Lecture 9

1 Ergodic Theorems

We will prove the mean and the pointwise ergodic theorems for stationary processes, and we will establish the decomposition of a stationary measure into its ergodic components, and apply the theory to stationary Markov processes.

Definition 1.1 [Stationary processes] Let (Ω,\mathcal{F}) be a Polish space with Borel σ-algebra \mathcal{F}. A sequence of S-valued random variables $(X_n)_{n \in \mathbb{N}}$ is called a stationary sequence if (X_1, X_2, \cdots) is equally distributed with $(X_{k+1}, X_{k+2}, \cdots)$ for any $k \in \mathbb{N}$. Similarly, a doubly infinite sequence $(X_n)_{n \in \mathbb{Z}}$ is stationary if $(X_n)_{n \in \mathbb{Z}}$ is equally distributed with $(X_{n+k})_{n \in \mathbb{Z}}$ for any $k \in \mathbb{Z}$.

Example 1.2 If X is a Markov chain starting from a stationary distribution, then (X_1, X_2, \cdots) is a stationary process. By Kolmogorov extension theorem, we can even extend it to a doubly infinite stationary sequence $(X_n)_{n \in \mathbb{Z}}$, where for any $n_0 \in \mathbb{Z}$, $(X_{n_0+i})_{i \in \mathbb{Z}}$ is distributed as the Markov starting from its stationary distribution at time 0. We can think of $(X_n)_{n \in \mathbb{Z}}$ as the Markov starting from equilibrium at time $t = -\infty$.

Example 1.3 Starting from any periodic sequence $x = (x_1, x_2, \cdots)$ of period k, i.e., $x_n = x_{n+k}$ for all $n \in \mathbb{N}$, we can define a stationary sequence by letting $\mathbb{P}(X = T^i x) = \frac{1}{k}$ for each $0 \leq i \leq k-1$, where $T^i x = (x_{i+1}, x_{i+2}, \cdots)$.

We can cast stationary processes into a more general framework by regarding the sequence $(X_n)_{n \in \mathbb{N}}$ as a random variable taking values in the product space $\Omega := \mathbb{S}^\mathbb{N}$ with product σ-field \mathcal{F}. If μ denotes the law of $(X_n)_{n \in \mathbb{N}}$ on (Ω, \mathcal{F}), and let T denote the shift map $T(\omega_1, \omega_2, \cdots) = (\omega_2, \omega_3, \cdots)$ for $\omega = (\omega_1, \omega_2, \cdots) \in \Omega$, then the stationarity of $(X_n)_{n \in \mathbb{N}}$ is equivalent to the invariance of μ under the transformation $T : \Omega \to \Omega$, i.e., $\mu(A) = \mu(T^{-1} A)$ for all $A \in \mathcal{F}$.

Definition 1.4 [Measure preserving transformation] Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. A measurable map $T : \Omega \to \Omega$ is called a measure preserving transformation if $\mu(A) = \mu(T^{-1} A)$ for all $A \in \mathcal{F}$.

Remark. Normally the definition of a MPT also assumes that T has a measurable inverse T^{-1}. But the results we prove here do not require this assumption.

We just saw that every stationary sequence gives a probability measure on the sequence space with the shift map as the canonical measure preserving transformation. Conversely, if T is a measure preserving transformation on $(\Omega, \mathcal{F}, \mu)$, and $f : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$, then $X_n := f(T^n \omega)$ is a stationary sequence taking values in (S, \mathcal{S}).

The map T induces an operator U on functions on $(\Omega, \mathcal{F}, \mu)$, namely, $Uf(\omega) = f(T\omega)$. Because T is measure preserving, it is easy to see that

$$
\int_{\Omega} |f(\omega)|^p d\mu = \int_{\Omega} |f(T\omega)|^p d\mu = \int_{\Omega} |Uf(\omega)|^p d\mu,
$$

1
i.e., U is an isometry on $L_p(\Omega, \mathcal{F}, \mu)$ for any $1 \leq p < \infty$. Furthermore, U is a unitary operator on $L_2(\Omega, \mathcal{F}, \mu)$, since for any $f, g \in L_2(\Omega, \mathcal{F}, \mu),$

$$\langle f, g \rangle = \int_\Omega f(\omega)g(\omega)d\mu = \int_\Omega f(T\omega)g(T\omega)d\mu = \langle Uf, Ug \rangle.$$

The collection of sets which are invariant with respect to a measure preserving transformation will play an important role in ergodic theory.

