BRAIDS AND HOMOTOPY GROUPS

JIE WU

★ Joint with Fred Cohen (University of Rochester), Jon Berrick (National University of Singapore), Yan Loi Wong (National University of Singapore)

★ Supported in part by the NSF, and the Academic Research Fund of the National University of Singapore

★ Address:
Department of Mathematics
National University of Singapore
Singapore 117543
Republic of Singapore

★ e-mail: matwuj@nus.edu.sg

Reference to this talk:
Jon Berrick, Fred Cohen, Yan Loi Wong and Jie Wu, Braids, configurations and the homotopy groups, preprint. (The preprint is available at www.math.nus.edu.sg/~matwujie.)
The Δ and Simplicial-Structure on Configurations

• Let M be any space. The ordered configuration space $F(M, n + 1)$ by definition:
 \[F(M, n + 1) = \{(x_0, x_1, x_2, \ldots, x_n) \in M^n \mid x_i \neq x_j \text{ for } i \neq j \}. \]

• Consider the sequence of spaces \(\{F(M, n + 1)\}_{n \geq 0}\) with coordinate projections: \(d_i: F(M, n + 1) \to F(M, n)\)
 \[(x_0, x_1, \ldots, x_n) \mapsto (x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).\]

• Let A be any pointed space. Assume that M has a good base-point (roughly speaking there is an embedding of $\mathbb{R}^+ = [0, \infty)$ into M), for instance, M has a whisker. Then
 \[
 \star \text{ the sequence of sets } \{[A, F(M, n+1)]\}_{n \geq 0} \text{ forms a } \Delta\text{-set with faces } d_i \text{ induced by the above maps, namely } d_j d_i = d_i d_{j+1} \text{ for } i \leq j.
 \]

• Note. The only point is that coordinate projections do not preserve base-points, but this base-point trouble can be overcome by assuming that M has a good base-point.

 \[
 \star \text{ If } A \text{ is a cogroup, then } \{[A, F(M, n+1)]\}_{n \geq 0} \text{ is a } \Delta\text{-group. In particular, the sequence of fundamental groups } \{\pi_1(F(M, n+1))\}_{n \geq 0} \text{ is a } \Delta\text{-group.}
 \]

• Note. For unordered configuration space $B(M, n) = F(M, n) / \Sigma_n$, the sequence of groups \(\{\pi_1(B(M, n+1))\}_{n \geq 0}\) is a crossed Δ-group, roughly speaking, faces are only functions (not group homomorphisms) satisfying certain crossed conditions.
Under certain conditions, \(\{[A, F(M, n + 1)]\}_{n \geq 0} \) can be a simplicial set (simplicial group if \(A \) is a cogroup). Our idea is to construct degeneracy \(s_i : F(M, n + 1) \to F(M, n + 2) \) given something like:

\[
(x_0, \ldots, x_n) \mapsto (x_0, \ldots, x_i, x'_i, x_{i+1}, \ldots, x_n),
\]

where, roughly speaking, \(x'_i \) is a point very close to \(x_i \) but different from \(\{x_0, \ldots, x_n\} \), and the function \(x'_i(x_0, \ldots, x_n) \) should be continuous.

We consider the case that \(M \) is a metric space with a so-called steady flow. In the case that \(M \) is a differentiable manifold, our condition is equivalent to that \(M \) has a (continuous) nonvanishing vector field (or equivalently \(M \) has zero Euler characteristic).

The most interesting examples in our work are:

- \(\{\pi_1(F(S^2, n + 1))\}_{n \geq 0} \) is a \(\Delta \)-group (but not simplicial group).
- \(\{\pi_1(F(D^2, n + 1))\}_{n \geq 0} \) is a simplicial group.

I will explain the relations between these examples and the general homotopy groups of the sphere.

Note. One could compare these ideas with Cohen groups, where roughly speaking the Cohen groups are obtained from the equalizers of the faces of the \(\Delta \)-group \(\{[X^{n+1}, \Omega Y]\}_{n \geq 0} \) and where the \(\Delta \)-structure is obtained by considering coordinate inclusions \(X^n \to X^{n+1} \). If one also consider the coordinate projections of \(X \)'s, then one gets \(\Delta \) and \(\text{co-}\Delta \) on \(\{[X^{n+1}, \Omega Y]\}_{n \geq 0} \) with relations between faces and cofaces. From this, Hopf invariants can be obtained combinatorially by working out formulae on cofaces.
Braids

Consider the covering \(p: F(M, n) \longrightarrow B(M, n) = F(M, n)/\Sigma_n \) with fibre \(\Sigma_n \).

