, s_0\sigma, s_1\sigma\}$,

$S_3^1 = \{s_0^3\ast, s_2s_1\sigma, s_2s_0\sigma, s_1s_0\sigma\}$, and in general

$S_{n+1}^1 = \{s_0^{n+1}\ast, x_0, \ldots, x_n\}$, where $x_j = s_n \cdots \hat{s}_j \cdots s_0\sigma$. The face

$$d_i: S_{n+1}^1 = \{\ast, x_0, \ldots, x_n\} \longrightarrow S_n^1 = \{\ast, x_0, \ldots, x_{n-1}\}$$

is given by $d_is_0^{n+1}\ast = s_0\ast$ and

$$d_ix_j = \begin{cases}
 s_0^{n}\ast & \text{if } j = i = 0 \text{ or } i = j + 1 = n + 1 \\
 x_j & \text{if } j < i \\
 x_{j-1} & \text{if } j \geq i.
\end{cases}$$

Similarly,

$$s_is_j = s_is_n \cdots \hat{s}_j \cdots s_0\sigma = \begin{cases}
 x_j & \text{if } j < i \\
 x_{j+1} & \text{if } j \geq i.
\end{cases}$$
Simplicial Group $F[S^1] \cong \Omega S^2$

- $F[S^1]$ is a simplicial group model for ΩS^2. As a sequence of groups, the group $F[S^1]_n$ is the free group of rank n generated by $x_0, x_1, \ldots, x_{n-1}$ with faces as above.

- Let $y_0 = x_0 x_1^{-1}, \ldots, y_{n-1} = x_{n-1} x_n^{-1}$ and $y_n = x_n$ in $F[S^1]_{n+1}$. Clearly \{ y_0, y_1, \ldots, y_n \} is a set of free generators for $F[S^1]_{n+1}$ with $d_i y_j$ ($0 \leq i \leq n+1, -1 \leq j \leq n$) given by

$$d_i y_j = d_i(x_j x_{j+1}^{-1}) = \begin{cases} y_j & \text{if } j < i - 1 \\ 1 & \text{if } j = i - 1 \\ y_{j-1} & \text{if } j \geq i, \end{cases}$$

$$s_i y_j = \begin{cases} y_j & \text{if } j < i - 1 \\ y_j y_{j+1} & \text{if } j = i - 1 \\ y_{j+1} & \text{if } j \geq i, \end{cases}$$

where $y_{-1} = (y_0 y_1 \cdots y_{n-1})^{-1}$ and in this formula $x_{n+1} = 1$.
Simplicial Group $F[S^1] \simeq \Omega S^2$

• To describe all faces d_i systematically in terms of projections, consider the free group of rank n in the following way. Let \hat{F}_{n+1} be the quotient of the free group $F(z_0, z_1, \ldots, z_n)$ subject to the single relation $z_0 z_1 \cdots z_n = 1$. Let \hat{z}_j be the image of z_j in \hat{F}_{n+1}. The group \hat{F}_{n+1} is written $\hat{F}(\hat{z}_0, \hat{z}_1, \ldots, \hat{z}_n)$ in case the generators \hat{z}_j are used.

• Clearly $\hat{F}_{n+1} \simeq F(\hat{z}_0, \hat{z}_1, \ldots, \hat{z}_{n-1})$ is a free group of rank n. $\hat{F}_{n+1} = \pi_1(S^2 \setminus Q_{n+1})$.

• Define the faces d_i and degeneracies s_i on $\{\hat{F}_{n+1}\}_{n \geq 0}$ as follows:

$$
\begin{align*}
\hat{F} &= \{\hat{F}_{n+1}\}_{n \geq 0} \text{ with } d_i \text{ and } s_i \text{ defined as above is isomorphic to } F[S^1].
\end{align*}
$$
Combinatorial Description of $\pi_\ast(S^2)$

- **The Group** $G(n)$: generated by x_1, x_2, \ldots, x_n subject to the relations:
 1) the ordered product of the generators $x_1 x_2 \cdots x_n = 1$ and
 2) the *iterated commutators* on the generators with the property that each generator occurs at least once in the commutator bracket.

- **Theorem.** (-) For each n, the homotopy group $\pi_n(S^2)$ is isomorphic to the center of $G(n)$.

