From Braid Groups to Homotopy Groups

Jie Wu

Department of Mathematics
National University of Singapore

August 17, 2005

• Joint with Jon Berrick (Singapore), Fred Cohen (Rochester), Yan Loi Wong (Singapore)

• The preprint is available at www.math.nus.edu.sg/~matwujie.
From Braid Groups to Homotopy Groups

Jie Wu

Department of Mathematics
National University of Singapore

August 17, 2005

• Joint with Jon Berrick (Singapore), Fred Cohen (Rochester), Yan Loi Wong (Singapore)
• The preprint is available at www.math.nus.edu.sg/~matwujie.
From Braid Groups to Homotopy Groups

Jie Wu

Department of Mathematics
National University of Singapore

August 17, 2005

• Joint with Jon Berrick (Singapore), Fred Cohen (Rochester), Yan Loi Wong (Singapore)
• The preprint is available at www.math.nus.edu.sg/~matwujie.
Outline

Homotopy Groups

Braid Groups

Brunnian Braids

Theorem

Methods of Proof
Homotopy Group

- $\pi_n(X) := [S^n, X]$, the set of the (pointed) homotopy classes of (pointed) continuous maps from the n-sphere S^n to X.

- $\pi_0(X)$ is the set of path-connected components of X, which is not a group in general.

- fundamental group $\pi_1(X)$ is a group, but non-commutative in general.

- $\pi_n(X)$ is an abelian group for $n \geq 2$.
Homotopy Group

- $\pi_n(X) := [S^n, X]$, the set of the (pointed) homotopy classes of (pointed) continuous maps from the n-sphere S^n to X.

- $\pi_0(X)$ is the set of path-connected components of X, which is not a group in general.

- fundamental group $\pi_1(X)$ is a group, but non-commutative in general.

- $\pi_n(X)$ is an abelian group for $n \geq 2$.
Homotopy Group

• $\pi_n(X) := [S^n, X]$, the set of the (pointed) homotopy classes of (pointed) continuous maps from the n-sphere S^n to X.

• $\pi_0(X)$ is the set of path-connected components of X, which is not a group in general.

• fundamental group $\pi_1(X)$ is a group, but non-commutative in general.

• $\pi_n(X)$ is an abelian group for $n \geq 2$.
Homotopy Group

- $\pi_n(X) := [S^n, X]$, the set of the (pointed) homotopy classes of (pointed) continuous maps from the n-sphere S^n to X.

- $\pi_0(X)$ is the set of path-connected components of X, which is not a group in general.

- fundamental group $\pi_1(X)$ is a group, but non-commutative in general.

- $\pi_n(X)$ is an abelian group for $n \geq 2$.

Remarks

- Čech defined the higher homotopy groups, but abandoned them they are abelian. (1930s)

- It was originally conjectured that the homotopy groups of spheres are isomorphic to their homology groups. Then Heinz Hopf invented the Hopf map.

- Applications: Classification of vector bundles, fibre bundles, Algebraic K-theory, deformation theory, mathematical physics and etc.

- Fundamental Problem in Algebraic Topology: Determine the homotopy groups of spheres.
Remarks

- Čech defined the higher homotopy groups, but abandoned them because they are abelian. (1930s)

- It was originally conjectured that the homotopy groups of spheres are isomorphic to their homology groups. Then Heinz Hopf invented the Hopf map.

- Applications: Classification of vector bundles, fibre bundles, Algebraic K-theory, deformation theory, mathematical physics and etc.

- Fundamental Problem in Algebraic Topology: Determine the homotopy groups of spheres.
Remarks

• Čech defined the higher homotopy groups, but abandoned them; they are abelian. (1930s)

• It was originally conjectured that the homotopy groups of spheres are isomorphic to their homology groups. Then Heinz Hopf invented the Hopf map.

• Applications: Classification of vector bundles, fibre bundles, Algebraic K-theory, deformation theory, mathematical physics and etc.

• Fundamental Problem in Algebraic Topology: Determine the homotopy groups of spheres.
Remarks

• Čech defined the higher homotopy groups, but abandoned them they are abelian. (1930s)

• It was originally conjectured that the homotopy groups of spheres are isomorphic to their homology groups. Then Heinz Hopf invented the Hopf map.

• Applications: Classification of vector bundles, fibre bundles, Algebraic K-theory, deformation theory, mathematical physics and etc.

• Fundamental Problem in Algebraic Topology: Determine the homotopy groups of spheres.
Examples

• \(\pi_n(S^1) = 0 \) for \(n \neq 1 \) and \(\pi_1(S^1) = \mathbb{Z} \).

