1 Brownian motion: characterization

Brownian motion is named after the botanist Robert Brown, who first observed seemingly random motion of pollen grains suspended in fluids. A rigorous mathematical construction of Brownian motion was first given by Norbert Wiener, and for this reason, Brownian motion is also known as the Wiener process.

Theorem 1.1 [Characterization of Brownian motion] There exists a real-valued stochastic process \((B_t)_{t \geq 0}\), called the (one-dimensional) standard Brownian motion, whose law is uniquely characterized by the following properties:

(i) \(B\) has independent increments, i.e., for any \(t_0 < t_1 < \cdots < t_n < \infty\), \(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_n} - B_{t_{n-1}}\) are independent.

(ii) \(B_0 = 0\), and for any \(0 \leq s < t\), \(B_t - B_s\) is distributed as a centered Gaussian random variable with variance \(t - s\).

(iii) Almost surely, \(B_t\) is continuous in \(t\).

Because \(B_t\) is almost surely continuous in \(t\), Brownian motion can also be regarded as a random variable taking values in the space of continuous functions \(C([0, \infty), \mathbb{R})\), which we equip with the topology of uniform convergence on compact sets, which in turn generates a Borel \(\sigma\)-algebra. On \(C([0, T], \mathbb{R})\) for finite \(T\), we simply use the sup-norm topology.

One may wonder why don’t we regard Brownian motion as a random variable taking values in the space of real-valued measurable functions defined on \([0, \infty)\), for which the natural \(\sigma\)-algebra is the one generated from the coordinate maps \(t : f \to f(t) \in \mathbb{R}\) for \(t \geq 0\)? The reason is that in such a \(\sigma\)-algebra, every measurable set is determined by the values of the functions at at most a countable number of coordinates, and the set of continuous functions is not even measurable!

Theorem 1.1 can be proved by first constructing \(B_t\) for \(t \in Q_2 := \{m2^{-n} : m, n \geq 0\}\), which is possible by Kolmogorov’s extension theorem. The hard part is then to show that \((B_t)_{t \in Q_2}\) is almost surely uniformly continuous on \([0, T] \cap Q_2\) for any \(0 < T < \infty\), which allows the extension of \(B_t\) from \(t \in Q_2\) to a continuous function on \([0, \infty)\). We will give a proof below, which will furthermore establish that Brownian motion is almost surely H"older continuous with exponent \(\gamma\) for any \(\gamma < 1/2\).

Because \(B\) has independent Gaussian increments, the finite-dimensional distributions of \(B\), i.e., the law of \((B_{t_1}, \ldots, B_{t_n})\) for any \(0 \leq t_1 < \cdots < t_n < \infty\), are multivariate normal distributions. This qualifies \(B\) as a Gaussian process. A continuous Gaussian process is uniquely determined by its finite-dimensional distributions, while multivariate normal distributions are uniquely determined by their covariance matrices — recall that if \(\vec{X} := (X_1, \ldots, X_d) \in \mathbb{R}^d\) has multivariate normal distribution with mean \(E[X_i] = 0\) and covariance matrix \(E[X_iX_j] = C_{ij}\) for \(1 \leq i, j \leq d\), then \(\vec{X}\) has distribution \(\frac{1}{(2\pi)^{d/2} \text{det}(C)^{1/2}} e^{-\frac{1}{2} \vec{x}^\top C^{-1} \vec{x}} d\vec{x}\) on \(\mathbb{R}^d\). Therefore we have the following alternative characterization of Brownian motion.
Theorem 1.2 [Brownian motion as a Gaussian process] The law of a standard Brownian motion \((B_t)_{t \geq 0}\) is uniquely determined by the following properties:

(i) \((B_t)_{t \geq 0}\) is a Gaussian process, i.e., its finite-dimensional distributions are multi-variate normal.

(ii) \(E[B_s] = 0\) and \(E[B_sB_t] = s\) for all \(0 \leq s \leq t < \infty\).

(iii) Almost surely, \(B_t\) is continuous in \(t\).