- **Fixed-point Set Theorem.** (-) The Artin representation induces an action of the braid group B_n on $G(n)$. Moreover the homotopy group $\pi_n(S^2)$ is isomorphic to the fixed set of the pure braid group action on $G(n)$.
Example

Let $\mathcal{G} = \{S_{n+1}\}_{n \geq 0}$ be the sequence of symmetric groups of degree $n + 1$. Then \mathcal{G} is a simplicial set in the following way:

- $[n-1] \xrightarrow{d_i \cdot \sigma} [n]$, $d_i(\sigma)$
- $[n+1] \xrightarrow{s^i \cdot \sigma} [n]$, $s_i(\sigma)$
Crossed Simplicial Groups

- A **crossed simplicial group** is a simplicial set $G = \{G_n\}_{n \geq 0}$ for which each G_n is a group, together with a group homomorphism $\mu : G_n \to S_{n+1}$, $g \mapsto \mu_g$ for each n, such that

 (i) μ is a simplicial map, and

 (ii) for $0 \leq i \leq n$, $d_i(gg') = d_i(g)d_i\cdot\mu_g(g')$ and $s_i(gg') = s_i(g)s_i\cdot\mu_g(g')$.

- An important example is that the sequence of Artin braid groups $\mathcal{B} = \{B_{n+1}\}_{n \geq 0}$ is a crossed simplicial group with the faces and degeneracies described as follows:

 Given an $(n + 1)$-strand braid $\beta \in B_{n+1}$, $d_i\beta$ is obtained by removing $(i + 1)$ st strand braid and $s_i\beta$ is obtained by doubling $(i + 1)$-strand for $0 \leq i \leq n$, where the stands are counted from initial points.

- Since the restriction of d_i and s_i to the pure braid groups are group homomorphisms, the sequence of groups $\mathcal{P} = \{P_{n+1}\}$ is a simplicial group.
Simplicial Structure on Configurations

- Let (M, d) be a metric space with basepoint w and let \mathbb{R}^+ denote $[0, \infty)$. A **steady flow** over M is a (continuous) map $\theta: \mathbb{R}^+ \times M \to M$ such that
 1. for any $x \in M$, $\theta(0, x) = x$ and for $t > 0$

 $$0 < d(\theta(t, x), x) \leq t;$$
 2. $\theta|_{\mathbb{R}^+ \times \{w\}} : \mathbb{R}^+ \times \{w\} \to M$ is one-to-one;
 3. there exists a function $\epsilon : \mathbb{R}^+ \to (0, +\infty)$, $t \mapsto \epsilon_t$, such that

 $$\theta([0, \epsilon_t] \times \{\theta(t, w)\}) \subseteq \theta([t, \infty) \times \{w\})$$
 for any $t \in \mathbb{R}^+$.

- Let M be a metric space with a steady flow. Then the sequence of groups $\mathcal{B}(M)^{\pi_1} = \{\pi_1(B(M, n + 1))\}_{n \geq 0}$ is a crossed simplicial group.

- Let M be a metric space with a steady flow. Then the sequence of groups $\mathcal{F}(M)^{\pi_1} = \{\pi_1(F(M, n + 1))\}_{n \geq 0}$ is a simplicial group.
A \textbf{\(\Delta\)-group} \(G = \{G_n\}_{n \geq 0}\) consists of a \(\Delta\)-set \(G\) for which each \(G_n\) is a group and each \(d_i\) is a group homomorphism. The \textbf{Moore complex} \(NG = \{N_nG\}_{n \geq 0}\) of a \(\Delta\)-group \(G\) is defined by

\[N_nG = \bigcap_{i=1}^{n} \text{Ker}(d_i : G_n \rightarrow G_{n-1}).\]

Let \(G\) be a \(\Delta\)-group. Then \(d_0(N_nG) \subseteq N_{n-1}G\) and \(NG\) with \(d_0\) is a chain complex of groups.

