Connections between algebraic topology and the theory of braids

A J (Jon) Berrick and Wu Jie

Department of Mathematics
National University of Singapore

20 September, 2007, 11:30-12:00
Connections between algebraic topology and the theory of braids

Braids in Routine Life

Braids in Mathematics

Braids in Sciences

Our Mathematical Work
Braids in Routine Life

Braids in Routine Life

Braids in Routine Life

Braids in Routine Life
Braids in Routine Life

Braids in Mathematics

Braids in Sciences

Our Mathematical Work

Braids in Routine Life
How to Make Braids
Find Mathematics: Basic Operation 1

\[
\begin{array}{cccccc}
1 & i-1 & i & i+1 & n \\
\sigma_i & & & & \\
\end{array}
\]
Find Mathematics: Basic Operation 2
Braid Groups

- Any n-strand braid is a product of $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ and $\sigma_1^{-1}, \sigma_2^{-1}, \ldots, \sigma_{n-1}^{-1}$.

- For instance, all 2-strand braids are given by the products of σ_1, σ_1^{-1}.

- For instance, all 3-strand braids are given by the products of $\sigma_1, \sigma_2, \sigma_1^{-1}, \sigma_2^{-1}$.

- All 4-strand braids are given by the products of $\sigma_1, \sigma_2, \sigma_3, \sigma_1^{-1}, \sigma_2^{-1}, \sigma_3^{-1}$.

- All 5-strand braids are given by the products of $\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_1^{-1}, \sigma_2^{-1}, \sigma_3^{-1}, \sigma_4^{-1}$.
Example: What is the braid picture for the braid word \(\sigma_2\sigma_1^{-1}\sigma_3\sigma_2^2 \)?
Pure Braids $A_{i,j} = \sigma_{j-1}\sigma_{j-2}\cdots \sigma_{i+1}\sigma_i \sigma_{i+1}^{-1}\cdots \sigma_{j-2}^{-1}\sigma_{j-1}^{-1}$
Example: Discover formulas on braid words:

\[\sigma_k A_{i,k+1} \sigma_k^{-1} = A_{i,k+1}^{-1} A_i A_{i,k+1}. \]
Brunnian Braids

A braid is called **Brunnian** if it becomes a trivial braid after removing **ANY** of its strands.

\[(\sigma_1 \sigma_2^{-1})^3\] is Brunnian
Discover n-strand Brunnian braids

Given any $(n-1)$-strand Brunnian braid β, $\sigma_{n-1}^{-2}\beta^{-1}\sigma_{n-1}^{2}\beta$ is an n-strand Brunnian braid.
Cabling a braid for having a braid with more strands
Cabling is an operation on braids by inserting parallel strands in a small neighbourhood of any strand of a braid.
Close-up braids to get links and knots

A link is the union of mutually disjoint simple closed (polygonal) curves in \mathbb{R}^3. A knot is a simple closed (polygonal) curve in \mathbb{R}^3.
Braids and Polynomials

- Given an n-strand braid, by taking the intersection of the strands with the planes parallel to the XY-plane, one obtains a path
 \[(z_1(t), z_2(t), \ldots, z_n(t))\]
 with $z_i(t) \neq z_j(t)$ for each $0 \leq t \leq 1$ and any $i \neq j$, and so a polynomial
 \[f(x)(t) = (x - z_1(t))(x - z_2(t)) \cdots (x - z_n(t))\]
 with parameter $0 \leq t \leq 1$.

- From this, the braid group B_n is the fundamental group of the space of all monic polynomials of degree n with n distinct roots.

- The braid groups are used to study complexity of approximating roots of polynomials.
Braids and Polynomials

• Given an n-strand braid, by taking the intersection of the strands with the planes parallel to the XY-plane, one obtains a path

$$(z_1(t), z_2(t), \ldots, z_n(t))$$

with $z_i(t) \neq z_j(t)$ for each $0 \leq t \leq 1$ and any $i \neq j$, and so a polynomial

$$f(x)(t) = (x - z_1(t))(x - z_2(t)) \cdots (x - z_n(t))$$

with parameter $0 \leq t \leq 1$.

• From this, the braid group B_n is the fundamental group of the space of all monic polynomials of degree n with n distinct roots.

• The braid groups are used to study complexity of approximating roots of polynomials.
Scientific Meaning of Braids

A braid is a locus of points (or particles or robots or birds...) moving through time without colliding.

- air traffic control problem.
- satellites in sky.
- many robots working a place.
Scientific Meaning of Braids

A braid is a locus of points (or particles or robots or birds...) moving through time without colliding.

- air traffic control problem.
- satellites in sky.
- many robots working a place.
A robot moving between m obstacles gives an $m+1$ stranded braid

Robot Motion Planning
Applications of Braid Groups

Lectures at IMS conference June 2007

- **Braids and robotic** Robert Ghrist, UIUC, USA
- **Braids, twist, writhe, and solar activity** Mitch A Berger, UCL, UK
- **Coloring n-string braids and tangles and its application to molecular biology** Junalyn Navarra-Madsen, Texas WU, USA
- **Length-based cryptanalysis of the braid group and some applications** David Garber, Holon IT, Israel
Bio applications

Medical surgery planning
Molecule motions: ligand-docking
Importance of Configuration Pathways: protein-folding

insight into protein interactions & function may lead to better structure prediction algorithms

Misfolded proteins – e.g. BSE prion protein
One of Our Main Results

- The n-th homotopy group of the sphere is given by the quotient of the $(n + 1)$-strand Brunnian braid group over the sphere modulo the $(n + 1)$-strand Brunnian braid group over the disk for $n \geq 4$.

- The determination of the general homotopy groups is one of the central problems in the area of algebraic topology, and one of the most challenging problems in mathematics.

- This gives a deep connection between algebraic topology and the theory of braids.
One of Our Main Results

- The \(n \)-th homotopy group of the sphere is given by the quotient of the \((n + 1)\)-strand Brunnian braid group over the sphere modulo the \((n + 1)\)-strand Brunnian braid group over the disk for \(n \geq 4 \).

- The determination of the general homotopy groups is one of the central problems in the area of algebraic topology, and one of most challenging problems in mathematics.

- This gives a deep connection between algebraic topology and the theory of braids.
Topology is the philosophy of mathematics studying the global structure of mathematical objects.

End of Talk. Thank You!