- The **braid group** \(B_n(M) \) of \(n \) strings over \(M \) is defined by
 \[
 B_n(M) = \pi_1(B(M, n)).
 \]

The intuitive description is as follows. Choose a base point \((q_1, q_2, \cdots, q_n)\) for \(F(M, n) \). Let \(\omega: S^1 \to B(M, n) \) be a loop. Then there is a lifting path \(\lambda: [0, 1] \to F(M, n) \) such that
 - \(\lambda(0) = (q_1, q_2, \cdots, q_n), \lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)}) \) for some \(\sigma \in \Sigma_n \) and \(p(\lambda) = \omega \). Thus
 - \(\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t)) \) with \(\lambda_i(t) \neq \lambda_j(t) \) for \(i \neq j \) and \(0 \leq t \leq 1 \). We obtain \(n \) strings \(\lambda_i(t) \) in the cylinder \(M \times I \) starting at \(q_i \) and ending with \(q_{\sigma(i)} \) for some \(\sigma \). The multiplication is given by the composition of strings.
 - The pure braid group \(P_n(M) \) is defined by \(P_n(M) = \pi_1(F(M, n)) \).

The pure braids are \(n \) strings \(\lambda_i(t) \) in \(M \times I \) starting at \(q_i \) and ending with \(q_i \).

- When \(M \) is the unit disk \(D^2 \), \(B_n = B_n(D^2) \) is the classical Artin braid group. **Any link** can be obtained by closing up an (Artin) braid.
Brunnian Braids

Consider the coordinate projections
\[d_i : F(M, n+1) \to F(M, n) \quad (x_0, x_1, \ldots, x_n) \mapsto (x_0, x_1, \ldots, \hat{x}_i, \ldots, x_n). \]

The map \(d_i \) induces, by taking the fundamental group,

- a group homomorphism \(d_i = d_{i*} : P_{n+1}(M) \to P_n(M) \) and
- a function \(d_i : B_{n+1}(M) \to B_n(M) \) given by

\[(\lambda_0(t), \ldots, \lambda_n(t)) \mapsto (\lambda_0(t), \ldots, \hat{\lambda}_i(t), \ldots, \lambda_n(t)),\]

that is, deleting the \((i+1)\)-th string for \(0 \leq i \leq n\).

A braid \(\beta \in B_{n+1}(M) \) is called Brunnian if \(d_i(\beta) = 1 \) for all \(0 \leq i \leq n\).

In other words, the group of Brunnian braids \(\text{Br}_{n+1}(M) \) is given by

- \(\text{Br}_{n+1}(M) : = \bigcap_{i=0}^{n} \ker(d_i : B_{n+1}(M) \to B_n(M)). \)

The classical Borromean Rings is a link by closing up a Brunnian braid of 3 strings over \(D^2 \).
Moore Cycles and Moore Chains of \(\Delta\)-groups

We pursue John Moore’s notion for simplicial groups. Let \(G = \{G_n\}_{n \geq 0}\) be a \(\Delta\)-group (not necessarily simplicial group).

- **Moore chains:**
 \[N_n G = \bigcap_{i > 0} \ker(d_i : G_n \to G_{n-1}) \]
 This gives a chain complex of (non-commutative in general) groups:
 \[\cdots \to N_{n+1} G \xrightarrow{d_0} N_n G \xrightarrow{d_0} N_{n-1} G \to \cdots, \]
 that is, \(d_0 \circ d_0\) is the trivial homomorphism in \(N G = \{N_n G\}_{n \geq 0}\).

- **Moore cycles:**
 \[Z_n G = \bigcap_{i=0}^n \ker(d_i : G_n \to G_{n-1}) \]

- **Moore boundaries:**
 \[B_n G = d_0(N_{n+1} G) \]

- **Moore homotopy groups:**
 \[\pi_n(G) = Z_n G / B_n G = H_n(N G, d_0) \]

- **Note.** For a \(\Delta\)-group \(G\), the homotopy \(\pi_n(G)\) need not be a group, that is \(B_n G\) need not be normal in \(Z_n G\) in general, (and need not be commutative when \(n \geq 1\)). But some classical results on simplicial groups also hold for *fibrant* \(\Delta\)-groups.

- **Note.** If \(G\) is a simplicial group, then, by the classical Moore Theorem, \(\pi_n(G)\) are the same as the homotopy groups of its geometric realization \(|G|\).
Moore Cycles and Brunnian Braids

Consider the sequence of groups \(\{B_{n+1}(M) = \pi_1(F(M, n+1))\}_{n \geq 0} \).