We now collect some properties of Brownian motion. First some invariance properties.

Theorem 1.3 [Invariance properties] Let \(B := (B_t)_{t \geq 0}\) be a standard Brownian motion. Then \(B\) satisfies the following invariance properties:

1. [Translation] For any \(t_0 \geq 0\), \((B_{t_0} + t - B_{t_0})_{t \geq 0}\) is equally distributed with \((B_t)_{t \geq 0}\).

2. [Diffusive scaling] For any \(a > 0\), \((B_{at}/\sqrt{a})_{t \geq 0}\) is equally distributed with \((B_t)_{t \geq 0}\).

3. [Time inversion] \(X_t := tB_1/\sqrt{t}\) with \(X_0 := 0\) is equally distributed with \((B_t)_{t \geq 0}\).

Proof. (1) and (2) follow easily by verifying that Properties (i)–(iii) in Theorem 1.1 are all preserved by translation and diffusive scaling. For (3), note that \((B_t)_{t > 0}\) and \((tB_1/\sqrt{t})_{t > 0}\) are both continuous Gaussian processes, whose laws are uniquely determined by their finite dimensional distributions, and in turn by their covariances. Since for all \(0 < s < t < \infty\),

\[
E[B_sB_t] = s, \\
E[sB_1/sB_1/t] = st - t^{-1} = s,
\]

\((tB_1/t)_{t > 0}\) and \((B_t)_{t > 0}\) must be equally distributed, and so are \((tB_1/t)_{t \geq 0}\) and \((B_t)_{t \geq 0}\). □

2 Brownian motion: path properties

Next we list some almost sure path properties for the standard Brownian motion.

Theorem 2.1 [Path properties] Let \((B_t)_{t \geq 0}\) be a standard Brownian motion. Then almost surely,

(i) \((B_t)_{t \in [0,1]}\) is Hölder continuous with exponent \(\gamma\) for any \(\gamma < 1/2\), i.e.,

\[
\sup_{0 \leq s < t \leq 1} \frac{|B_t - B_s|}{|t-s|^\gamma} < \infty. \tag{2.1}
\]

(ii) \((B_t)_{t \in [0,1]}\) is not Hölder continuous with exponent \(\gamma\) for any \(\gamma \geq 1/2\), i.e.,

\[
\sup_{0 \leq s < t \leq 1} \frac{|B_t - B_s|}{|t-s|^\gamma} = \infty. \tag{2.2}
\]

Furthermore, \((B_t)_{t \geq 0}\) is not Hölder continuous at any point \(t \geq 0\) with exponent \(\gamma\) for any \(\gamma > 1/2\), i.e.,

\[
\limsup_{s \to t} \frac{|B_s - B_t|}{|s-t|^\gamma} = \infty \quad \text{for all } t \geq 0 \text{ and } \gamma > \frac{1}{2}. \tag{2.3}
\]

In particular, \((B_t)_{t \geq 0}\) is almost surely nowhere differentiable.
(iii) [Law of the iterated logarithm]

\[
\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}} = \limsup_{t \to 0} \frac{B_t}{\sqrt{2t \log \log \frac{1}{t}}} = 1, \\
\liminf_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}} = \liminf_{t \to 0} \frac{B_t}{\sqrt{2t \log \log \frac{1}{t}}} = -1.
\] (2.4)

In particular, \((B_t)_{t \geq 0}\) visits every point in \(\mathbb{R}\) infinitely often.

