1(a) \(y' + (1 + \frac{1}{x})y = \frac{1}{x}e^{-x} \).

Integrating factor is \(\exp \int (1 + \frac{1}{x}) \, dx = \exp (x + \ln x) = xe^x \)

So \(\frac{d}{dx}(yxe^x) = x e^x \frac{1}{x} e^{-x} = 1 \implies yxe^x = x + c \implies y = e^{-x} + cx^{-1}e^{-x} \).

Here, and below, \(c \) is an integration constant.

(b) \(\exp \int -(1 + \frac{3}{x}) \, dx = \exp (-x - 3\ln |x|) = \frac{1}{x^3}e^{-x} \)

\(\implies \frac{d}{dx}(y \frac{1}{x^3} e^{-x}) = (x + 2) \frac{1}{x^3} e^{-x} \).

\(\frac{y}{x^3} e^{-x} = \int e^{-x} \frac{x^2}{x^3} \, dx + 2 \int e^{-x} \frac{1}{x^3} \, dx + c \)

\(= \int e^{-x} \frac{x^2}{x^3} \, dx + -\frac{e^{-x}}{x^2} - \int e^{-x} \frac{1}{x^2} \, dx + c \) (integration by parts)

\(= -\frac{e^{-x}}{x^2} + c \quad (x \neq 0) \).

It follows that \(y = -x + cx^3e^x \).

Since \(y(1) = e - 1 = -1 + ce \implies c = 1 \).

Ans.: \(y = -x + x^3e^x \).

(c) This is a Bernoulli type equation. Set

\(z = y^2 \quad z' = 2yy' \quad y' = z'/2y \).

\(\frac{z'}{2y} + y + \frac{x}{y} = 0 \implies \frac{1}{2}z' + z + x = 0 \)

\(\implies z' + 2z = -2x \implies \frac{d}{dx}(z e^{2x}) = -2xe^{2x} \).

\(\implies ze^{2x} = (-x + \frac{1}{2})e^{2x} + c \implies y^2 = \frac{1}{2} - x + ce^{-2x} \).

(d) Observe that \(2yy' = (y^2)' \). Let \(Y = y^2 \). It follows that

\(xY' + (x - 1)Y = x^2 e^x \).

For \(x > 0 \), we have

\(Y' + (1 - \frac{1}{x})Y = xe^x \), \(\exp \int (1 - \frac{1}{x}) \, dx = \frac{1}{x}e^x \)

\(\implies \frac{d}{dx}(\frac{1}{x}e^x Y) = e^{2x} \implies \frac{1}{x}e^x Y = \frac{1}{2}e^{2x} + c \)

\(\implies y^2 = \frac{1}{2} x e^x + cx e^{-x} \).
2. Let \(N(t) \) be the Earth’s population, then

\[
\frac{dN}{dt} = \text{Birth rate} - \text{Death rate} - \text{Emigration rate} = BN - DN - Kt
\]

\[
\frac{dN}{dt} - (B - D)N = -Kt, \quad \exp \int (B - D) \, dt = e^{-(B-D)t}
\]

\[
\frac{d}{dt}(Ne^{-(B-D)t}) = -Kte^{-(B-D)t}
\]

\[
\implies Ne^{-(B-D)t} = -K \int te^{-(B-D)t} dt
\]

\[
= K \left[\frac{t}{B - D} + \frac{1}{(B - D)^2} \right] e^{-(B-D)t} + c \quad \text{(integration by parts)}
\]

\[
\implies N = Ce^{(B-D)t} + K \left[\frac{t}{B - D} + \frac{1}{(B - D)^2} \right].
\]

Let \(N_o \) be the population at \(t = 0 \) (year 2028).

\[
N_o = C + \frac{K}{(B-D)^2}
\]

\[
\implies N = \left(N_o - \frac{K}{(B-D)^2} \right) e^{(B-D)t} + K \left[\frac{t}{B - D} + \frac{1}{(B - D)^2} \right].
\]

So the result depends on the relative values of \(N_o \) and \(\frac{K}{(B-D)^2} \). Consider the following three cases.

(I) \(N_o > \frac{K}{(B-D)^2} \implies \) population explosion not solved!

(II) \(N_o = \frac{K}{(B-D)^2} \) so that \(N = K \left[\frac{t}{B - D} + \frac{1}{(B - D)^2} \right] \) Thus population increases linearly.

(III) \(N_o < \frac{K}{(B-D)^2} \). We know that \(\lim_{x \to \infty} e^x = \infty \). i.e. exponential defeats linear function eventually so ultimately the population will collapse. (Overdoing it! Too many emigrants!)

