The Poincaré Conjecture One Hundred Years Later

The topology of 2-dimensional manifolds or surfaces was well understood in the 19-th century. In fact there is a simple list of all possible smooth compact orientable surfaces. Any such surface has a well defined genus $g \geq 0$, which can be described intuitively as the number of holes; and two such surfaces can be put into a smooth one-to-one correspondence with each other if and only if they have the same genus.\footnote{For definitions and other background material, see for example Massey, or Munkres 1975, as well as Thurston 1997. (Names in small caps refer to the list of references at the end.)}

![Figure 1. Sketches of smooth surfaces of genus 0, 1, and 2.](image)

The corresponding question in higher dimensions is much more difficult. Henri Poincaré was perhaps the first to try to make a similar study of 3-dimensional manifolds. The most basic example of such a manifold is the 3-dimensional unit sphere, that is, the locus of all points (x, y, z, w) in 4-dimensional Euclidean space which have distance exactly one from the origin:

$$x^2 + y^2 + z^2 + w^2 = 1.$$

He noted that a distinguishing feature of the 2-dimensional sphere is that every simple closed curve in the sphere can be deformed continuously to a point without leaving the sphere. In 1904, he asked a corresponding question in dimension three. In more modern language, it can be phrased as follows:\footnote{See Poincaré, pages 498 and 370. To Poincaré, manifolds were always smooth or polyhedral, so that his term “homeomorphism” referred to a smooth or piecewise linear homeomorphism.}

If a compact 3-dimensional manifold M^3 has the property that every simple closed curve within the manifold can be deformed continuously to a point, does it follow that M^3 is homeomorphic to the sphere S^3?

He commented, with considerable foresight, “Mais cette question nous entraînerait trop loin”. Since then, the hypothesis that every simply-connected closed 3-manifold is homeomorphic to the 3-sphere has been known as the Poincaré Conjecture. It has inspired topologists ever since, and attempts to prove it have led to many advances in our understanding of the topology of manifolds.

Early Missteps.

From the first, the apparently simple nature of this statement has led mathematicians to overreach. Four years earlier in 1900, Poincaré himself had been the first to err, stating a false theorem which can be phrased as follows:\footnote{2, 3}

Every compact polyhedral manifold with the homology of an n-dimensional sphere is actually homeomorphic to the n-dimensional sphere.

If a compact 3-dimensional manifold M^3 has the property that every simple closed curve within the manifold can be deformed continuously to a point, does it follow that M^3 is homeomorphic to the sphere S^3?

He commented, with considerable foresight, “Mais cette question nous entraînerait trop loin”. Since then, the hypothesis that every simply-connected closed 3-manifold is homeomorphic to the 3-sphere has been known as the Poincaré Conjecture. It has inspired topologists ever since, and attempts to prove it have led to many advances in our understanding of the topology of manifolds.

Early Missteps.

From the first, the apparently simple nature of this statement has led mathematicians to overreach. Four years earlier in 1900, Poincaré himself had been the first to err, stating a false theorem which can be phrased as follows:\footnote{2, 3}

Every compact polyhedral manifold with the homology of an n-dimensional sphere is actually homeomorphic to the n-dimensional sphere.
But his 1904 paper provided a beautiful counterexample to this claim, based on the concept of fundamental group, which he had introduced earlier. (See Poincaré, pp. 189-192 and 193-288.) This example can be described geometrically as follows. Consider all possible regular icosahedra, inscribed in the 2-dimensional unit sphere. In order to specify one particular icosahedron in this family, we must provide three parameters. For example, two parameters are needed to specify a single vertex on the sphere, and then another parameter to specify the direction to a neighboring vertex. Thus each such icosahedron can be considered as a single “point” in the 3-dimensional manifold \(M^3 \) consisting of all such icosahedra. This manifold meets Poincaré’s preliminary criterion: By the methods of homology theory, it cannot be distinguished from the 3-dimensional sphere. However, he could prove that it is not a sphere by constructing a simple closed curve which cannot be deformed to a point within \(M^3 \). The construction is not difficult: Choose some representative icosahedron and consider its images under rotation about one vertex through angles \(0 \leq \theta \leq 2\pi/5 \). This defines a simple closed curve in \(M^3 \) which cannot be deformed to a point.