• For \(n > 0 \), \(\pi_m(S^n) = 0 \) for \(m < n \) and \(\pi_n(S^n) = \mathbb{Z} \).

• Curtis proved that \(\pi_i(S^5) \neq 0 \) for all \(i \geq 5 \).

• \(\pi_m(S^n) \) for \(m > n \) is not yet well understood for general \(m \) and \(n \geq 2 \), although many non-zero elements are known.
Examples

- $\pi_n(S^1) = 0$ for $n \neq 1$ and $\pi_1(S^1) = \mathbb{Z}$.

- For $n > 0$, $\pi_m(S^n) = 0$ for $m < n$ and $\pi_n(S^n) = \mathbb{Z}$.

- Curtis proved that $\pi_i(S^5) \neq 0$ for all $i \geq 5$.

- $\pi_m(S^n)$ for $m > n$ is not yet well understood for general m and $n \geq 2$, although many non-zero elements are known.
Examples

- $\pi_n(S^1) = 0$ for $n \neq 1$ and $\pi_1(S^1) = \mathbb{Z}$.
- For $n > 0$, $\pi_m(S^n) = 0$ for $m < n$ and $\pi_n(S^n) = \mathbb{Z}$.
- Curtis proved that $\pi_i(S^5) \neq 0$ for all $i \geq 5$.
- $\pi_m(S^n)$ for $m > n$ is not yet well understood for general m and $n \geq 2$, although many non-zero elements are known.
Examples

- $\pi_n(S^1) = 0$ for $n \neq 1$ and $\pi_1(S^1) = \mathbb{Z}$.

- For $n > 0$, $\pi_m(S^n) = 0$ for $m < n$ and $\pi_n(S^n) = \mathbb{Z}$.

- Curtis proved that $\pi_i(S^5) \neq 0$ for all $i \geq 5$.

- $\pi_m(S^n)$ for $m > n$ is not yet well understood for general m and $n \geq 2$, although many non-zero elements are known.
Main (traditional) methods in calculating $\pi_\ast(S^n)$:

- **EHP sequence**: long exact sequence for giving relations between the homotopy groups of different spheres;

- Toda’s brackets: Operations on $\pi_\ast(S^n)$;

- Adams spectral sequence: General homological method;

- Morava K-theory and periodic elements: families of special elements in $\pi_\ast(S^n)$.

- There is still no good way to systematically describe all of the homotopy groups in a computable way. Our theorems give some global structure.
Main (traditional) methods in calculating $\pi_*(S^n)$:

- **EHP sequence**: long exact sequence for giving relations between the homotopy groups of different spheres;

- **Toda’s brackets**: Operations on $\pi_*(S^n)$;

- **Adams spectral sequence**: General homological method;

- **Morava K-theory and periodic elements**: families of special elements in $\pi_*(S^n)$.

- There is still no good way to systematically describe all of the homotopy groups in a computable way. Our theorems give some global structure.
Main (traditional) methods in calculating $\pi_*(S^n)$:

- **EHP sequence**: long exact sequence for giving relations between the homotopy groups of different spheres;

- **Toda’s brackets**: Operations on $\pi_*(S^n)$;

- **Adams spectral sequence**: General homological method;

- **Morava K-theory and periodic elements**: families of special elements in $\pi_*(S^n)$.

There is still no good way to systematically describe all of the homotopy groups in a computable way. Our theorems give some global structure.
Main (traditional) methods in calculating $\pi_\ast(S^n)$:

- **EHP sequence**: long exact sequence for giving relations between the homotopy groups of different spheres;
- **Toda’s brackets**: Operations on $\pi_\ast(S^n)$;
- **Adams spectral sequence**: General homological method;
- **Morava K-theory and periodic elements**: families of special elements in $\pi_\ast(S^n)$.

There is still no good way to systematically describe all of the homotopy groups in a computable way. Our theorems give some global structure.
Main (traditional) methods in calculating $\pi_\ast(S^n)$:

- **EHP sequence**: long exact sequence for giving relations between the homotopy groups of different spheres;

- **Toda’s brackets**: Operations on $\pi_\ast(S^n)$;

- **Adams spectral sequence**: General homological method;

- **Morava K-theory and periodic elements**: families of special elements in $\pi_\ast(S^n)$.

- There is still no good way to systematically describe all of the homotopy groups in a computable way. Our theorems give some global structure.
Our ideas:

- **Step 1.** Describe the homotopy groups as the derived groups of the braid groups, that is, the quotient of certain subgroup of the braid group by another subgroup.

