1. Find the limit inferior and limit superior of the following sequences
 a) \(\left\{ \frac{2 - (-1)^n n}{4n + 2} \right\} \).
 b) \(\left\{ 0.9 + \sin \left(\frac{n\pi}{2} \right) \right\} \).
 c) \(\sqrt[2n]{\frac{(n!)^2}{(2n)!}} \). (Hint: Use Exercise 8.2 in the lecture notes.)

2. Let \(\{a_n\} \) be a bounded sequence of real numbers. Show that
 \[\limsup_{n \to \infty} \sqrt{|a_n|} = \sqrt{\limsup_{n \to \infty} |a_n|}. \]

3. Let \(\{a_n\} \) and \(\{b_n\} \) be Cauchy sequences. Show that \(\{a_n + b_n\} \) and \(\{a_n b_n\} \) are also Cauchy sequences.

4. For each of the following series, calculate the \(n \)-th partial sum \(S_n \), and determine whether the series is convergent or divergent.
 i) \(\sum_{n=1}^{\infty} \ln \frac{n + 2}{n + 3} \).
 ii) \(\sum_{n=1}^{\infty} \frac{1}{n(n + 2)} \).