1 A Chebyshev spectral method - 3 credits

Consider the following boundary value problem
\[u_{xx} + 4u_x + e^x u = \sin(8x) \]
\[u(-1) = u(1) = 0. \]
Solve this problem using a Chebyshev spectral method. Show the solution for different values of \(N \) (the number of terms in the polynomial expansion). Also, comment on and present the accuracy of the numerical solution.

2 Legendre-Gauss points - 4 credits

a) Write a code to find the Legendre-Gauss points \(\{x_j\}_{j=0}^N \) and the corresponding weights \(\{\omega_j\}_{j=0}^N \) for a given \(N > 0 \). Use the fact that the zeros (roots) of an orthogonal polynomial \(p_{N+1} \) generated by the recurrence relation
\[p_{k+1} = (a_k x - b_k) p_k - c_k p_{k-1}, \quad k \geq 0 \]
can be computed as the eigenvalues of a symmetric, tridiagonal matrix, see lecture notes from Lecture 4. Present the computed values of \(\{x_j\}_{j=0}^N \) and \(\{\omega_j\}_{j=0}^N \) for some values of \(N \).

b) The proposed method in a) is not always stable and can suffer from round-off errors as \(N \) gets large. As an alternative way of finding the Legendre-Gauss points/roots, we can use Newton’s method. That is, to find the roots of \(p_{N+1} \) we use the algorithm:
Given \(x_j^0 \)
\[x_j^{n+1} = x_j^n - \frac{p(x_j^n)}{p'(x_j^n)}, \quad n = 0, 1, 2 \ldots \]
for each of the \(N + 1 \) roots.
Write a code to compute the Legendre-Gauss points \(\{x_j\}_{j=0}^N \) using Newton’s method. Compare to your results in a) to make sure that your code is working. You need to think about how to find the starting values, \(x_j^0 \), for Newton’s method. Present your code/algorithm and the computed values of \(\{x_j\}_{j=0}^N \) for some values of \(N \).

c) Modify your code in b) such that you can use the code to compute the Legendre-Gauss-Lobatto points, \(\{x_j\}_{j=0}^N \), and the corresponding weights, \(\{\omega_j\}_{j=0}^N \), instead.
Verify that your result is correct by testing that any polynomial of degree \(k \leq 2N - 1 \) is integrated exactly by the quadrature rule
\[\int_{-1}^{1} p_k(x) dx = \sum_{j=0}^{N} p_k(x_j) \omega_j \]
Present the test as well as the computed values of \(\{x_j\}^N_{j=0} \) and \(\{\omega_j\}^N_{j=0} \) for some values of \(N \).

3 Legendre-Galerkin method - 4 credits

Solve the following boundary value problem with a Legendre-Galerkin method.
\[
\begin{align*}
 u_{xx} + u &= x^2 + x, \quad -1 < x < 1 \\
 u(-1) &= u(1) = 0
\end{align*}
\]
Show the solution for different values of \(N \) (the number of terms in the polynomial expansion). Also, comment on and present the accuracy of the numerical solution by e.g. comparing the approximate solution to the exact solution.

4 Helmholtz equation in 2D - 4 credits

Solve the Helmholtz equation
\[
\begin{align*}
 u_{xx} + u_{yy} + k^2u &= f(x, y), \quad -1 < x < 1, \quad -1 < y < 1 \\
 u(-1, y) &= u(1, y) = u(x, -1) = u(x, 1) = 0,
\end{align*}
\]
where \(k = 9 \) and \(f(x, y) = e^{-10[(y-1)^2+(x-0.5)^2]} \) using a spectral method. Present a plot of the solution and comment on the accuracy.