 - this step seems pretty successful, namely there are good (canonical) descriptions of the homotopy groups as the derived groups of the braids that I am going to talk today.

- **Step 2.** Study these special subgroups of the braids by using various methods in other areas of mathematics.
Our ideas:

- **Step 1.** Describe the homotopy groups as the derived groups of the braid groups, that is, the quotient of certain subgroup of the braid group by another subgroup.

 this step seems pretty successful, namely there are good (canonical) descriptions of the homotopy groups as the derived groups of the braids that I am going to talk today.

- **Step 2.** Study these special subgroups of the braids by using various methods in other areas of mathematics.
Our ideas:

- **Step 1.** Describe the homotopy groups as the derived groups of the braid groups, that is, the quotient of certain subgroup of the braid group by another subgroup.

 - this step seems pretty successful, namely there are good (canonical) descriptions of the homotopy groups as the derived groups of the braids that I am going to talk today.

- **Step 2.** Study these special subgroups of the braids by using various methods in other areas of mathematics.
History of Braids

- traditional: every traditional woman knows well how to make braids. **Watch their hair.**

- 1890’s: Braids and Links, Hurwicz (1891), Brunn (1892), Fricke and Klein (1897)

- 1925: Artin

- 1962: Fadell and Neuwirth
History of Braids

- traditional: every traditional woman knows well how to make braids. **Watch their hair.**

- 1890's: Braids and Links, Hurwicz (1891), Brunn (1892), Fricke and Klein (1897)

- 1925: Artin

- 1962: Fadell and Neuwirth
History of Braids

- traditional: every traditional woman knows well how to make braids. **Watch their hair.**

- 1890’s: Braids and Links, Hurwicz (1891), Brunn (1892), Fricke and Klein (1897)

- 1925: Artin

- 1962: Fadell and Neuwirth
History of Braids

• traditional: every traditional woman knows well how to make braids. **Watch their hair.**

• 1890’s: Braids and Links, Hurwicz (1891), Brunn (1892), Fricke and Klein (1897)

• 1925: Artin

• 1962: Fadell and Neuwirth
configuration spaces

- **ordered configuration space**
 \[F(M, n) = \{(x_1, x_2, \ldots, x_n) \in M^n \mid x_i \neq x_j \text{ for } i \neq j\} \]

- **unordered configuration space**
 \[B(M, n) = F(M, n)/\Sigma_n. \]

- The covering map \(p: F(M, n) \longrightarrow B(M, n) \) with fibre \(\Sigma_n \).
• ordered configuration space
\[F(M, n) = \{(x_1, x_2, \ldots, x_n) \in M^n \mid x_i \neq x_j \text{ for } i \neq j \}. \]

• unordered configuration space
\[B(M, n) = F(M, n)/\Sigma_n. \]
configuration spaces

- ordered configuration space
 \[F(M, n) = \{(x_1, x_2, \ldots, x_n) \in M^n \mid x_i \neq x_j \text{ for } i \neq j\} \]

- unordered configuration space
 \[B(M, n) = F(M, n)/\Sigma_n \]

- The covering map \(p: F(M, n) \to B(M, n) \) with fibre \(\Sigma_n \).
n-strand braid group over M

- $B_n(M) = \pi_1(B(M, n))$

intuitive description:

- Choose a base point (q_1, q_2, \cdots, q_n) for $F(M, n)$.
- Let $\omega: S^1 \to B(M, n)$ be a loop.
- Then there is a lifting path $\lambda: [0, 1] \to F(M, n)$ such that $\lambda(0) = (q_1, q_2, \cdots, q_n), \lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)})$ for some $\sigma \in \Sigma_n$ and $p(\lambda) = \omega$.
- Thus $\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t))$ with $\lambda_i(t) \neq \lambda_j(t)$ for $i \neq j$ and $0 \leq t \leq 1$.
- We obtain n-strand $\lambda_i(t)$ in the cylinder $M \times I$ starting at q_i and ending with $q_{\sigma(i)}$ for some σ.
- The multiplication is given by the composition of strands.
n-strand braid group over \(M \)

- \(B_n(M) = \pi_1(B(M, n)) \)