Definition 1.5 [Invariant sets and σ-field, ergodicity] Let T be a measure preserving transformation on $(\Omega, \mathcal{F}, \mu)$. A set $A \in \mathcal{F}$ is called invariant if $\mu(A \Delta T^{-1}(A)) = 0$, where $A \Delta B := (A \setminus B) \cup (B \setminus A)$ denotes the symmetric difference. The class of invariant sets \mathcal{I} form a σ-field, called the invariant σ-field. The invariant measure μ is called ergodic for the transformation T, if \mathcal{I} is trivial in the sense that $\mu(A) \in \{0, 1\}$ for all $A \in \mathcal{I}$.

We can now state the following convergence result for functionals of a stationary process, called the ergodic theorems.

Theorem 1.6 [Ergodic theorems] Let T be a measure preserving transformation on the probability space $(\Omega, \mathcal{F}, \mu)$, and let $f \in L_p(\Omega, \mathcal{F}, \mu)$ for some $1 \leq p < \infty$. Then

$$\lim_{n \to \infty} A_nf(\omega) := \lim_{n \to \infty} \frac{f(\omega) + f(T\omega) + \cdots + f(T^{n-1}\omega)}{n} = \mathbb{E}_\mu[f|\mathcal{I}],$$

(1.1)

where the convergence is a.s. and in L_p. When μ is ergodic for T, $\mathbb{E}_\mu[f|\mathcal{I}] = \mathbb{E}_\mu[f]$ a.s. Conversely, if $A_nf(\omega) \to C_f$ μ-a.s. to some constant C_f for every bounded measurable f, then μ must be ergodic.

Remark. The last claim in Theorem 1.6 is easily seen by applying (1.1) to $f(\omega) = 1_E(\omega)$ for an invariant set $E \in \mathcal{I}$ with $\mu(E) = (0, 1)$. The a.s. convergence in Theorem 1.6 is known as the pointwise or individual ergodic theorem, due to Birkhoff. The L_p convergence in Theorem 1.6 is known as mean ergodic theorems, with the L_2 version due to von Neumann. When μ is ergodic, we see that the empirical distribution of $\omega, T\omega, \cdots, T^n\omega$ converge weakly to μ. In Statistical Physics, ergodic theorem is often phrased as time average equals ensemble average, where ensemble average refers to average w.r.t. the ergodic measure μ.

Proof of the mean ergodic theorems. We start with the L_2 case. Denote $H := L_2(\Omega, \mathcal{F}, \mu)$, and let $H_0 := \{f \in H : Uf = f\}$ be the space of eigen-functions of U with eigenvalue 1, where $Uf(\omega) = f(T\omega)$. Let

$$A_nf = \frac{1}{n} \sum_{i=0}^{n-1} U^i f.$$

Then $\|A_nf\|_2 \leq \|f\|_2$ for all $f \in H$, and $A_nf = f$ for all $f \in H_0$. If $f = (I - U)g$ for some $g \in H$, then $A_nf = \frac{2^n - U^n g}{n} \to 0$ as $n \to \infty$. Since A_n is a bounded operator, by approximation, $A_nf \to 0$ for all $f \in \text{Range}(I - U)H$.

We claim that $\text{Range}(I - U)H = H_0^\perp$. Indeed, for any $g \in H$ and $h \in H_0$, since U is unitary, we have

$$\langle (I - U)g, h \rangle = \frac{1}{n} \sum_{i=1}^{n} \langle U^{i-1}(I - U)g, U^{i-1}h \rangle = \frac{1}{n} \sum_{i=1}^{n} \langle U^{i-1}(I - U)g, h \rangle = \frac{1}{n} \langle (I - U^n)g, h \rangle.$$

Since \(n \in \mathbb{N} \) is arbitrary, we have \(\langle (I - U)g, h \rangle = 0 \) for all \(g \in H \) and \(h \in H_0 \), and hence \(\text{Range}(I - U)H \perp H_0 \).

To verify \(\text{Range}(I - U)H = H_0^\perp \), it only remains to show that if \(h \in \overline{\text{Range}(I - U)H}^\perp \), then \(h \in H_0 \). Indeed, if \(\langle f, h \rangle = 0 \) for all \(f \in \overline{\text{Range}(I - U)H} \), then in particular \(\langle (I - U)g, h \rangle = \langle g, (I - U^*)h \rangle = 0 \) for all \(g \in H \). Therefore \(U^*h = h \). Since \(T \) may not have a measurable inverse and hence \(U^{-1} \) may not exist, we only have \(U^*U = 1 \), but not \(UU^* = 1 \). Instead, to deduce \(Uh = h \) from \(U^*h = h \), we note that

\[
\|Uh - h\|_2^2 = \langle Uh - h, Uh - h \rangle = 2\|h\|_2^2 - \langle h, Uh \rangle - \langle Uh, h \rangle = 2\|h\|_2^2 - \langle U^*h, h \rangle - \langle h, U^*h \rangle = 0.
\]