Remark 2.2 Although \((B_t)_{t \geq 0}\) is a.s. nowhere differentiable, its distributional derivative \(\dot{B}_t\) can be defined via

\[
\int_0^\infty \dot{B}_t f(t) dt := -\int_0^\infty B(t) f'(t) dt \quad \text{for all } f \in C_c^\infty([0, \infty), \mathbb{R}).
\]

This random distribution \(\dot{B}_t\) is called White Noise. The fact that \((B_t)_{t \geq 0}\) has stationary independent increments implies \(\dot{B}_t\) is translation invariant and independent in time. More precisely, for any \(f, g \in C_c^\infty((0, \infty), \mathbb{R})\), the random variable \(\int f(t) \dot{B}_t dt\) is equally distributed with \(\int f(t + x) \dot{B}_t dt\) for any \(x > 0\), and if \(g\) has disjoint support from \(f\), then \(\int f(t) \dot{B}_t dt\) and \(\int g(t) \dot{B}_t dt\) are independent. In fact \(\int f(t) \dot{B}_t dt\) is a Gaussian random variable with mean 0 and variance \(\int f(t)^2 dt\). The map \(f \mapsto \int f(t) \dot{B}_t dt\) is an isometry from \(L_2(\mathbb{R}) \to L_2(\Omega, \mathcal{F}, \mathbb{P})\), and hence we can construct the stochastic integral \(\int f(t) \dot{B}_t dt\) for a general \(f \in L_2(\mathbb{R})\) by first constructing it for \(f(t) = 1_{[a, b]}(t)\) and linear combinations of such indicator functions, and then take closure in \(L_2(\Omega, \mathcal{F}, \mathbb{P})\).

The key to proving the a.s. Hölder continuity of a Brownian motion is the following.

Theorem 2.3 [Kolmogorov’s Moment Criterion] Let \(X\) be a real-valued stochastic process indexed by \(\mathbb{Q}_2 = \{m2^{-n} : m, n \geq 0\}\). If for some \(\alpha, \beta > 0\),

\[
\mathbb{E}|X_t - X_s|^\beta \leq K|t - s|^{1 + \alpha} \quad \forall s, t \in \mathbb{Q}_2 \cap [0, 1], \tag{2.5}
\]

then for any \(0 < \gamma < \frac{\alpha}{2}\), almost surely there exists \(C := C(\omega) \in (0, \infty)\) such that

\[
|X_q - X_r| \leq C|q - r|^{\gamma} \quad \forall q, r \in \mathbb{Q}_2 \cap [0, 1]. \tag{2.6}
\]

In particular, \(X\) can be extended almost surely to a continuous process indexed by \([0, 1]\), such that (2.6) holds for any \(q, r \in [0, 1]\).

Proof. Fix \(0 < \gamma < \frac{\alpha}{2}\). Let \(D_n := \{i2^{-n} : 0 \leq i \leq 2^n\}\). For any \(s := i2^{-n} < t := j2^{-n} \in D_n\), by (2.5) and Chebychev inequality,

\[
\mathbb{P}(|X_t - X_s| > |t - s|^{\gamma}) \leq K|t - s|^{1 + \alpha - \beta \gamma} = K|i - j|^{1 + \alpha - \beta \gamma}2^{-n(1 + \alpha - \beta \gamma)}. \tag{2.7}
\]

If we let \(G_n := \{|X_{2^{i-n}} - X_{2^{j-n}}| \leq |j - i|^{\gamma}2^{-n\gamma} \forall 0 \leq i, j \leq 2^n, |i - j| \leq 2^{n\eta}\}\) for some fixed \(\eta \in (0, 1)\), then by (2.7),

\[
\mathbb{P}(G_n) \leq \sum_{0 \leq i < j \leq 2^n} K(j - i)^{1 + \alpha - \beta \gamma}2^{-n(1 + \alpha - \beta \gamma)} \leq K2^{-\gamma n}, \tag{2.8}
\]

where \(\epsilon = (1 - \eta)(\alpha - \beta \gamma) - 2\eta\) can be made positive if \(\eta > 0\) is sufficiently small. Fix such an \(\eta\). Then by Borel-Cantelli, almost surely there exists \(N_\omega \in \mathbb{N}\) such that \(\cap_{n \geq N_\omega} G_n\) occurs.
On the event $\cap_{n \geq N_\omega} G_n$, we will use the triangle inequality to deduce (2.6). Note that it suffices to show that (2.6) holds for some $C(\omega)$ for all $q, r \in \mathbb{Q}_2 \cap [0, 1]$ with $|q - r| \leq 2^{-N_\omega(1-\eta)}$, since for general $q, r \in \mathbb{Q}_2 \cap [0, 1]$, we only need to replace $C(\omega)$ by $C(\omega)2^{N_\omega(1-\eta)}$ by the triangle inequality. Now assume $0 \leq r < q \leq 1$ and $q - r < 2^{-N_\omega(1-\eta)}$. We can find an optimal scale $m \geq N_\omega$ such that