- **intuitive description:**
 - Choose a base point \((q_1, q_2, \cdots, q_n)\) for \(F(M, n) \).
 - Let \(\omega : S^1 \to B(M, n) \) be a loop.
 - Then there is a lifting path \(\lambda : [0, 1] \to F(M, n) \) such that \(\lambda(0) = (q_1, q_2, \cdots, q_n) \), \(\lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)}) \) for some \(\sigma \in \Sigma_n \) and \(p(\lambda) = \omega \).
 - Thus \(\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t)) \) with \(\lambda_i(t) \neq \lambda_j(t) \) for \(i \neq j \) and \(0 \leq t \leq 1 \).
 - We obtain \(n \)-strand \(\lambda_i(t) \) in the cylinder \(M \times I \) starting at \(q_i \) and ending with \(q_{\sigma(i)} \) for some \(\sigma \).
 - The multiplication is given by the composition of strands.
n-strand braid group over M

- $B_n(M) = \pi_1(B(M,n))$

- **intuitive description:**
 - Choose a base point (q_1, q_2, \cdots, q_n) for $F(M,n)$.
 - Let $\omega : S^1 \to B(M,n)$ be a loop.
 - Then there is a lifting path $\lambda : [0,1] \to F(M,n)$ such that $\lambda(0) = (q_1, q_2, \cdots, q_n), \lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)})$ for some $\sigma \in \Sigma_n$ and $p(\lambda) = \omega$.
 - Thus $\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t))$ with $\lambda_i(t) \neq \lambda_j(t)$ for $i \neq j$ and $0 \leq t \leq 1$.
 - We obtain n-strand $\lambda_i(t)$ in the cylinder $M \times I$ starting at q_i and ending with $q_{\sigma(i)}$ for some σ.
 - The multiplication is given by the composition of strands.
n-strand braid group over M

- $B_n(M) = \pi_1(B(M, n))$

intuitive description:

- Choose a base point (q_1, q_2, \cdots, q_n) for $F(M, n)$.
- Let $\omega : S^1 \rightarrow B(M, n)$ be a loop.
- Then there is a lifting path $\lambda : [0, 1] \rightarrow F(M, n)$ such that $\lambda(0) = (q_1, q_2, \cdots, q_n)$, $\lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)})$ for some $\sigma \in \Sigma_n$ and $p(\lambda) = \omega$.
- Thus $\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t))$ with $\lambda_i(t) \neq \lambda_j(t)$ for $i \neq j$ and $0 \leq t \leq 1$.
- We obtain n-strand $\lambda_i(t)$ in the cylinder $M \times I$ starting at q_i and ending with $q_{\sigma(i)}$ for some σ.
- The multiplication is given by the composition of strands.
n-strand braid group over \(M \)

- \(B_n(M) = \pi_1(B(M, n)) \)

- **intuitive description:**

 - Choose a base point \((q_1, q_2, \cdots, q_n)\) for \(F(M, n) \).

 - Let \(\omega : S^1 \to B(M, n) \) be a loop.

 - Then there is a lifting path \(\lambda : [0, 1] \to F(M, n) \) such that \(\lambda(0) = (q_1, q_2, \cdots, q_n) \), \(\lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)}) \) for some \(\sigma \in \Sigma_n \) and \(p(\lambda) = \omega \).

 - Thus \(\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t)) \) with \(\lambda_i(t) \neq \lambda_j(t) \) for \(i \neq j \) and \(0 \leq t \leq 1 \).

 - We obtain \(n \)-strand \(\lambda_i(t) \) in the cylinder \(M \times I \) starting at \(q_i \) and ending with \(q_{\sigma(i)} \) for some \(\sigma \).

 - The multiplication is given by the composition of strands.
n-strand braid group over M

- $B_n(M) = \pi_1(B(M, n))$

intuitive description:

- Choose a base point (q_1, q_2, \cdots, q_n) for $F(M, n)$.
- Let $\omega: S^1 \to B(M, n)$ be a loop.
- Then there is a lifting path $\lambda: [0, 1] \to F(M, n)$ such that $\lambda(0) = (q_1, q_2, \cdots, q_n)$, $\lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)})$ for some $\sigma \in \Sigma_n$ and $p(\lambda) = \omega$.
- Thus $\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t))$ with $\lambda_i(t) \neq \lambda_j(t)$ for $i \neq j$ and $0 \leq t \leq 1$.
- We obtain n-strand $\lambda_i(t)$ in the cylinder $M \times I$ starting at q_i and ending with $q_{\sigma(i)}$ for some σ.