By the above reasoning, \(A_n f \to Pf \), where \(P \) denotes the orthogonal projection onto \(H_0 \). To verify the \(L_2 \) mean ergodic theorem, it only remains to verify that \(Pf = \mathbb{E}_\mu[f|\mathcal{F}] \). Recall that conditional expectation is an orthogonal projection in \(L_2 \) space. A function \(f \in \mathcal{I} \) if and only if its level sets \(\{ \omega : a \leq f(\omega) < b \} \in \mathcal{I} \). It is not difficult to see that such \(f \) must satisfy \(f(\omega) = f(T\omega) \) a.s., i.e., \(f \in H_0 \).

For general \(1 \leq p < \infty \), we can approximate \(f \in L_p(\Omega, \mathcal{F}, \mu) \) by bounded functions \(f^\varepsilon \) such that \(\|f - f^\varepsilon\|_p \leq \varepsilon \). By the \(L_2 \) mean ergodic theorem, \(\|A_n f^\varepsilon - Pf^\varepsilon\|_2 \to 0 \). Since \(f^\varepsilon \) is bounded, we also have \(\|A_n f^\varepsilon - Pf^\varepsilon\|_p \to 0 \). Therefore

\[
\limsup_{n \to \infty} \|A_n f - Pf\|_p \leq \limsup_{n \to \infty} \|A_n f - A_n f^\varepsilon\|_p + \limsup_{n \to \infty} \|A_n f^\varepsilon - Pf^\varepsilon\|_p + \limsup_{n \to \infty} \|P f - Pf^\varepsilon\|_p \leq 2\varepsilon,
\]

where we used the fact that \(A_n \) and \(P \) both have norm 1 in \(L_p(\Omega, \mathcal{F}, \mu) \). Since \(\varepsilon > 0 \) is arbitrary, we have \(\|A_n f - Pf\|_p \to 0 \).

To prove the pointwise ergodic theorem, we need a maximal inequality analogous to Doob’s inequality in order to control the fluctuation of the time average.

Lemma 1.7 [Maximal ergodic lemma] Let \(f \in L_1(\Omega, \mathcal{F}, \mu) \) and for \(n \geq 1 \), let

\[
E_n^0 = \{ \omega : \max_{1 \leq j \leq n} (f(\omega) + f(T\omega) + \cdots + f(T^{j-1}\omega)) \geq 0 \}.
\]

Then

\[
\int_{E_n^0} f(\omega) d\mu \geq 0.
\]

Proof. Let

\[
h_n(\omega) = \max_{1 \leq j \leq n} (f(\omega) + f(T\omega) + \cdots + f(T^{j-1}\omega)) = f(\omega) + h_{n-1}^+(T\omega),
\]

where \(h_{n-1}^+(\omega) = \max(0, h_n(\omega)) \). On \(E_n^0 \), \(h_n(\omega) = h_{n-1}^+(\omega) \), therefore

\[
f(\omega) = h_{n-1}^+(\omega) - h_{n-1}^+(T\omega),
\]

and hence

\[
\int_{E_n^0} f(\omega) d\mu = \int_{E_n^0} [h_{n-1}^+(\omega) - h_{n-1}^+(T\omega)] d\mu
\]

\[
\geq \int_{E_n^0} h_{n-1}^+(\omega) - h_{n}^+(T\omega) d\mu
\]

\[
= \int_{E_n^0} h_n^+(\omega) d\mu - \int_\Omega h_n^+(\omega) d\mu
\]

\[
\geq - \int_{\Omega \setminus E_n^0} h_n^+(\omega) d\mu = 0.
\]

\[\square\]
Corollary 1.8 [Wiener’s maximal inequality] Let $f \in L_1(\Omega, \mathcal{F}, \mu)$, and for $l > 0$ and $n \in \mathbb{N}$, let

$$E_n = \{ \omega : \max_{1 \leq j \leq n} A_j f \geq l \},$$

where $A_nf = \frac{1}{n} \sum_{i=0}^{n-1} f(T^i\omega)$. Then

$$\mu(E_n) \leq \frac{1}{l} \int_{E_n} f(\omega) d\mu \leq \frac{1}{l} \int_{E_n} |f(\omega)| d\mu.$$ \hspace{1cm} (1.3)