![Figure 2. The Whitehead link.](image)

The next important false theorem was by Henry Whitehead in 1934. As part of a purported proof of the Poincaré Conjecture, he claimed the sharper statement that every open 3-dimensional manifold which is contractible (that is, which can be continuously deformed to a point) is homeomorphic to Euclidean space. Following in Poincaré’s footsteps, he then substantially increased our understanding of the topology of manifolds by discovering a counterexample to his own theorem. His counterexample can be briefly described as follows. Start with two disjoint solid tori \(T_0 \) and \(\tilde{T}_1 \) in the 3-sphere which are embedded as shown in Figure 2, so that each one individually is unknotted, but so that the two are linked together with linking number zero. Since \(\tilde{T}_1 \) is unknotted, its complement \(T_1 = S^3 \setminus \text{interior}(\tilde{T}_1) \) is another unknotted solid torus which contains \(T_0 \). Choose a homeomorphism \(h \) of the 3-sphere which maps \(T_0 \) onto this larger solid torus \(T_1 \). Then we can inductively construct an increasing sequence of unknotted solid tori

\[
 T_0 \subset T_1 \subset T_2 \subset \cdots
\]

in \(S^3 \) by setting \(T_{j+1} = h(T_j) \). The union \(M^3 = \bigcup T_j \) of this increasing sequence is the required Whitehead counterexample, a contractible manifold which is not homeomorphic to Euclidean space. To see that \(\pi_1(M^3) = 0 \), note that every closed loop in \(T_0 \) can be shrunk to a point (after perhaps crossing through itself) within the larger solid torus \(T_1 \). But every

4 In more technical language, this \(M^3 \) can be defined as the coset space \(SO(3)/I_{60} \) where \(SO(3) \) is the group of all rotations of Euclidean 3-space and where \(I_{60} \) is the subgroup consisting of the 60 rotations which carry a standard icosahedron to itself. The fundamental group \(\pi_1(M^3) \), consisting of all homotopy classes of loops from a point to itself within \(M^3 \), is a perfect group of order 120.
closed loop in M^3 must be contained in some T_j, and hence can be shrunk to a point within $T_{j+1} \subset M^3$. On the other hand, M^3 is not homeomorphic to Euclidean 3-space since, if $K \subset M^3$ is any compact subset which is large enough to contain T_0, one can prove that the difference set $M^3 \setminus K$ is not simply connected.

Since this time, many false proofs of the Poincaré Conjecture have been proposed, some of them relying on errors which are rather subtle and difficult to detect. For a delightful presentation of some of the pitfalls of 3-dimensional topology, see Bing.

Higher Dimensions.

The late 1950’s and early 1960’s saw an avalanche of progress with the discovery that higher dimensional manifolds are actually easier to work with than 3-dimensional ones. One reason for this is the following: The fundamental group plays an important role in all dimensions even when it is trivial, and relations between generators of the fundamental group correspond to 2-dimensional disks, mapped into the manifold. In dimension 5 or more, such disks can be put into general position so that they are disjoint from each other, with no self-intersections, but in dimension 3 or 4 it may not be possible to avoid intersections, leading to serious difficulties.

Stephen Smale announced a proof of the Poincaré Conjecture in high dimensions in 1960. He was quickly followed by John Stallings, who used a completely different method, and by Andrew Wallace, who had been working along lines quite similar to those of Smale.

Let me first describe the Stallings result, which has a weaker hypothesis and easier proof, but also a weaker conclusion. He assumed that the dimension is seven or more, but Christopher Zeeman later extended his argument to dimensions five and six.

Stallings-Zeeman Theorem. If M^n is a finite simplicial complex of dimension $n \geq 5$ which has the homotopy type of the sphere S^n and is locally piecewise linearly homeomorphic to the Euclidean space \mathbb{R}^n, then M^n is homeomorphic to S^n under a homeomorphism which is piecewise linear except at a single point. In other words, the complement $M^n \setminus \text{(point)}$ is piecewise linearly homeomorphic to \mathbb{R}^n.

The method of proof consists of pushing all of the difficulties off towards a single point; hence there can be no control near that point.