Let \(G\) be a \(\Delta\)-group. An element in \(B_nG = d_0(N_{n+1}G)\) is called a Moore \textbf{boundary} and an element in \(Z_nG = \text{Ker}(d_0 : N_nG \rightarrow N_{n-1}G)\) is called a Moore \textbf{cycle}. The \(n\)th homotopy \(\pi_n(G)\) is defined to be the coset

\[\pi_n(G) = H_n(NG) = Z_nG/B_nG.\]
A crossed Δ-group is a Δ-set $G = \{G_n\}_{n \geq 0}$ for which each G_n is a group, together with a group homomorphism $\mu : G_n \to S_{n+1}, \ g \mapsto \mu_g$ for each n, such that

(i) μ is a Δ-map and
(ii) for $0 \leq i \leq n$, $d_i(gg') = d_i(g)d_i(\mu_g(g'))$.

A space M is said to have a good basepoint w_0 if there is a continuous injection $\tilde{\theta} : \mathbb{R}^+ \to M$ with $\tilde{\theta}(0) = w_0$.

Let M be a space with a good basepoint. Then

(1) $\mathcal{B}(M)^{\pi_1}$ is a crossed Δ-group,
(2) $\mathcal{F}(M)^{\pi_1}$ is a Δ-group,
Brunnian Braids

- An element in $\pi_1(B(M, n))$ is called a braid of n strings over M.
- A pure braid of n strings over M means an element in $\pi_1(F(M, n))$.
- A braid is called Brunnian if it becomes a trivial braid when any one of its strings is removed.
- In the terminology of Δ-groups, a braid

$$\beta \in \pi_1(B(M, n + 1)) = \mathcal{B}(M)^{\pi_1}$$

is Brunnian if and only if $d_i\beta = 1$ for $0 \leq i \leq n$. In other words, the Brunnian braids over M are the Moore cycles in the Δ-group $\mathcal{B}(M)^{\pi_1}$. The group of Brunnian braids of n strings over M is denoted by $\text{Brun}_n(M)$.

- Proposition. Let β be a Brunnian braid of n strings over a space M with a good basepoint. If $n \geq 3$, then β is a pure braid.
Theorems (JAMS paper with J. Berrick, F. Cohen and Y. L. Wong)

• There is an exact sequence of groups

\[1 \to \text{Brun}_{n+1}(S^2) \to \text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2) \to \pi_{n-1}(S^2) \to 1 \]

for \(n \geq 5 \), where \(f_* \) is induced from the canonical embedding \(f : D^2 \to S^2 \).

• Let \(\mathcal{F}(S^2)^{\pi_1} \) be the \(\Delta \)-group defined above. Then, for each \(n \geq 1 \), the Moore homotopy group \(\pi_n(\mathcal{F}(S^2)^{\pi_1}) \) is a group, and there is an isomorphism of groups

\[\pi_n(\mathcal{F}(S^2)^{\pi_1}) \cong \pi_n(S^2) \]

for \(n \geq 4 \).

• **Examples:** Since \(\pi_4(S^2) = \pi_5(S^2) = \mathbb{Z}/2 \) and \(\pi_6(S^2) = \mathbb{Z}/12 \), \(\text{Brun}_5(S^2) \equiv \mathbb{Z}/2 \mod \text{Brun}_5(D^2) \), \(\text{Brun}_6(S^2) \equiv \mathbb{Z}/2 \mod \text{Brun}_6(D^2) \) and \(\text{Brun}_7(S^2) \equiv \mathbb{Z}/12 \mod \text{Brun}_7(D^2) \).
Theorem (with Fred Cohen)

- Let $AP_* = \{P_{n+1}\}$ be the sequence of classical Artin pure braid groups with the simplicial structure given by deleting/doubling braids. Then AP_* is a reduced simplicial group because $AP_0 = P_1 = 1$. Since $AP_1 = P_2 = \mathbb{Z}$, there is a unique simplicial homomorphism $\Theta : F[S^1] \to AP_*$ that sends the non-degenerate 1-simplex of S^1 to the generator of $AP_1 = \mathbb{Z}$, where $F[S^1]$ is Milnor’s $F[K]$-construction on S^1.