$$2^{-(m+1)(1-\eta)} \leq q - r < 2^{-m(1-\eta)}. \tag{2.9}$$

By binary expansion for q and r, we can write

$$q = i2^{-m} + 2^{-q_1} + \cdots + 2^{-q_k}$$

$$r = j2^{-m} - 2^{-r_1} - \cdots - 2^{-r_l},$$

where $m < q_1 < \cdots < q_k$ and $m < r_1 < \cdots < r_l$. Since $q - r \geq (i - j)2^{-m}$ and $i - j \geq -1$, by (2.9), we have $|i - j| \leq 2^{m\eta}$. Since $\cap_{n \geq N_\omega} G_n$ occurs and $m \geq N_\omega$, we have

$$|X_{i2^{-m}} - X_{j2^{-m}}| \leq 2^{-m(1-\eta)\eta}. \tag{2.10}$$

By the triangle inequality,

$$|X_q - X_{i2^{-m}}| \leq \sum_{\sigma \geq m} 2^{-q_\sigma \gamma} \leq \sum_{\sigma > m} 2^{-\sigma \gamma} = C_\gamma 2^{-m \gamma}, \tag{2.11}$$

where $C_\gamma = \frac{1}{2^{\gamma - 1}}$. Similarly, the same bound also holds for $|X_r - X_{j2^{-m}}|$. Combining the above estimates and apply triangle inequality once more, we get

$$|X_q - X_r| \leq 2^{-(m(1-\eta)\gamma)} + 2C_\gamma 2^{-m \gamma} \leq (1 + 2C_\gamma)2^{(1-\eta)\gamma}2^{-m(1-\eta)\gamma} \leq C(\omega)|q - r|^\gamma$$

with $C(\omega) = (1 + 2C_\gamma)2^{(1-\eta)\gamma}$, and we are done.

Remark 2.4 (Moment Criterion for Continuity and Tightness) The proof of Theorem 2.3 can be easily modified to show that given a family of random continuous functions $\{(X^{(n)}_t)_{t \in [0, 1]}\}_{n \in \mathbb{N}}$, if (2.5) holds for some K, α, β uniformly in $n \in \mathbb{N}$, then for any $\epsilon > 0$, we can construct a compact set of Hölder continuous functions $H_t \subset C([0, 1], \mathbb{R})$, such that $P(X^{(n)}_t \in H_t) \geq 1 - \epsilon$ for all $n \in \mathbb{N}$. This implies tightness for the family of $C([0, 1], \mathbb{R})$-valued random variables $\{X^{(n)}_t\}_{n \in \mathbb{N}}$. There is also an analogue of (2.5) in dimensions $d \geq 1$ with $1 + \alpha$ in (2.5) replaced by $d + \alpha$, when $(X_t)_{t \in [0, 1]}$ is \mathbb{R}^d-valued, see e.g. Kallenberg [K97, Corollary 14.9]. Garsia, Rodemich and Rumsey have given more refined continuity criterion in [GRR70], which was later extended to dimensions $d \geq 1$ by Garsia in [G72].

Proof of (2.1). Note that for any $0 \leq s < t \leq 1$, $B_t - B_s$ is a centered Gaussian random variable with variance $t - s$. Therefore

$$E|B_t - B_s|^\beta = |t - s|^\beta E|B_1|^\beta = f(\beta)|t - s|^\beta,$$

where $f(\beta) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |x|^\beta e^{-x^2/2} \, dx < \infty$.