Observe that the group of Brunnian braids is given by

- \(\text{Br}_{n+1}(M) : = \bigcap_{i=0}^{n} \ker (d_i : B_{n+1}(M) \to B_n(M)). \)

- **Lemma.** Let \(\beta \) be a Brunnian braid of \(n \) strings over \(M \). If \(n \geq 3 \), then \(\beta \) is a pure braid. Thus

 \(\star \) For \(n \geq 2 \), \(\text{Br}_{n+1}(M) : = \bigcap_{i=0}^{n} \ker (d_i : P_{n+1}(M) \to P_n(M)) \) is the

 Moore cycles of the \(\Delta \)-group \(\{P_{n+1}(M) = \pi_1(F(M, n+1))\}_{n \geq 0} \).

 In other words, Brunnian braids are essentially Moore cycles.

- The braided interpretation of boundaries seems unclear. As we know that the Moore homotopy groups are certain derived groups of \(\Delta \)-groups. The Moore homotopy groups of \(\{P_{n+1}(M)\}_{n \geq 0} \) MIGHT be certain invariants on braids. When \(M = S^2 \), the following theorem gives a connection with the homotopy groups of the sphere.

 \(\star \) **Theorem A.** Let \(\mathcal{F}(S^2)^{\pi_1} = \{P_{n+1}(S^2)\}_{n \geq 0} \) be the \(\Delta \)-group defined above. Then for each \(n \geq 1 \) \(\pi_n(\mathcal{F}(S^2)^{\pi_1}) \) is a group, and there is an isomorphism of groups

 \[\pi_n(\mathcal{F}(S^2)^{\pi_1}) \cong \pi_n(S^2) \cong \pi_n(S^3) \]

 for \(n \geq 4 \).
Main Results

In addition to Theorem A. Our next theorem directly gives connections between the Brunnian braids and the homotopy groups.

The canonical embedding $f: D^2 \subseteq S^2$ induces a group homomorphism $\text{Br}_n(D^2) \xrightarrow{f_*} \text{Br}_n(S^2)$.

★ Theorem B. There is an exact sequence of groups

$$1 \longrightarrow \text{Br}_{n+1}(S^2) \longrightarrow \text{Br}_n(D^2) \xrightarrow{f_*} \text{Br}_n(S^2) \longrightarrow \pi_{n-1}(S^2) \longrightarrow 1$$

for $n \geq 5$.

- For instance, $\text{Br}_5(S^2)$ modulo $\text{Br}_5(D^2)$ is $\pi_4(S^3) = \mathbb{Z}/2$. The other low homotopy groups of S^3 are as follows:

 $$\pi_5(S^3) = \mathbb{Z}/2, \pi_6(S^3) = \mathbb{Z}/12, \pi_7(S^3) = \mathbb{Z}/2, \pi_8(S^3) = \mathbb{Z}/2, \pi_9(S^3) = \mathbb{Z}/3, \pi_{10}(S^3) = \mathbb{Z}/15,$$

 and etc.

 Thus, up to certain range, $\text{Br}_{n+1}(S^2)$ modulo $\text{Br}_{n+1}(D^2)$ are known by non-trivial calculations of $\pi_*(S^3)$.
Question 23 in the end of Birman’s red book, J. Birman, *Braids, Links and Mapping Class Groups*, Ann. of Math. Studies, vol. 82, Princeton Univ. Press, Princeton, NJ, 1975, essentially she asked to find the free generators of $Br_n(S^2)$. If her old question were answered, then, together with some of my works, one has the combinational determination of the homotopy groups $\pi_n(S^2)$ by listing generators and relations. Actually, for the purpose of determining generators and relations for $\pi_n(S^2)$, we only need a weak version of Birman’s question.

★ **Weak Form of Birman’s Problem:** Determine a set of generators for $Br_n(S^2)$ for $n \geq 5$.

It would be very interesting if one can describe the generators for $Br_n(S^2)$ as certain invariants, say certain link invariants or anything else. One of the ideas might be to construct links in $S^2 \times S^1$ by closing up Brunnian braids in $Br_n(S^2)$ and then consider certain invariants.
Our next result gives connections between the classical braid groups and the homotopy groups. Since the disk D^2 admits a nonvanishing vector field, $\{P_{n+1}(D^2)\}_{n \geq 0}$ is a (contractible) simplicial group. Our idea is to add one more canonical face, in addition to coordinate projections, such that $\{P_n(D^2)\}_{n \geq 0}$ is a Δ-group with non-trivial Moore homotopy groups.