Proof. Note that E_n is just the event that $\{ \omega : \max_{1 \leq j \leq n} \sum_{i=1}^j (f(T^{-1}i\omega) - l) \geq 0 \}$. Therefore by Lemma 1.7 applied to $f(\omega) - l$, we have

$$\int_{E_n} (f(\omega) - l) d\mu \geq 0,$$

which implies that

$$\mu(E_n) \leq \frac{1}{l} \int_{E_n} f(\omega) d\mu \leq \frac{1}{l} \int_{E_n} |f(\omega)| d\mu.$$

\hfill \blacksquare

Proof of the pointwise ergodic theorem. It suffices to consider $f \in L_1(\Omega, \mathcal{F}, \mu)$. Recall H, H_0 from the proof of the mean ergodic theorems. For $f \in H_0$, obviously $A_nf = f \to f$ a.s. For $f = (I - U)g$ with g bounded, $A_nf = (g - U^ng)/n \to 0$ a.s. Therefore the pointwise ergodic theorem holds for all $f = f_1 + f_2$ with $f_1 \in H_0$ and $f_2 = (I - U)g$ for some bounded g. This class of functions are dense in $L_1(\Omega, \mathcal{F}, \mu)$, which we denote by \mathcal{D}.

Let $f \in L_1(\Omega, \mathcal{F}, \mu)$ and let $f_m \in \mathcal{D}$ such that $\|f - f_m\|_1 \to 0$ as $m \to \infty$. Since $A_nf \to Pf$ in L_1 by the mean ergodic theorem, it only remains to verify that

$$\mu(G_\epsilon) := \mu(\omega : \limsup_{n \to \infty} A_nf(\omega) - \liminf_{n \to \infty} A_nf(\omega) > \epsilon) = 0$$

for all $\epsilon > 0$.

Since $A_nf_m \to Pf_m$ a.s. and in L_1 for each $m \in \mathbb{N}$, we have

$$\mu(G_\epsilon) \leq \mu\{ \omega : \sup_{n \in \mathbb{N}} |(A_nf)(\omega) - (A_nf_m)(\omega)| \geq \epsilon/2 \}.$$

Applying Corollary 1.8 to $(f - f_m)$ as well as $(f_m - f)$, and note that E_n is increasing in n, we have

$$\mu\{ \omega : \sup_{n \in \mathbb{N}} |(A_nf)(\omega) - (A_nf_m)(\omega)| \geq \epsilon/2 \} \leq \frac{4}{\epsilon} \|f - f_m\|_1.$$

Since $\|f - f_m\|_1 \to 0$ as $m \to \infty$, we have $\mu(G_\epsilon) = 0$.

\hfill \blacksquare

Example 1.9 [Strong law of large numbers] Let $(X_n)_{n \in \mathbb{N}}$ be i.i.d. integrable random variables. On the infinite product space, the law of (X_1, X_2, \ldots) is invariant w.r.t. the shift map T. Therefore we can apply the ergodic theorem to the function $f(x_1, x_2, \ldots) = x_1$ and conclude that $\frac{1}{n} \sum_{i=1}^n X_i$ converges a.s. and in L_1 to $E[X_1|\mathcal{I}]$. We claim that \mathcal{I} is trivial so that $E[X_1|\mathcal{I}] = E[X_1]$ a.s. Indeed, any invariant set in \mathcal{I} (modulo sets of measure 0) belongs to the tail σ-field, which by Komogorov’s 0-1 law has either probability 0 or 1.

Example 1.10 [Irrational rotation on the circle] Let S be the unit circle parameterized by $[0, 1]$ where 0 and 1 are identified. Let $\theta \in (0, 1)$ be irrational, and define $Tx = (x + \theta) \pmod 1$ for $x \in [0, 1)$. Then Lebesgue measure on $[0, 1)$ is invariant for T. By computing the Fourier transform $\phi_A(k) = \int_A e^{2\pi kx} dx$, $k \in \mathbb{Z}$, it can be shown that any invariant set A has Lebesgue measure either 0 or 1. The ergodic theorem implies that the empirical distribution of x, Tx, T^2x, \cdots converge weakly to the Lebesgue measure on $[0, 1)$.

4
Example 1.11 [Benford’s law] The claim is that as \(m \to \infty \), the leading digit of \(2^m \) will turn out to be \(k \), \(k \in \{1, \cdots, 9\} \), with an asymptotic frequency of \(\log_{10}(k+1) - \log_{10}k \). This can be understood in terms of irrational rotation on the circle. Note that \(2^m \) has leading digit \(k \) if and only if \(m \log_{10} 2 \) (mod 1) \(\in [\log_{10} k, \log_{10}(k+1)) \). Since \(\log_{10} 2 \) is irrational, we can apply the ergodic theorem for irrational rotation on the circle.