- The morphism of simplicial groups

$$\Theta : F[S^1] \to AP_*$$

is an embedding. Hence the homotopy groups of $F[S^1]$ are natural sub-quotients of AP_*, and the geometric realization of quotient simplicial set $AP_*/F[S^1]$ is homotopy equivalent to the 2-sphere. Furthermore, the image of Θ is the smallest simplicial subgroup of AP_* which contains $A_{1,2}$.
The Δ-group \mathbb{P}

- Let $\delta : F(\mathbb{C}, n + 1) \to F(\mathbb{C}, n)$ be the map defined by
 \[
 \delta(z_1, z_2, \ldots, z_n) = \left(\frac{1}{z_2 - z_1}, \frac{1}{z_3 - z_1}, \ldots, \frac{1}{z_n - z_1}\right),
 \]
corresponding geometrically to the reflection map in \mathbb{C} about the unit circle centered at z_0. Then δ induces a group homomorphism $\partial : P_{n+1} \to P_n$.

- **Proposition.** Let $\chi : B_n \to B_n$ be the mirror reflection, that is, χ is an automorphism of B_n such that $\chi(\sigma_i) = \sigma_i^{-1}$ for all i. Let $\partial = \chi \circ \partial : P_{n+1} \to P_n$. Then $\mathbb{P} = \{P_n\}_{n \geq 0}$ is Δ-group with $d_0 = \partial$ and $d_1, \ldots, d_n : P_n \to P_{n-1}$ are given by deleting strands.

- **Theorem.** The Δ-group \mathbb{P} is fibrant, and there is an isomorphism $\pi_n(\mathbb{P}) \cong \pi_n(S^2)$ for every n.
Boundary Brunnian Braids

- The **boundary Brunnian braid** is defined to be
 \[\text{Bd}_n = B_nP = \partial(\text{Brun}_{n+1})) = \tilde{\partial}(\text{Brun}_{n+1})) \]
 as the subgroup of \(P_n \).

- **Proposition.** \(\text{Bd}_n \) is a normal subgroup of \(B_n \).

- **Theorem.** The quotient groups \(P_n/\text{Bd}_n \) and \(B_n/\text{Bd}_n \) are finitely presented.

- **Questions:** Two questions then arise naturally:
 1) Is the group \(P_n/\text{Bd}_n \) torsion free?
 2) What is the center of \(B_n/\text{Bd}_n \)?

- The second question is a special case of the conjugation problem on braids. Namely, how to determine a braid \(\beta \in B_n \) such that the conjugation \(\sigma_i\beta\sigma_i^{-1} \) lies in the coset \(\beta\text{Bd}_n \) for each \(1 \leq i \leq n - 1 \).
Theorem (New with Jingyan Li)

• For a subgroup H of G, let

$$\sqrt{(H, G)} = \{ x \in G \mid x^q \in H \text{ for some } q \in \mathbb{Z} \}$$

denote the set of the roots of H in G. Then

$$\sqrt{(Bd_n, P_n)/Bd_n}$$

is the set of torsion elements in P_n/Bd_n.

• Let $n \geq 4$.

1) $$\sqrt{(Bd_n, P_n)/Bd_n} \cong \pi_n(S^2).$$

2) There are isomorphisms of groups

$$\text{Center}(P_n/Bd_n) \cong \pi_n(S^2) \times \mathbb{Z}$$

$$\text{Center}(B_n/Bd_n) \cong \{ \alpha \in \pi_n(S^2) \mid 2\alpha = 0 \} \times \mathbb{Z}.$$

• This result gives a connection between the general higher homotopy groups of S^2 and the (special cases) of the conjugation problem on braids.
Mirror Reflection Theorem (New with Jingyan Li)

- By moving our steps to the next, the mirror reflection \(\chi : B_n \to B_n \) is a canonical operation on braids. Given a subgroup \(G \) of \(B_n \), one may ask whether there is a mirror symmetric braid \(\beta \) subject to \(G \), that is, the braids \(\beta \) satisfying the equation of cosets \(\chi(\beta)G = \beta G \). The answer to this question becomes very nontrivial. In the case \(G = B_d n \), the answer is again given in term of the homotopy group \(\pi_n(S^2) \).

- Let \(\text{Fix}^\phi(G) \) denote the subgroup of the fixed-point of an automorphism \(\phi \) of a group \(G \).

- **Theorem.** The subgroup \(B_d n \) is invariant under the mirror reflection \(\chi \). Moreover there is an isomorphism of groups

\[
\text{Fix}^\chi(B_n/B_d n) \cong \pi_n(S^2)
\]

for \(n \geq 3 \).