Therefore (2.5) holds with $\alpha = \frac{\beta}{2} - 1$ for any $\beta > 2$. Since $\frac{\alpha}{\beta} \to \frac{1}{2}$ as $\beta \uparrow \infty$, by Theorem 2.3, $(B_t)_{0 \leq t \leq 1}$ is a.s. Hölder continuous with exponent γ for all $\gamma \in (0, \frac{1}{2})$.

Proof of (2.2). It suffices to verify (2.2) for $\gamma = \frac{1}{2}$. Note that

$$K(\omega) := \sup_{0 \leq s < t \leq 1} \frac{|B_t - B_s|}{\sqrt{t - s}} \geq \max \left\{ \sup_{t \geq \frac{i-1}{n}} \sup_{\frac{i-1}{n} \leq s < t \leq \frac{i}{n}} \frac{|B_t - B_s|}{\sqrt{t - s}} : 1 \leq i \leq n \right\},$$
where \(K_n^{(i)}(\omega) := \sup_{\frac{i-1}{n} \leq s < t \leq \frac{i}{n}} \frac{|B_t - B_s|}{\sqrt{t-s}}, \) \(1 \leq i \leq n, \) are independent because \((B_t)^{t \geq 0}\) has independent increments, and furthermore, \(K_n^{(i)} \) are equally distributed with \(K \) because

\[\sqrt{n}(B_{i/n + t/n} - B_{i/n}) \rightarrow \sqrt{\gamma} \]

is equally distributed with \((B_t)_{0 \leq t \leq 1}\). Therefore for any \(M > 0, \)

\[\mathbb{P}(K \leq M) \leq \mathbb{P}(K_n^{(1)} \leq M, \ldots, K_n^{(n)} \leq M) = \mathbb{P}(K \leq M^n) \quad \text{for all } n \in \mathbb{N}. \]

Since \(\mathbb{P}(K > M) > 0 \) for all \(M > 0, \) we must have \(\mathbb{P}(K \leq M) = 0 \) for all \(M > 0. \) Therefore \(K = \infty \text{ a.s.} \)

Proof of (2.3). The argument is based on time discretization and the observation that \(B_t \) is typically of order \(\sqrt{t}. \) In particular, for any \(\gamma > \frac{1}{2}, \) by the density of Gaussian distribution,

\[\mathbb{P}(|B_t| < Ct^{\gamma}) = \mathbb{P}(|B_t| < Ct^{\gamma - \frac{1}{2}}) = \int_{-Ct^{\gamma - \frac{1}{2}}}^{Ct^{\gamma - \frac{1}{2}}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \sim \frac{2C}{\sqrt{2\pi}} t^{\gamma - \frac{1}{2}} \quad \text{as } t \downarrow 0. \quad (2.12) \]

It suffices to consider only \((B_t)_{t \in [0,1]}\). Fix \(\gamma > \frac{1}{2}, \) and fix \(k \in \mathbb{N} \) whose exact value will only depend on \(\gamma \) and will be determined later. Define

\[A_n := \{ \exists t \in [0,1] \text{ s.t. } |B_{t+h} - B_t| \leq |h|^{\gamma} \forall |h| \leq \frac{2k}{n} \}. \]

Note that \(A_n \) is an increasing sequence of events, and

\[\left\{ \exists t \in [0,1] \text{ s.t. } \limsup_{s \to t} \frac{|B_s - B_t|}{|s-t|^{\gamma}} < 1 \right\} \subset \bigcup_{n \in \mathbb{N}} A_n. \]

On the event \(A_n, \) let \(t \in \left[\frac{m}{n}, \frac{m+1}{n} \right) \) for some \(0 \leq m \leq n \) such that \(|B_{t+h} - B_t| \leq |h|^{\gamma} \) for all \(|h| \leq \frac{2k}{n} \). By the triangle inequality, we have the occurrence of the event

\[F_m := \left\{ |B_{t+\frac{1}{n}} - B_{t+\frac{1}{n}}| \leq \frac{2}{n} \left(\frac{k}{n} \right)^{\gamma} \text{ \forall } j \in \{m, m+1, \ldots, m+k-1\} \right\}. \]