Let $B_n = B_n(D^2)$ be the classical braid groups and let $P_n = P_n(D^2)$. First we describe an operation $\tilde{\partial}: B_{n+1} \to B_n$ as follows.

Let $\delta: F(\mathbb{C}, n+1) \to F(\mathbb{C}, n)$ be the map defined by

$$\delta(z_0, z_1, \ldots, z_n) = \left(\frac{1}{\bar{z}_1 - \bar{z}_0}, \frac{1}{\bar{z}_2 - \bar{z}_0}, \ldots, \frac{1}{\bar{z}_n - \bar{z}_0} \right),$$

corresponding geometrically to the reflection map in \mathbb{C} about the unit circle centered at z_0.

We can show that on fundamental groupoids δ induces a function $\tilde{\partial}: B_{n+1} \to B_n$ that restricts to a group homomorphism from P_{n+1} to P_n and from $\text{Br}_{n+1}(D^2)$ to $\text{Br}_n(D^2)$.

From the braid relations, there is a canonical involution homomorphism $\chi: B_n \to B_n$ that sends each standard generator to its inverse. Likewise it restricts to a group homomorphism from P_n to P_n and from $\text{Br}_n(D^2)$ to $\text{Br}_n(D^2)$.
Composing χ with $\tilde{\partial}$ gives a homomorphism ∂ on $\text{Br}_{n+1}(D^2)$ that maps into $\text{Br}_n(D^2)$ and has the further property that $\partial \circ \partial$ is trivial.

We therefore obtain a ‘chain complex’ of nonabelian groups

$$(\text{Br}(D^2), \partial) : \cdots \to \text{Br}_{n+1}(D^2) \xrightarrow{\partial} \text{Br}_n(D^2) \xrightarrow{\partial} \text{Br}_{n-1}(D^2) \to \cdots.$$

The homology of this chain complex is a very pleasant surprise ...

★ Theorem C. For all n there is an isomorphism of groups

$$H_n(\text{Br}(D^2)) \cong \pi_n(S^2).$$

- Let $\Gamma = \{\Gamma_n\}_{n \geq 0}$ be the sequence of groups defined by $\Gamma_0 = 1$ and, for $n \geq 1$, $\Gamma_n = P_n$ with the faces $d_0 = \partial$, and, for $1 \leq i \leq n$, d_i given by deleting the ith string. Then Γ is a Δ-group.

★ Theorem D. $\pi_*(\Gamma) = \pi_*(S^2)$.

- Note that S^2 is NOT an H-space. There is NO simplicial group model for S^2. (The geometric realization of a simplicial group is always a loop space.) This result says that there is a Δ-group model for S^2, and these groups are just given by **Artin pure braid groups**!

- Note P_n is a semi-direct product of $F_{n-1}, F_{n-2}, \ldots, F_1$, where F_k is the free group of rank k. As a sequence of sets, Γ looks like $\widetilde{WF}[S^1]$, the classifying space of Milnor’s construction on S^1.

Examples

Let σ_i denote the usual generator for Artin braid group $B_{n+1} = \pi_1(B(D^2, n + 1))$ for $0 \leq i \leq n - 1$. (Note. Our counting always starts from 0. So σ_i really means σ_{i+1} in Birman’s book.) Write δ_i for the image of σ_i in $\pi_1(B(S^2, n + 1))$.

★ The Brunnian group $\text{Br}_4(S^2)$ is the free group of rank 5 generated by the braids δ_0^4, $\delta_0\delta_1\delta_0^{-1}$, $\delta_0^{-1}\delta_1^{-2}\delta_0^2\delta_1^{-1}$, $\delta_0\delta_1^{-2}\delta_0^2\delta_1\delta_0^{-1}$ and $\delta_0^{-1}\delta_1^4\delta_0$.

The pictures of these braids are as follows.

- Remark. By deleting the last trivial string of the 4-string braid $\delta_0^{-1}\delta_1^{-2}\delta_0^2\delta_1\delta_0^{-1}$ over S^2 we obtain the 3-string braid $\sigma_0^{-1}\sigma_1^{-2}\sigma_0^2\sigma_1\sigma_0^{-1}$ over D^2. In turn, closing up this 3-string braid gives a link that is readily seen to be the Borromean rings. This link corresponds to a Moore cycle in $F[S^1]_2$, where the Milnor construction $F[S^1]$ is the simplicial group model for ΩS^2, that represents the generator η_2 for $\pi_2(\Omega S^2) = \pi_3(S^2)$. In other words, the Hopf map $\eta_2 : S^3 \to S^2$ corresponds to the Borromean rings in this way.