The multiplication is given by the composition of strands.
n-strand braid group over M

- $B_n(M) = \pi_1(B(M, n))$

- **intuitive description:**
 - Choose a base point (q_1, q_2, \cdots, q_n) for $F(M, n)$.
 - Let $\omega: S^1 \to B(M, n)$ be a loop.
 - Then there is a lifting path $\lambda: [0, 1] \to F(M, n)$ such that $\lambda(0) = (q_1, q_2, \cdots, q_n)$, $\lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)})$ for some $\sigma \in \Sigma_n$ and $p(\lambda) = \omega$.
 - Thus $\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t))$ with $\lambda_i(t) \neq \lambda_j(t)$ for $i \neq j$ and $0 \leq t \leq 1$.
 - We obtain n-strand $\lambda_i(t)$ in the cylinder $M \times I$ starting at q_i and ending with $q_{\sigma(i)}$ for some σ.

- The multiplication is given by the composition of strands.
\(n \)-strand braid group over \(M \)

- \(B_n(M) = \pi_1(B(M, n)) \)

- intuitive description:
 - Choose a base point \((q_1, q_2, \cdots, q_n)\) for \(F(M, n) \).
 - Let \(\omega: S^1 \to B(M, n) \) be a loop.
 - Then there is a lifting path \(\lambda: [0, 1] \to F(M, n) \) such that \(\lambda(0) = (q_1, q_2, \cdots, q_n) \), \(\lambda(1) = (q_{\sigma(1)}, \cdots, q_{\sigma(n)}) \) for some \(\sigma \in \Sigma_n \) and \(p(\lambda) = \omega \).
 - Thus \(\lambda(t) = (\lambda_1(t), \lambda_2(t), \cdots, \lambda_n(t)) \) with \(\lambda_i(t) \neq \lambda_j(t) \) for \(i \neq j \) and \(0 \leq t \leq 1 \).
 - We obtain \(n \)-strand \(\lambda_i(t) \) in the cylinder \(M \times I \) starting at \(q_i \) and ending with \(q_{\sigma(i)} \) for some \(\sigma \).
 - The multiplication is given by the composition of strands.
n-strand Pure Braid Group over M

- $P_n(M) = \pi_1(F(M, n))$

- In other words, the pure braids are n strands $\lambda_i(t)$ in $M \times I$ starting at q_i and ending with q_i.

- When M is the unit disk D^2, $B_n = B_n(D^2)$ is the classical Artin braid group.

- Any link can be obtained by closing up an (Artin) braid.
n-strand Pure Braid Group over M

- $\mathcal{P}_n(M) = \pi_1(F(M, n))$

- In other words, the **pure braids** are n strands $\lambda_i(t)$ in $M \times I$ starting at q_i and ending with q_i.

- When M is the unit disk D^2, $B_n = B_n(D^2)$ is the classical Artin braid group.

- Any link can be obtained by closing up an (Artin) braid.
n-strand Pure Braid Group over M

- $P_n(M) = \pi_1(F(M, n))$

- In other words, the **pure braids** are n strands $\lambda_i(t)$ in $M \times I$ starting at q_i and ending with q_i.

- When M is the unit disk D^2, $B_n = B_n(D^2)$ is the classical Artin braid group.

- Any link can be obtained by closing up an (Artin) braid.
n-strand Pure Braid Group over M

- $P_n(M) = \pi_1(F(M, n))$

- In other words, the **pure braids** are n strands $\lambda_i(t)$ in $M \times I$ starting at q_i and ending with q_i.

- When M is the unit disk D^2, $B_n = B_n(D^2)$ is the classical Artin braid group.

- **Any link** can be obtained by closing up an (Artin) braid.
Face operations on braids

- Consider the **coordinate projections** $d_i : F(M, n + 1) \rightarrow F(M, n)$
 $$(x_0, x_1, \ldots, x_n) \mapsto (x_0, x_1, \ldots, \hat{x}_i, \ldots, x_n).$$

- The map d_i induces, by taking the fundamental group, a group homomorphism $d_i = d_{i*} : P_{n+1}(M) \rightarrow P_n(M)$ and a function $d_i : B_{n+1}(M) \rightarrow B_n(M)$ given by
 $$(\lambda_0(t), \ldots, \lambda_n(t)) \mapsto (\lambda_0(t), \ldots, \hat{\lambda}_i(t), \ldots, \lambda_n(t)),$$
 that is, **deleting the $(i + 1)$-st strand for $0 \leq i \leq n$.**
Face operations on braids

- Consider the **coordinate projections** $d_i: F(M, n+1) \to F(M, n)$

 $$(x_0, x_1, \ldots, x_n) \mapsto (x_0, x_1, \ldots, \hat{x}_i, \ldots, x_n).$$

- The map d_i induces, by taking the fundamental group, a group homomorphism $d_i = d_i_*: P_{n+1}(M) \to P_n(M)$ and a function $d_i: B_{n+1}(M) \to B_n(M)$ given by

 $$(\lambda_0(t), \ldots, \lambda_n(t)) \mapsto (\lambda_0(t), \ldots, \hat{\lambda}_i(t), \ldots, \lambda_n(t)),$$

 that is, deleting the $(i+1)$-st strand for $0 \leq i \leq n$.