Therefore by the independent increments properties of \((B_t)_{t \geq 0},\)

\[\mathbb{P}(A_n) \leq \sum_{m=0}^{n} \mathbb{P}(F_m) = (n+1)\mathbb{P}(F_0) = (n+1)\mathbb{P} \left(|B_t| \leq \frac{2k}{n} \right)^{\frac{1}{2}\gamma} \]

which by (2.12) is asymptotically of the order \(C_k n^{1-k(\gamma-\frac{1}{2})} \) for some \(C_k \) depending only on \(k, \) and it tends to 0 as \(n \to \infty \) if \(k > (\gamma - \frac{1}{2})^{-1}. \) For such a choice of \(k, \) we have \(\lim_{n \to \infty} \mathbb{P}(A_n) = 0. \) Since the sequence of events \(A_n \) increases in \(n, \) we have \(\mathbb{P}(A_n) = 0 \) for all \(n \in \mathbb{N}. \) In particular, we have shown that almost surely,

\[\limsup_{s \to t} \frac{|B_t - B_s|}{|t-s|^{\frac{1}{2}\gamma}} \geq 1 \quad \text{for all } t \in [0,1]. \]

Since this is true for all \(\gamma > \frac{1}{2}, \) by slightly adjusting the values of \(\gamma, \) the above inequality implies (2.3).

Proof of (2.4). By symmetry, it suffices to prove the limsup statement in (2.4). We will prove the case \(t \to \infty, \) the statement for \(t \to 0 \) then follows from the fact that \((tB_t)_{t \geq 0}\) is equally distributed with \((B_t)_{t \geq 0}\).
First we recall that by the reflection principle and diffusive scaling invariance of the standard Brownian motion,

\[\mathbb{P}_0 \left(\sup_{0 \leq s \leq t} B_s > a \right) = 2 \mathbb{P}_0(B_t > a) = 2 \mathbb{P}_0(B_1 > a/\sqrt{t}) = \sqrt{\frac{2}{\pi}} \int_{\frac{a}{\sqrt{t}}}^{\infty} e^{-x^2/2} \, dx. \quad (2.13) \]

Note that

\[\int_y^{\infty} e^{-x^2/2} \, dx \leq y^{-1} e^{-y^2/2} \quad \text{for all } y > 0 \quad \text{and} \quad \int_y^{\infty} e^{-x^2/2} \, dx \sim y^{-1} e^{-y^2/2} \quad \text{as } y \to \infty. \quad (2.14) \]

Therefore for any \(f : \mathbb{N} \to (0, \infty) \) with \(\lim_{n \to \infty} f(n) = \infty \),

\[\mathbb{P}_0 \left(\sup_{0 \leq t \leq n} B_t > \sqrt{nf(n)} \right) = \sqrt{\frac{2}{\pi}} \int_{2f(n)}^{\infty} e^{-x^2/2} \, dx \sim \sqrt{\frac{2}{\pi f(n)}} e^{-t(n)/2} \quad \text{as } n \to \infty. \]

If we take \(f(n) = (2 + \epsilon) \log n \) for any \(\epsilon > 0 \), then

\[\sum_{n=1}^{\infty} \mathbb{P}_0 \left(\sup_{0 \leq t \leq n} B_t > \sqrt{nf(n)} \right) < \infty. \]

By Borel-Cantelli, a.s. \(\sup_{0 \leq t \leq n} B_t \leq (2 + \epsilon)n \log n \) for all \(n \) sufficiently large. Since \(\epsilon > 0 \) is arbitrary, this implies

\[\lim_{t \to \infty} \sup_{0 \leq t \leq n} \frac{B_t}{\sqrt{2t \log t}} \leq 1. \]