The Smale proof, and the closely related proof given shortly afterwards by Wallace, depended rather on differentiable methods, building a manifold up inductively, starting with an n-dimensional ball, by successively adding handles. Here a k-handle can be added to a manifold M^n with boundary by first attaching a k-dimensional cell, using an attaching homeomorphism from the $(k-1)$-dimensional boundary sphere into the boundary of M^n, and then thickening and smoothing corners so as to obtain a larger manifold with boundary. The proof is carried out by rearranging and canceling such handles. (Compare the presentation in Milnor, Siebenmann and Sondow.)

5 In order to check that a manifold M^n has the same homotopy type as the sphere S^n, we must check not only that it is simply-connected, $\pi_1(M^n) = 0$, but also that it has the same homology as the sphere. The example of the product $S^2 \times S^2$ shows that it is not enough to assume that $\pi_1(M^n) = 0$ when $n > 3$.

3
Smale Theorem. If M^n is a differentiable homotopy sphere of dimension $n \geq 5$, then M^n is homeomorphic to S^n. In fact M^n is diffeomorphic to a manifold obtained by gluing together the boundaries of two closed n-balls under a suitable diffeomorphism.

This was also proved by Wallace, at least for $n \geq 6$. (It should be noted that the 5-dimensional case is particularly difficult.)

The much more difficult 4-dimensional case had to wait twenty years, for the work of Michael Freedman. Here the differentiable methods used by Smale and Wallace and the piecewise linear methods used by Stallings and Zeeman do not work at all. Freedman used wildly non-differentiable methods, not only to prove the 4-dimensional Poincaré Conjecture for topological manifolds, but also to give a complete classification of all closed simply-connected topological 4-manifolds. The integral cohomology group H^2 of such a manifold is free abelian. Freedman needed just two invariants: The cup product $\beta : H^2 \otimes H^2 \to H^4 \cong \mathbb{Z}$ is a symmetric bilinear form with determinant ± 1, while the Kirby-Siebenmann invariant κ is an integer mod 2 which vanishes if and only if the product manifold $M^4 \times \mathbb{R}$ can be given a differentiable structure.

Freedman Theorem. Two closed simply-connected 4-manifolds are homeomorphic if and only if they have the same bilinear form β and the same Kirby-Siebenmann invariant κ. Any β can be realized by such a manifold. If $\beta(x \otimes x)$ is odd for some $x \in H^2$, then either value of κ can be realized also. However, if $\beta(x \otimes x)$ is always even, then κ is determined by β, being congruent to one eighth of the signature of β.

In particular, if M^4 is a homotopy sphere, then $H^2 = 0$ and $\kappa = 0$, so M^4 is homeomorphic to S^4. It should be noted that the piecewise linear or differentiable theories in dimension 4 are much more difficult. It is not known whether every smooth homotopy 4-sphere is diffeomorphic to S^4; it is not known which 4-manifolds with $\kappa = 0$ actually possess differentiable structures; and it is not known when this structure is essentially unique. The major results on these questions are due to Simon Donaldson. As one indication of the complications, Freedman showed, using Donaldson’s work, that \mathbb{R}^4 admits uncountably many inequivalent differentiable structures. (Compare Gompf.)

In dimension three, the discrepancies between topological, piecewise linear, and differentiable theories disappear (see Hirsch, Munkres 1960, and Moise). However, difficulties with the fundamental group become severe.

The Thurston Geometrization Conjecture.

In the 2-dimensional case, each smooth compact surface can be given a beautiful geometrical structure, as a round sphere in the genus zero case, as a flat torus in the genus one case,
and as a surface of constant negative curvature when the genus is two or more. A far reaching
conjecture by William Thurston in 1983 claims that something similar is true in dimension three. This conjecture asserts that every compact orientable 3-dimensional manifold can be
cut up along 2-spheres and tori so as to decompose into essentially unique pieces, each of
which has a simple geometrical structure. There are eight possible 3-dimensional geometries
in Thurston’s program. Six of these are now well understood,\(^6\) and there has been a great
deal of progress with the geometry of constant negative curvature.\(^7\) However, the eighth
geometry, corresponding to constant positive curvature, remains largely untouched. For this
geometry, we have the following extension of the Poincaré Conjecture.

