Some Problems on Linear Preservers

Wang F.¹ and Tan V.²

Department of Mathematics, National University of Singapore,
Singapore 117543

INTRODUCTION

Let \(\mathbf{M}(\mathcal{F}) \) be a space of matrices over the field \(\mathcal{F} \) and \(T: \mathbf{M}(\mathcal{F}) \to \mathbf{M}(\mathcal{F}) \) be a linear operator. A common problem considered in linear algebra is called a preserver problem. That is, characterize the linear operators which preserve a function or a set. We say \(T \) preserves a function \(f: \mathbf{M}(\mathcal{F}) \to \mathcal{F} \) if \(f(A) = f(T(A)) \) for all \(A \in \mathbf{M}(\mathcal{F}) \). We say \(T \) preserves a subset \(K \in \mathbf{M}(\mathcal{F}) \) if \(T(A) \in K \) for all \(A \in K \). In this report, we will review the history of linear preserver, and give two new theorem on determinant preservers.

LINEAR RANK-1 PRESERVERS ON \(\mathbf{M}_n(\mathbb{C}) \)

Linear Rank-1 Preservers

Let \(T \) be a linear operator on \(\mathbf{M}_n(\mathbb{C}) \). \(T \) is called a rank-1 preserver if \(\text{rank}(A) = 1 \) whenever \(\text{rank}(T(A)) = 1 \). In 1959, Marcus and Moyls characterized the general form of it: Suppose \(T \) is a linear rank-1 preserver on \(\mathbf{M}_n(\mathbb{C}) \). Then there exist invertible matrices \(P \) and \(Q \), such that either \(T(A) = PAQ \) for all \(A \in \mathbf{M}_n(\mathbb{C}) \), or \(T(A) = PA^TQ \) for all \(A \in \mathbf{M}_n(\mathbb{C}) \). This is one of the most powerful theorem on preserver problems, and we will use it to prove some interesting results of linear preservers on \(\mathbf{M}_n(\mathbb{C}) \)

Linear Determinant Preservers

Let \(T \) be a linear operator on \(\mathbf{M}_n(\mathbb{C}) \). \(T \) is called a determinant preserver if \(\det(A) = \det(T(A)) \) for all \(A \in \mathbf{M}_n(\mathbb{C}) \). In fact, this is the first problem on preserver problems, which is proved by Ferdinand Georg Frobenius (1849-1917) on 1897. He proved that: Let \(T \) be a linear determinant preserver on \(\mathbf{M}_n(\mathbb{C}) \). Then there exist invertible matrix \(P \) and \(Q \), with \(\det(PQ) = 1 \), such that either \(T(A) = PAQ \) for all \(A \in \mathbf{M}_n(\mathbb{C}) \), or \(T(A) = PA^TQ \) for all \(A \in \mathbf{M}_n(\mathbb{C}) \). In this section, we claimed that a linear determinant is also a rank-1 preserver, and then proved it by using the theorem of Marcus and Moyls on linear rank-1 preserver. We also proved that a linear operator \(T \) on \(\mathbf{M}_n(\mathbb{C}) \)

¹ Student
² Assistant Professor
is a determinant-trace preserver if and only if it is a characteristic polynomial preserver. Here, the linear operator \(T \) is called a determinant-trace preserver if \(A \) and \(T(A) \) have the same determinant and trace; and it is called a characteristic polynomial preserver if \(A \) and \(T(A) \) have the same characteristic polynomial. Frobenius is also the first mathematician who proved this theorem: Suppose \(T \) is a linear characteristic polynomial preserver on \(\mathbb{M}_n(\mathbb{C}) \). Then there exists an invertible matrix \(P \) such that, either \(T(A) = P A P^{-1} \) for all \(A \in \mathbb{M}_n(\mathbb{C}) \), or \(T(A) = P^T A P^{-1} \) for all \(A \in \mathbb{M}_n(\mathbb{C}) \).

Linear Preservers of Nonnegative Matrices

The theorem of linear rank-1 preserver can be used for classification on some linear preserver problem. In this section, we introduced two of them:

1. Suppose \(T \) is a linear determinant-trace preserver on \(\mathbb{M}_n(\mathbb{C}) \) which maps nonnegative matrices into nonnegative matrices. Then there exists a generalized permutation matrix \(P \) such that either \(T(A) = P A P^{-1} \) for all \(A \in \mathbb{M}_n(\mathbb{C}) \), or \(T(A) = P^T A P^{-1} \) for all \(A \in \mathbb{M}_n(\mathbb{C}) \).

2. Suppose \(T \) is a linear determinant-trace preserver on \(\mathbb{M}_n(\mathbb{C}) \) which maps nonnegative integer matrices into nonnegative integer matrices. Then there exists a permutation matrix \(P \) such that either \(T(A) = P A P^{-1} \) for all \(A \in \mathbb{M}_n(\mathbb{C}) \), or \(T(A) = P^T A P^{-1} \) for all \(A \in \mathbb{M}_n(\mathbb{C}) \).