3. Substitute \(N = B/S \) and obtain \(0 = \frac{dN}{dt} = B\frac{B}{S} - S\frac{B^2}{S^2} = 0 \). This is the equilibrium situation, with equal numbers of deaths and births per year. Clearly B/S is large when S is small and vice versa. So S measures how badly the animal is affected by overcrowding; tigers have large S, while rabbits have small S.

Using separation of variables we have

\[
\frac{dN}{BN - SN^2} = dt.
\] \hspace{1cm} (3.1)

Now \(\frac{1}{BN - SN^2} = \frac{1}{N(B - SN)} = \frac{\alpha}{N} + \frac{\beta}{B - SN} \)
\[1 = \alpha (B - SN) + \beta (N) \]
\[= \alpha B + (\beta - \alpha S)N \implies \alpha = \frac{1}{B}, \beta = \frac{S}{B}. \]

Integrating both sides of (3.1) we obtain
\[t + c = \int dt = \int \frac{dN}{BN - SN^2} = \frac{1}{B} \ln N - \frac{1}{B} \ln |B - SN|. \quad (3.2) \]

In our case the population is growing, that is, \(\frac{dN}{dt} = N(B - SN) > 0 \).
Hence \(N \) must be less than its asymptotic value \(B/S \), i.e.
\[N < B/S \implies B - SN > 0 \implies |B - SN| = B - SN. \]

It follows from (3.2) that
\[\frac{1}{B} \ln \frac{N}{B - SN} = t + \text{constant}, \]

or \(\frac{N}{B - SN} = C e^{Bt} \implies \frac{N_o}{B - SN_o} = C \), where \(N_o = N(0) \). Solving for \(N \) we get
\[N = \frac{B/S}{1 + \left(\frac{B/S}{N_o} - 1 \right) e^{-Bt}}. \]

We have \(N_o = 200 \), \(B = 1.5 \), and we know that \(N = 360 \) when \(t = 2 \). Hence
\[360 = \frac{B/S}{1 + \left(\frac{B/S}{200} - 1 \right) e^{-1.5 \times 2}} \]
\[\implies \frac{B}{s} = \frac{360(1 - e^{-3})}{1 - \frac{360}{200} e^{-3}} \approx 376 \]
\[\implies N = \frac{376}{1 + \left(\frac{376}{200} - 1 \right) e^{-1.5t}} \]
\[\implies N(3) = \frac{376}{1 + \left(\frac{376}{200} - 1 \right) e^{-1.5 \times 3}} \approx 372. \]

That is, you will have 372 bugs after 3 days, and 376 in the long run (\(t \to \infty \)).
\[\frac{dN}{dt} = BN - DN = BN - (SN + u \frac{dN}{dt})N = BN - SN^2 - uN \frac{dN}{dt} \]

\[\Rightarrow (1 + uN) \frac{dN}{dt} = BN - SN^2 \]

\[\Rightarrow \left(\frac{1 + uN}{BN - SN^2} \right) dN = dt \]

\[\Rightarrow \left(\frac{1}{N(B - SN)} + \frac{u}{B - SN} \right) dN = dt \]

\[\Rightarrow \frac{1}{BN} + \frac{s}{B} \left(\frac{1}{B - SN} \right) + \frac{u}{B - SN} = dt \]

\[\ln N - \ln |B - SN| - \frac{Bu}{s} \ln |B - SN| = Bt + c \]

\[\Rightarrow \frac{N}{|B - SN|^{(1 + \frac{Bu}{s})}} = Ce^{Bt}, \quad \text{where} \quad C = e^c. \]

Notice the singularity at \(N = B/S \) when the denominator becomes zero. We know that if the initial number of seals is \(> B/S \), their number will decline towards the critical population \(B/S \), whereas it increases if \(N < B/S \) initially. This is what would happen if there were no whales! The effect of the whales is to slow down the approach to equilibrium. For instances, try, if feasible, using a computer to graph \(\frac{y}{|1-y|} = e^x \) and \(\frac{z}{|1-z|^{10}} = 32e^x \). To give an idea how the feature in concerned are illustrated, consider \(x = 10, \)

\[\frac{y}{|1-y|} = e^{10} \quad \Rightarrow \quad y \approx 0.9999546021; \quad \frac{z}{|1-z|^{10}} = 32e^{10} \quad \Rightarrow \quad z \approx 0.8959211467. \]

(Here we take only the solutions that are smaller than one.) Note that the second value is smaller, which means that for the value of \(x \), \(y \) is closer to the “critical value” \(1 \) than \(z \). From this, we understand that for \(t \gg 1 \), \(N(t) \) with \(u = 0 \) is closer to the critical population \(B/S \) than \(N(t) \) with \(u > 0 \).