
FROM CALCULUS TO TOPOLOGY

J. WU

In this topic, I explain some basic ideas in general topology. I assume that you have
been to take a calculus course. Let’s recall the definition of continuity: A function
f(x) is called continuous at a point x0 if for any ε > 0 there exists δ > 0 such that
|f(x) − f(x0)| < ε whenever |x − x0| < δ. This is so-called ε − δ language which
describes the intuitive idea that f(x) is continuous at x0 just means that f(x) should
approach to f(x0) when x approaches to x0, in other words the graph of f(x) must
be continuous in usual sense.

Now let us do some observations. First of all a function f(x) means that a function
from its domain, which is a subset of R in calculus we may assume that its domain is
an interval, to real numbers R. In the real world, a function may have more than one
variable, for instance the temperature depends on three variables, x, y, z, because our
space is 3-dimensional. If you want to measure certain economic event, this event may
depends on many factors. Each factor may be considered as one variable, then you
get a function which has many variables. On the other hand, the values of a function
may not be real numbers. For instance, the projection of a flight on the ground could
be considered as a function from points in the sky to points on the surface of our
earth. This function takes values in a sphere (our earth). Thus, mathematically, it
is very important to understand the continuity of more general functions. Now let’s
take this project and let’s keep ε− δ language in mind.

We assume that X and Y are JUST sets. Let f : X → Y be a function and let x0

be a point in X, that is, x0 is an element in X. Our intuitive idea for the continuity
is that f(x) must be sufficiently close to f(x0) when x is sufficiently close to x0.
Suppose that the elements in X and Y can be measured by ‘distance’. Then we can
apply our ε − δ language. More precisely, let d(x, y) denote the distance between
x and y. We have the definition of continuity: f(x) is called continuous at x0 for
any ε > 0 there exists δ > 0 such that d(f(x), f(x0)) < ε whenever d(x, x0) < δ.
Now what is distance? We need some basic (obvious) rules: d(x, y) = d(y, x) ≥ 0,
d(x, z) ≤ d(x, y) + d(y, z) and d(x, y) = 0 if and only if x = y. A set X together
with a distance d(−,−) is called a metric space. People then found out that most
theorems about continuity in calculus actually hold for functions from a metric space
to another metric space. One of the theorems states that
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A function f : X → Y between metric spaces is continuous if and only if the
preimage of any open set in Y under f is open in X.

A subset U of a metric space X is called open if for any point x0 in U there is a
small open disc centered at x0, {y|d(y, x0) < ε}, contained in U . For instance, an
open subset of R is a disjoint union of open intervals.

This theorem help us to understand continuity in even more general situation,
namely in the cases where distance may not be defined. Topology is introduced: Let
X be a set. A topology on X means a collection of subsets, so-called open sets, in
X that satisfies: 1) the empty set ∅ and the total set X are open; 2) any union of
open sets, including a union of infinitely members, is open; and 3) the intersection
of two open sets is open. A topological space X means a set X with a topology.
The theorem above is now used as the definition of a continuous function between
topological spaces, namely, a function f : X → Y between topological spaces is called
continuous if the preimage of any open set in Y under f is open in X, that is, f−1(U)
is open for any open set U in Y . In homotopy theory, usually a space means a
topological space and a map means a continuous function from a topological space to
a topological space. Again most results about continuity in calculus hold for functions
between topological spaces.

By using the terminology of topology, we can understand some “difficult” spaces
much better and we may also find new “spaces”. Below I just give few examples.
First let me explain so-called quotient topology. Let X be a topological space and
let Y be just a set with a onto function f : X → Y . The set Y can be regarded as
a quotient of X by making identification of elements in the preimage f−1(y) to the
one point y for each y in Y . Starting with X we can do many identification and
so we may obtain many quotient sets of X. Now the quotient topology on Y is: a
subset U of Y is called open if f−1(U) is open. This defines the largest topology on
Y such that the function f : X → Y is continuous. In other words any quotient of a
topological space is a topological space in a canonical way.

Now consider an example X = [0, 1], the unit closed interval. Let Y be the quotient
space of X by making identification of 0 with 1. Intuitively we obtain a circle because
the two ending points of X are putting together. As an exercise, one can prove that
the topological space Y is homeomorphic to the unit circle S1, where a space X is
called homeomorphic to Y is there is a one-to-onto continuous function f : X → Y
such that the inverse f−1 is also continuous. Let’s consider a similar example. Let
X = D2 be the unit disc in the plane. We can make the identification of the boundary
of D2, which is the unit circle, to be one point. Then we obtain a quotient space of
D2. Again as intuitive observation this quotient space is homeomorphic to the unit
sphere S2 in R3. Now we make the identification of the boundary S2 of the unit ball
D3 to be a point. The quotient space is then homeomorphic to the 3-dimensional
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sphere S3. Although it might be difficult to image the 3-dimensional sphere S3 in
our 3-dimensional space, we may just think that S3 is the quotient of the ball D3

by identifying the boundary to be a single point. The picture named Klein bottle
in the previous section is obtained by making an identification on the rectangle,
where one of two parallel sides is identified each other in the same direction and
another is identified in the opposite direction. The Klein bottle is NOT realizable in
our 3-dimensional space in the sense that we could not draw it, but we may simply
consider the Klein bottle as a quotient of a rectangle described above. There are
many important topological spaces that might be out of intuition. For instance, the
projective plane is the space of all lines in R3 through the origin. Similarly there
are higher dimensional projective spaces. Given two topological spaces X and Y we
obtain a topological space consisting of ALL continuous functions from X to Y . This
space is called a mapping space. It is really a large space, isn’t it?
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