Face operations on braids

- Consider the **coordinate projections**
 \[d_i : F(M, n + 1) \to F(M, n) \]

 \[(x_0, x_1, \ldots, x_n) \mapsto (x_0, x_1, \ldots, \hat{x}_i, \ldots, x_n).\]

- The map \(d_i \) induces, by taking the fundamental group, a group homomorphism \(d_i = d_i^* : P_{n+1}(M) \to P_n(M) \) and

- a function \(d_i : B_{n+1}(M) \to B_n(M) \) given by

 \[(\lambda_0(t), \cdots, \lambda_n(t)) \mapsto (\lambda_0(t), \cdots, \hat{\lambda}_i(t), \cdots, \lambda_n(t)),\]

 that is, **deleting the \((i + 1)\)-st strand** for \(0 \leq i \leq n\).
Brunnian Braids

- A braid \(\beta \in B_{n+1}(M) \) is called \textbf{Brunnian} if \(d_i(\beta) = 1 \) for all \(0 \leq i \leq n \).

- In other words, the group of Brunnian braids \(\text{Brun}_{n+1}(M) \) is given by

\[
\text{Brun}_{n+1}(M) : = \bigcap_{i=0}^{n} \text{Ker}(d_i : B_{n+1}(M) \to B_n(M)).
\]

- The classical \textbf{Borromean Rings} is a link by closing up a Brunnian braid of 3 strings over \(D^2 \).
Brunnian Braids

• A braid $\beta \in B_{n+1}(M)$ is called \textbf{Brunnian} if $d_i(\beta) = 1$ for all $0 \leq i \leq n$.

• In other words, the group of Brunnian braids $\text{Brun}_{n+1}(M)$ is given by

$$\text{Brun}_{n+1}(M) = \bigcap_{i=0}^{n} \ker(d_i : B_{n+1}(M) \to B_n(M)).$$

• The classical \textbf{Borromean Rings} is a link by closing up a Brunnian braid of 3 strings over D^2.
Brunnian Braids

- A braid $\beta \in B_{n+1}(M)$ is called Brunnian if $d_i(\beta) = 1$ for all $0 \leq i \leq n$.

- In other words, the group of Brunnian braids $\text{Brun}_{n+1}(M)$ is given by

$$\text{Brun}_{n+1}(M) = \bigcap_{i=0}^{n} \ker(d_i : B_{n+1}(M) \to B_n(M)).$$

- The classical **Borromean Rings** is a link by closing up a Brunnian braid of 3 strings over D^2.
Theorem

• The canonical embedding $f: D^2 \subseteq S^2$ induces a group homomorphism $\text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2)$.

• Theorem. There is an exact sequence of groups

$$\text{Brun}_{n+1}(S^2) \hookrightarrow \text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2) \twoheadrightarrow \pi_{n-1}(S^2)$$

for $n \geq 5$.

• The image of $f_*: \text{Brun}_n(D^2) \rightarrow \text{Brun}_n(S^2)$ is a normal subgroup.

• Both $\text{Brun}_n(D^2)$ and $\text{Brun}_n(S^2)$ are free groups of infinite rank for $n \geq 5$.
Theorem

- The canonical embedding $f : D^2 \subseteq S^2$ induces a group homomorphism $\text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2)$.

- **Theorem.** There is an exact sequence of groups

$$\text{Brun}_{n+1}(S^2) \xhookrightarrow{} \text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2) \rightarrow \pi_{n-1}(S^2)$$

for $n \geq 5$.

- The image of $f_* : \text{Brun}_n(D^2) \rightarrow \text{Brun}_n(S^2)$ is a normal subgroup.

- Both $\text{Brun}_n(D^2)$ and $\text{Brun}_n(S^2)$ are free groups of infinite rank for $n \geq 5$.
The canonical embedding $f : D^2 \subset S^2$ induces a group homomorphism $\text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2)$.

Theorem. There is an exact sequence of groups

$$\text{Brun}_{n+1}(S^2) \xhookrightarrow{} \text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2) \twoheadrightarrow \pi_{n-1}(S^2)$$

for $n \geq 5$.

The image of $f_* : \text{Brun}_n(D^2) \to \text{Brun}_n(S^2)$ is a normal subgroup.