To replace \(\log t \) by \(\log \log t \), we apply Borel-Cantelli along an exponentially increasing sequence of times \(t_n = \alpha^n \), instead of \(t_n = n \). With \(f(t) = 2a \log \log t \) for any \(\alpha > 1 \), we have

\[\sum_{n=1}^{\infty} \mathbb{P}_0 \left(\sup_{0 \leq t \leq \alpha^n} B_t > \sqrt{\alpha^nf(\alpha^n)} \right) < \infty. \]

Therefore by Borel-Cantelli, a.s. \(\sup_{0 \leq t \leq \alpha^n} B_t \leq \sqrt{2\alpha^{n+1} \log \log \alpha^n} \) for all \(n \) large. For any \(t > 0 \), we can find \(n \) such that \(\alpha^n < t \leq \alpha^{n+1} \). Then a.s. for all \(t \) sufficiently large,

\[\frac{B_t}{\sqrt{2t \log \log t}} \leq \frac{\sup_{0 \leq s \leq \alpha^{n+1}} B_s}{\sqrt{2\alpha^{n+2} \log \log \alpha^{n+1}}} \frac{\sqrt{2\alpha^{n+2} \log \log \alpha^{n+1}}}{\sqrt{2t \log \log t}} \leq \alpha \frac{\log \log \alpha^{n+1}}{\log \log \alpha^n} \leq \alpha^2. \]

Since \(\alpha > 1 \) can be chosen arbitrarily, this implies that

\[\lim_{t \to \infty} \sup_{0 \leq t \leq \alpha^n} \frac{B_t}{\sqrt{2t \log \log t}} \leq 1 \quad \text{a.s.} \quad (2.15) \]

To prove the complimentary lower bound, we will find independent events and apply Borel-Cantelli. As before, let \(t_n = \alpha^n \), except \(\alpha > 1 \) will now be large. Note that

\[\mathbb{P}_0(B_{t_{n+1}} - B_t > \sqrt{t_{n+1}f(t_{n+1})}) = \mathbb{P}_0(B_{t_{n+1}} - t_n > \sqrt{t_{n+1}f(t_{n+1})}) \sim \frac{e^{-\beta f(t_{n+1})}}{\sqrt{2\pi \beta f(t_{n+1})}} \quad \text{as } n \to \infty, \]

provided that \(\beta f(t_{n+1}) \uparrow \infty \), where \(\beta = \frac{t_{n+1}}{t_{n+1} - t_n} = \frac{\alpha}{\alpha - 1} \). Take \(f(t) = 2\beta^{-2} \log \log t \). Then \(f(t_n) \sim 2\beta^{-2} \log n \), and since \(\beta > 1 \), we have

\[\sum_{n=1}^{\infty} \mathbb{P}_0(B_{t_{n+1}} - B_t > \sqrt{2\beta^{-2}t_{n+1} \log \log t_{n+1}}) = \infty. \]
Since \((B_{t_{n+1}} - B_{t_n})_{n \in \mathbb{N}}\) are independent, by Borel-Cantelli, a.s. the event \(B_{t_{n+1}} - B_{t_n} > \sqrt{2\beta^{-2} t_{n+1} \log \log t_{n+1}}\) occurs infinitely often. For such \(n\) sufficiently large, by (2.15) applied to \((-B_t)_{t \geq 0}\), we have

\[
B_{t_{n+1}} > B_{t_n} + \sqrt{2\beta^{-2} t_{n+1} \log \log t_{n+1}}
\]

\[
> \sqrt{2\beta^{-2} t_{n+1} \log \log t_{n+1}} - \sqrt{2(1 + \alpha^{-1}) t_n \log \log t_n}.
\]

Since \(\beta \downarrow 1\) as \(\alpha \uparrow \infty\), and \(\alpha > 1\) can be made arbitrarily large, this implies that

\[
\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}} \geq \limsup_{n \to \infty} \frac{B_{t_n}}{\sqrt{2t_n \log \log t_n}} \geq 1 \quad \text{a.s.,}
\]

which concludes the proof of (2.4). \(\blacksquare\)

References