2 Mixing

The following lemma gives an alternative characterization of ergodicity.

Lemma 2.1 A measure preservation transformation \(T \) on a probability space \((\Omega, \mathcal{F}, \mu)\) is ergodic if and only if for all \(A, B \in \mathcal{F} \),

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mu(T^{-k} A \cap B) = \mu(A)\mu(B). \tag{2.4}
\]

Proof. By Theorem 1.6, \(\frac{1}{n} \sum_{i=1}^{n} 1_A(T^i \omega) \to \mu(A|\mathcal{I}) \) a.s. and in \(L_1 \), where \(\mathcal{I} \) is the invariant \(\sigma \)-field. Therefore

\[
\frac{1}{n} \sum_{i=1}^{n} \mu(T^{-k} A \cap B) = \mathbb{E}_\mu \left[1_B(\omega) \frac{1}{n} \sum_{i=1}^{n} 1_A(T^i \omega) \right] \to \mathbb{E}_\mu[1_B(\omega)\mu(A|\mathcal{I})].
\]

If \(T \) is ergodic on \((\Omega, \mathcal{F}, \mu)\), then \(\mu(A|\mathcal{I}) = \mu(A) \) a.s., from which (2.4) follows. Conversely, if \(A \) is an invariant set, then \(\mu(T^{-k} A \cap B) = \mu(A \cap B) \) for all \(k \in \mathbb{N} \), which when plugged in (2.4) implies \(\mu(A \cap B) = \mu(A)\mu(B) \) for all \(B \in \mathcal{F} \). Setting \(B = A \) then gives \(\mu(A) = \mu(A)^2 \), which implies \(\mu(A) \in \{0, 1\} \), and hence \(T \) is ergodic for \((\Omega, \mathcal{F}, \mu)\). \(\blacksquare \)

The characterization given in Lemma 2.1 can be strengthened to define the notion of weak and strong mixing.

Definition 2.2 [Weak mixing and strong mixing] Let \(T \) a measure preserving transformation on a probability space \((\Omega, \mathcal{F}, \mu)\). \(T \) is called weak mixing if

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| \mu(T^{-k} A \cap B) - \mu(A)\mu(B) \right| = 0 \quad \text{for all } A, B \in \mathcal{F}, \tag{2.5}
\]

and strong mixing if

\[
\lim_{n \to \infty} \left| \mu(T^{-n} A \cap B) - \mu(A)\mu(B) \right| = 0 \quad \text{for all } A, B \in \mathcal{F}. \tag{2.6}
\]

Note that obviously strong mixing implies weak mixing, which in turn implies ergodicity.

Remark. If \((X_n)_{n \geq 0}\) is a Markov chain in equilibrium, i.e., \(X_1 \), and hence \(X_i \), all have stationary distribution \(\mu \), then strong mixing is equivalent to the convergence of \(X_n \) in distribution to \(\mu \) conditional on \(X_0 = x \) for any \(x \) in the state space \(S \). Indeed, if we assume strong mixing and take \(A, B \) in (2.6) to be of the form \(A = 1_F(X_0) \) and \(B = 1_{\{X_0=x\}} \) for any \(x \in S \) and \(F \in \mathcal{S} \), the \(\sigma \)-algebra on the state space \(S \), then (2.6) implies

\[
\mu(X_0 = x, X_n \in F) = \mu(x)\mathbb{P}_x(X_n \in F) \longrightarrow \mu(x)\mu(F).
\]
Since $F \in S$ can be chosen arbitrarily, this implies that conditional on $X_0 = x$, X_n converges in distribution to μ. The converse is also not hard to see.

Remark. If for $i = 1, 2$, T_i is a measure preserving transformation on a probability space $(\Omega_i, \mathcal{F}_i, \mu_i)$, it is natural to define a transformation T on the product probability space $(\Omega, \mathcal{F}, \mu)$, where $\Omega = \Omega_1 \times \Omega_2$, \mathcal{F} is the product σ-algebra on Ω and $\mu = \mu_1 \times \mu_2$ the product measure, with $T(\omega_1, \omega_2) = (T_1 \omega_1, T_2 \omega_2)$ for any $\omega_1 \in \Omega_1$ and $\omega_2 \in \Omega_2$. It is easy to see that T preserves μ. The question is under what conditions is T ergodic? It is not sufficient to assume only the ergodicity of T_1 and T_2, as easily seen from the example where $T_1 = T_2$ are irrational rotations on the unit circle, and $\mu_1 = \mu_2$ is the Lebesgue measure. If $T_1 = T_2$, then a necessary and sufficient condition for the ergodicity of $T \times T$ is that T is weakly mixing.