Both $\text{Brun}_n(D^2)$ and $\text{Brun}_n(S^2)$ are free groups of infinite rank for $n \geq 5$.
Theorem

• The canonical embedding $f : D^2 \subseteq S^2$ induces a group homomorphism $\text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2)$.

• **Theorem.** There is an exact sequence of groups

$$\text{Brun}_{n+1}(S^2) \xrightarrow{\subset} \text{Brun}_n(D^2) \xrightarrow{f_*} \text{Brun}_n(S^2) \longrightarrow \pi_{n-1}(S^2)$$

for $n \geq 5$.

• The image of $f_* : \text{Brun}_n(D^2) \to \text{Brun}_n(S^2)$ is a normal subgroup.

• Both $\text{Brun}_n(D^2)$ and $\text{Brun}_n(S^2)$ are free groups of infinite rank for $n \geq 5$.
Examples

• For instance, $\text{Brun}_5(S^2)$ modulo $\text{Brun}_5(D^2)$ is $\pi_4(S^2) = \mathbb{Z}/2$.

• The other low homotopy groups of S^2 are as follows:

 \begin{align*}
 \pi_5(S^2) &= \mathbb{Z}/2, \\
 \pi_6(S^2) &= \mathbb{Z}/12, \\
 \pi_7(S^2) &= \mathbb{Z}/2, \\
 \pi_8(S^2) &= \mathbb{Z}/2, \\
 \pi_9(S^2) &= \mathbb{Z}/3, \\
 \pi_{10}(S^2) &= \mathbb{Z}/15, \text{ and etc.}
 \end{align*}

• Thus, up to certain range, $\text{Brun}_{n+1}(S^2)$ modulo $\text{Brun}_{n+1}(D^2)$ are known by non-trivial calculations of $\pi_*(S^2)$.
Examples

- For instance, $\text{Brun}_5(S^2)$ modulo $\text{Brun}_5(D^2)$ is $\pi_4(S^2) = \mathbb{Z}/2$.

- The other low homotopy groups of S^2 are as follows:

 - $\pi_5(S^2) = \mathbb{Z}/2$, $\pi_6(S^2) = \mathbb{Z}/12$, $\pi_7(S^2) = \mathbb{Z}/2$,

 - $\pi_8(S^2) = \mathbb{Z}/2$, $\pi_9(S^2) = \mathbb{Z}/3$, $\pi_{10}(S^2) = \mathbb{Z}/15$, and etc.

- Thus, up to certain range, $\text{Brun}_{n+1}(S^2)$ modulo $\text{Brun}_{n+1}(D^2)$ are known by non-trivial calculations of $\pi_*(S^2)$.
Examples

- For instance, $\text{Brun}_5(S^2)$ modulo $\text{Brun}_5(D^2)$ is $\pi_4(S^2) = \mathbb{Z}/2$.

- The other low homotopy groups of S^2 are as follows:

 - $\pi_5(S^2) = \mathbb{Z}/2$, $\pi_6(S^2) = \mathbb{Z}/12$, $\pi_7(S^2) = \mathbb{Z}/2$, $\pi_8(S^2) = \mathbb{Z}/2$, $\pi_9(S^2) = \mathbb{Z}/3$, $\pi_{10}(S^2) = \mathbb{Z}/15$, and etc.

- Thus, up to certain range, $\text{Brun}_{n+1}(S^2)$ modulo $\text{Brun}_{n+1}(D^2)$ are known by **non-trivial calculations** of $\pi_*(S^2)$.
Remarks

- If her old question were answered, then, together with some of my works, one has the combinational determination of the homotopy groups $\pi_n(S^2)$ by listing generators and relations.

- **Problem:** Determine the order of Brun$_n$(S2)/Brun$_n$(D2), which is finite for $n \geq 5$.
 - This problem looks harder than Poincaré conjecture.
Remarks

- If her old question were answered, then, together with some of my works, one has the combinational determination of the homotopy groups $\pi_n(S^2)$ by listing generators and relations.

- Problem: Determine the order of $\text{Brun}_n(S^2)/\text{Brun}_n(D^2)$, which is finite for $n \geq 5$.
 - This problem looks harder than Poincaré conjecture.
Remarks

- If her old question were answered, then, together with some of my works, one has the combinational determination of the homotopy groups $\pi_n(S^2)$ by listing generators and relations.

- **Problem:** Determine the order of $\text{Brun}_n(S^2)/\text{Brun}_n(D^2)$, which is finite for $n \geq 5$.
 - This problem looks harder than Poincaré conjecture.
Remarks

• If her old question were answered, then, together with some of my works, one has the combinational determination of the homotopy groups $\pi_n(S^2)$ by listing generators and relations.

