1. Denote the set of rational numbers by \(\mathbb{Q} \). Consider the set
\[S = \{ x \in \mathbb{Q} \mid 0 \leq x < 1 \}. \]
Find \(\sup S \) and \(\inf S \). Justify your answers.

2. Let \(A \) and \(B \) be two non-empty bounded set of real numbers such that \(A \subseteq B \). Show that \(\inf A \geq \inf B \).

3. Let \(A \) and \(B \) be two non-empty bounded set of real numbers
 i) Show that \(\sup A \cup B = \max\{\sup A, \sup B\} \).
 ii) Is it true that \(\sup A \cap B = \min\{\sup A, \sup B\} \)? Justify your answer.

4. Consider the sequence \(\{a_n\} \) defined recursively by
\[a_1 = 2, \quad a_n = \sqrt{6 + a_{n-1}}, \quad n = 2, 3, 4, \ldots \]
 i) Show that \(2 \leq a_n \leq 3 \) for all \(n \).
 ii) Show that \(\{a_n\} \) is monotone increasing.
 iii) Using parts i) and ii), show that \(\{a_n\} \) converges, and find its limit.

5. Consider the sequence \(\{x_n\} \) defined recursively by
\[x_1 = \frac{3}{4}, \quad x_{n+1} = 2x_n - x_n^2, \quad n = 1, 2, 3, \ldots \]
Show that \(\{x_n\} \) converges, and find its limit. (Hint: Show that \(0 \leq x_n \leq 1 \) for all \(n \) and \(\{x_n\} \) is monotone increasing.)

6. Find the \(\lim_{n \to \infty} \) and \(\lim_{n \to \infty} \) of the following sequences.
 (a) \(\left\{ 4 + \cos \frac{n\pi}{2} \right\} \)
 (b) \(\left\{ \frac{1 + (-1)^n}{n} \right\} \)