DETERMINANT PRESERVERS WITH \(\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \)

Determinant Preservers on \(\mathbb{M}_n(\mathbb{C}) \) with \(\det(A+\lambda B)=\det(T(A)+\lambda T(B)) \)

In the theorem of linear determinant preservers by Frobenius, it requires that the operator \(T \) is linear. However, the linearity is very strong as we use it heavily throughout the proof. An interesting result is that “can we replace the ‘linearity’ by a weaker condition?” In 2002, Dolinar and Šemrl proved that if \(T \) is a surjective operator on \(\mathbb{M}_n(\mathbb{C}) \) satisfying \(\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \) for all \(A, B \in \mathbb{M}_n(\mathbb{C}) \) and \(\lambda \in \mathbb{C} \), then \(T \) is linear. In this section, we weaken this condition again. We proved that we can remove that “surjective” assumption. That is, if \(T \) is an operator on \(\mathbb{M}_n(\mathbb{C}) \) satisfying \(\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \) for all \(A, B \in \mathbb{M}_n(\mathbb{C}) \) and \(\lambda \in \mathbb{C} \), then \(T \) is linear.

Consequences of Theorem 2.3

In the last section, we showed that the property \(\det(A + \lambda B) = \det(T(A) + \lambda T(B)) \) for all \(A, B \in \mathbb{M}_n(\mathbb{C}) \) and \(\lambda \in \mathbb{C} \) is equivalent to that “\(T \) is linear and preserves the determinant”. Therefore, by using the Frobenius’ theorem on linear determinant preserver stated in Chapter 1, we immediately can get some interesting consequences:
1. Let T be an operator on $M_n(\mathbb{C})$ satisfying $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$ for all $A, B \in M_n(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Suppose T is a trace preserver. Then there exists an invertible matrix P such that, either $T(A) = PAP^{-1}$ for all $A \in M_n(\mathbb{C})$, or $T(A) = PA^TP^{-1}$ for all $A \in M_n(\mathbb{C})$.

2. Let T be an operator on $M_n(\mathbb{C})$ satisfying $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$ for all $A, B \in M_n(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Suppose T is a trace preserver, and T maps nonnegative matrices into nonnegative matrices. Then there exists a generalized permutation matrix P such that either $T(A) = PAP^{-1}$ for all $A \in M_n(\mathbb{C})$, or $T(A) = PA^TP^{-1}$ for all $A \in M_n(\mathbb{C})$.

3. Let T be an operator on $M_n(\mathbb{C})$ satisfying $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$ for all $A, B \in M_n(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Suppose T is a trace preserver, and T maps nonnegative integer matrices into nonnegative integer matrices. Then there exists a permutation matrix P such that either $T(A) = PAP^{-1}$ for all $A \in M_n(\mathbb{C})$, or $T(A) = PA^TP^{-1}$ for all $A \in M_n(\mathbb{C})$.

Determinant Preservers on U_n with $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$

It is known that if T is a linear determinant preserver on U_n, then $[T(A)]_{ii} = c_i(A)_{\sigma(i)\sigma(i)}$ for some scalar c_1, \cdots, c_n with $\prod_{i=1}^n c_i = 1$ and permutation σ of $\{1, \cdots, n\}$. In this section, we generalized the theorem, and showed that if T is an operator on U_n satisfying $\det(A + \lambda B) = \det(T(A) + \lambda T(B))$ for all $A, B \in U_n$ and $\lambda \in \mathbb{C}$, then there exists scalar c_1, \cdots, c_n with $\prod_{i=1}^n c_i = 1$ and permutation σ of $\{1, \cdots, n\}$ such that $[T(A)]_{ii} = c_i(A)_{\sigma(i)\sigma(i)}$ for all $i = 1, \cdots, n$.

LINEAR RANK-1 PRESERVERS ON \mathcal{H}_n

Some Preliminary Lemmas

Not only for $M_n(\mathbb{C})$, we are also interested in classifying the general form of linear preservers on some other space. For example, \mathcal{H}_n, the space of hermitian matrices. In 1986, Johnson and Pierce proved that, if the linear invertible operation T is a rank-1 preserver on \mathcal{H}_n, then either $T(A) = \varepsilon SAS_H$, $A \in \mathcal{H}_n$ or $T(A) = \varepsilon SA^TS_H$, $A \in \mathcal{H}_n$ for some invertible S and $\varepsilon \in \{1, -1\}$. In this section, we proved some preliminary lemmas.
Linear Rank-1 Preservers on \mathcal{H}_n

In this section, we generalized the result by Johnson and Pierce: let T be a linear rank-1 preserver on \mathcal{H}_n. Suppose there is a hermitian matrix whose image is invertible. Then there exists an invertible matrix S and $\varepsilon \in \{1, -1\}$ such that either $T(A) = \varepsilon SAS^H$ for all $A \in \mathcal{H}_n$ or $T(A) = \varepsilon SA^T S^H$ for all $A \in \mathcal{H}_n$. Then, we use this result to get a more general result, which is first proven by Raphael Loewy in 1987: let T be a linear rank-1 preserver on \mathcal{H}_n with $\text{rank}(T) \geq 2$. Then there exists an invertible matrix S and $\varepsilon \in \{1, -1\}$ such that either $T(A) = \varepsilon SAS^H$ for all $A \in \mathcal{H}_n$ or $T(A) = \varepsilon SA^T S^H$ for all $A \in \mathcal{H}_n$.

REFERENCES