• **Problem:** Determine the order of $\text{Brun}_n(S^2)/\text{Brun}_n(D^2)$, which is finite for $n \geq 5$.
 • This problem looks harder than Poincaré conjecture.
face Operations

• The functions $d_i : B_{n+1}(M) \to B_n(M)$, obtained by deleting $i + 1$st stand for $0 \leq i \leq n$, satisfy the following identity:

 $$d_j d_i = d_i d_{j+1} \text{ for } i \leq j.$$

• By restricting to pure braids, the functions $d_i : P_{n+1}(M) \to P_n(M)$ are group homomorphisms.
face Operations

- The functions $d_i : B_{n+1}(M) \to B_n(M)$, obtained by deleting $i + 1$st stand for $0 \leq i \leq n$, satisfy the following identity:

 $$d_jd_i = d_id_{j+1} \text{ for } i \leq j.$$

- By restricting to pure braids, the functions $d_i : P_{n+1}(M) \to P_n(M)$ are group homomorphisms.
• The functions $d_i: B_{n+1}(M) \to B_n(M)$, obtained by deleting $i+1$st stand for $0 \leq i \leq n$, satisfy the following identity:

 $$d_j d_i = d_i d_{j+1} \quad \text{for} \quad i \leq j.$$

• By restricting to pure braids, the functions $d_i: P_{n+1}(M) \to P_n(M)$ are group homomorphisms
Methods of Proof

- A **Δ-set** (Δ-group) means a sequence of sets (groups) $S = \{S_n\}_{n \geq 0}$ with face functions (face homomorphisms) $d_i : S_n \to S_{n-1}$ such that the above identity holds.

- A simplicial group means a Δ-group $G = \{G_n\}_{n \geq 0}$ together with degeneracy homomorphisms $s_i : G_n \to G_{n+1}$ such that so-called simplicial identities hold.

- The theorem is obtained by
 - studying the Δ-groups from the braids
 - and the simplicial group models for loop spaces.
Methods of Proof

- A Δ-set (Δ-group) means a sequence of sets (groups) $S = \{S_n\}_{n \geq 0}$ with face functions (face homomorphisms) $d_i: S_n \rightarrow S_{n-1}$ such that the above identity holds.

- A simplicial group means a Δ-group $G = \{G_n\}_{n \geq 0}$ together with degeneracy homomorphisms $s_i: G_n \rightarrow G_{n+1}$ such that so-called simplicial identities hold.

- The theorem is obtained by
 - studying the Δ-groups from the braids
 - and the simplicial group models for loop spaces.
Methods of Proof

- A \textbf{Δ-set (Δ-group)} means a sequence of sets (groups) \(S = \{ S_n \}_{n \geq 0} \) with face functions (face homomorphisms) \(d_i : S_n \rightarrow S_{n-1} \) such that the above identity holds.

- A \textbf{simplicial group} means a Δ-group \(G = \{ G_n \}_{n \geq 0} \) together with \textit{degeneracy homomorphisms} \(s_i : G_n \rightarrow G_{n+1} \) such that so-called simplicial identities hold.

- The theorem is obtained by
 - studying the Δ-groups from the braids
 - and the simplicial group models for loop spaces.
Methods of Proof

- A **Δ-set (Δ-group)** means a sequence of sets (groups) $S = \{S_n\}_{n \geq 0}$ with face functions (face homomorphisms) $d_i : S_n \rightarrow S_{n-1}$ such that the above identity holds.

- A **simplicial group** means a Δ-group $G = \{G_n\}_{n \geq 0}$ together with **degeneracy homomorphisms** $s_i : G_n \rightarrow G_{n+1}$ such that so-called simplicial identities hold.

- The theorem is obtained by
 - studying the Δ-groups from the braids
 - and the simplicial group models for loop spaces.
Methods of Proof

- A **Δ-set** (**Δ-group**) means a sequence of sets (groups) $S = \{S_n\}_{n \geq 0}$ with face functions (face homomorphisms) $d_i: S_n \rightarrow S_{n-1}$ such that the above identity holds.

- A **simplicial group** means a Δ-group $G = \{G_n\}_{n \geq 0}$ together with *degeneracy homomorphisms* $s_i: G_n \rightarrow G_{n+1}$ such that so-called simplicial identities hold.

- The theorem is obtained by
 - studying the Δ-groups from the braids
 - and the simplicial group models for loop spaces.