Question 1. [40 marks] Find limit inferior and limit superior of each of the following sequences.

(a) \(\left\{ (1 + (-1)^n) \sin \frac{n\pi}{4} \right\} \).

(b) \(\left\{ \frac{n + (-1)^n n^2}{n^2 + 1} \right\} \).

(c) \(\left\{ \lceil 1.5 + (-1)^n \rceil \right\} \).

(d) \(\left\{ \left(1 + \frac{1}{n} \right) \left(1 + \sin \frac{n\pi}{8} \right) \right\} \).

Question 2. [40 marks] Let \(\alpha > 0 \). Choose \(x_1 \geq \sqrt{\alpha} \). For \(n = 1, 2, 3, \ldots \), define \(x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right) \).

(a) Show that the sequence \(\{x_n\} \) is bounded below by \(\sqrt{\alpha} \) and monotone decreasing.

(b) Prove that \(\lim_{n \to \infty} x_n = \sqrt{\alpha} \).

(c) Prove that \(0 \leq x_n - \sqrt{\alpha} \leq \frac{x_n^2 - \alpha}{x_n} \).

(d) Let \(\alpha = 3 \) and \(x_1 = 2 \). Use part (c) to find \(x_n \) such that \(|x_n - \sqrt{3}| < 10^{-8} \).

Hint: From the inequality \(a^2 + b^2 \geq 2ab \), for \(y > 0 \), \(y + \frac{\alpha}{y} \geq 2\sqrt{\alpha} \cdot \sqrt{\frac{\alpha}{y}} = 2\sqrt{\alpha} \).

Question 3. [20 marks] Let \(\{a_n\} \) and \(\{b_n\} \) be bounded sequences in \(\mathbb{R} \). Prove that

\[\liminf a_n + \limsup b_n \leq \limsup (a_n + b_n) \leq \limsup a_n + \limsup b_n. \]