In order to get the full marks for the project of take-home exams, you need to have 50 or more points. Well there are 10 points in this take-home exam already.

Deadline: Monday, September 12. Hand in your papers to: the Mailbox labelled MA2108 on the 1st floor of S14. Attach this front page to your solutions.

Question 1 [2 points, 1 for each part]

Let \(a_1 \) and \(b_1 \) be positive numbers with \(a_1 > b_1 \). Let \(a_2 = \frac{a_1 + b_1}{2} \) be their arithmetic mean and let \(b_2 = \sqrt{a_1b_1} \) be their geometric mean. Repeat this process so that, in general,

\[
a_{n+1} = \frac{a_n + b_n}{2} \quad b_{n+1} = \sqrt{a_n b_n}.
\]

(a) Show by mathematical induction that \(a_n > a_{n+1} > b_{n+1} > b_n \).

(b) Prove that \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \).

(Note. Gauss called this the common value of these limits the *arithmetic-geometric mean* of the numbers \(a = a_1 \) and \(b = b_1 \)).

Question 2. [3 points, 1 for each part]

Find limit inferior and limit superior of each of the following sequences.

(a) \(\left\{ \frac{n + (-1)^n n^2}{n^2 + 1} \right\} \).

(b) \(\left\{ [1.5 + (-1)^n]^n \right\} \).

(c) \(\left\{ \left(1 + \frac{1}{n} \right)^{1 + \sin \frac{11n \pi}{8}} \right\} \).

Question 3 [5 points, 1 for each part]

Determine the convergence or divergence of each of the following series. Justify your answers.

(a) \(\sum_{k=1}^{\infty} \sqrt{k} \).

(b) \(\sum_{n=1}^{\infty} \frac{1}{n(2 + \ln n)} \).

(c) \(\sum_{n=1}^{\infty} 6^n \left(1 - \frac{2}{n + 1} \right)^{n^2} \).

(d) \(\sum_{n=1}^{\infty} \frac{n^n}{3^n \cdot n!} \).

(e) \(\sum_{k=1}^{\infty} \frac{\sqrt{k+1} - \sqrt{k}}{k} \).