Thurston Elliptization Conjecture. *Every closed 3-manifold with finite funda-
mental group has a metric of constant positive curvature, and hence is home-
omorphic to a quotient \(S^3/\Gamma\), where \(\Gamma \subset SO(4)\) is a finite group of rotations
which acts freely on \(S^3\).*

The Poincaré Conjecture corresponds to the special case where the group \(\Gamma \cong \pi_1(M^3)\)
is trivial. The possible subgroups \(\Gamma \subset SO(4)\) were classified long ago by Hopf (compare
Milnor [1957]), but this conjecture remains wide open.

Approaches through Differential Geometry and Differential Equations\(^8\)

In recent years there have been several attacks on the geometrization problem (and hence
on the Poincaré Conjecture) based on a study of the geometry of the infinite dimensional
space consisting of all Riemannian metrics on a given smooth 3-dimensional manifold.

By definition, the length of a path \(\gamma\) on a Riemannian manifold is computed, in terms
of the *metric tensor* \(g_{ij}\), as the integral \(\int_\gamma ds = \int_\gamma \sqrt{\sum g_{ij} dx^i dx^j}\). From the first and second
derivatives of this metric tensor, one can compute the *Ricci curvature tensor* \(R_{ij}\), and the
scalar curvature \(R\). (As an example, for the flat Euclidean space one gets \(R_{ij} = R = 0\),
while for a round 3-dimensional sphere of radius \(r\), one gets Ricci curvature \(R_{ij} = 2g_{ij}/r^2\)
and scalar curvature \(R = 6/r^2\).)

One approach by Michael Anderson, based on ideas of Hidehiko Yamabe, studies the
total scalar curvature \(\int\int_M 3 R dV\) as a functional on the space of all smooth unit volume Rie-
mannian metrics. The critical points of this functional are the metrics of constant curvature.
(See Anderson [1999-2003].)

A different approach, initiated by Richard Hamilton studies the *Ricci flow*, that is, the
solutions to the differential equation

\[
\frac{dg_{ij}}{dt} = -2R_{ij}.
\]

In other words, the metric is required to change with time so that distances decrease in
directions of positive curvature. This is essentially a parabolic differential equation, and
behaves much like the heat equation which is studied by physicists: If we heat one end of
a cold rod, then the heat will gradually flow throughout the rod until it attains an even

\(^6\) See for example Gordon and Heil, Auslander and Johnson, Scott, Tukia, Gabai 1992, and Casson
and Jungreis.

\(^7\) See Sullivan, Morgan, Thurston 1986, McMullen, and Otal. The pioneering papers by Haken and
Waldhausen provided the basis for much of this work.

\(^8\) Added in 2004
temperature. Similarly, a naive hope for 3-manifolds with finite fundamental group might have been that, under the Ricci flow, positive curvature would tend to spread out until, in the limit (after rescaling to constant size), the manifold would attain constant curvature. If we start with a 3-manifold of positive Ricci curvature, Hamilton was able to carry out this program and construct a metric of constant curvature, thus solving a very special case of the Elliptization Conjecture. However, in the general case there are very serious difficulties, since this flow may tend towards singularities.\footnote{Grisha Perelman, in St. Petersburg, has posted three preprints on arXiv.org which go a long ways towards resolving these difficulties, and in fact claim to prove the full geometrization conjecture. These preprints have generated a great deal of interest. (Compare Anderson [2004], and Milnor [2003], as well as the website http://www.math.lsa.umich.edu/research/ricciflow/perelman.html, organized by B. Kleiner and J. Lott.) However, full details have not appeared.}

I want to thank the many mathematicians who helped me with this report.

John Milnor, Stony Brook University
May 2000, revised June 2004

References.

D. Gillman and D. Rolfsen, \textit{The Zeeman conjecture for standard spines is equivalent to the Poincaré conjecture}, Topology 22 (1983), no. 3, 315–323.

———, *There are no fake Seifert fibre spaces with infinite \(\pi_1 \)*, Annals of Math. 117 (1983) 35-70

(Note: For a representative collection of attacks on the Poincaré Conjecture, see Papakyriakopoulos, Birman, Jakobsche, Thickstun, Gillman and Rolfsen, Gabai 1995, Rourke, and Poénaru.)