1. Determine whether the following sequences of functions converge uniformly on the indicated intervals. Justify your answers.

(a). \(F_n(x) = \frac{n^2}{n^2 + x^2}, x \in [0, 1]. \)

(b). \(F_n(x) = x^n(1 - x), x \in [0, 1]. \)

(c). \(f_n(x) = \frac{n \ln x}{x^n}, x \in [1, \infty). \)

(d). \(f_n(x) = \frac{n \ln x \cos nx}{x^n}, x \in [4, \infty). \)

(e). \(F_n(x) = \frac{n^2}{n^2 + x^2}, x \in [0, +\infty). \)

2. Prove that each of the following series of functions converges uniformly on the indicated interval.

i) \(\sum_{n=1}^{\infty} \frac{\cos nx}{n^2 + x^2}, x \in (-\infty, +\infty). \)

ii) \(\sum_{n=1}^{\infty} \frac{1}{1 + n^3 x^2}, x \in [2, \infty). \)

iii) \(\sum_{n=1}^{\infty} \frac{xe^{-nx}}{n^2}, x \in (0, \infty). \)

3. Let \(\sum_{n=1}^{\infty} f_n(x) \) and \(\sum_{n=1}^{\infty} g_n(x) \) be series of functions on an interval \(I \) with \(|f_n(x)| \leq g_n(x) \) for all \(x \in I \) and \(n \geq 1 \). Suppose that the series of functions \(\sum_{n=1}^{\infty} g_n(x) \) converges uniformly. Show that the series of functions \(\sum_{n=1}^{\infty} f_n(x) \) converges uniformly.

4. Does the series of functions \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} \) converge uniformly on the interval \((0, +\infty)\)? Justify your answer.