1. By computing derivatives, find the Taylor series of
 i) \(f(x) = e^{2x} \) at \(x = 3 \).
 ii) \(f(x) = \cos x \) at \(x = \frac{\pi}{3} \).
2. Find the Taylor series of \(\ln(1 + 2x^2) \) at \(x_0 = 0 \).
3. Using the Taylor Formula, show that \(\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \).
4. Use series to estimate the integral’s value
 \[\int_0^{0.2} \sin x^2 dx \]
 with an error of magnitude less than \(10^{-8} \).
5. Use series to evaluate the limits
 i) \(\lim_{y \to 0} \frac{\arctan y - \sin y}{y^3 \cos y} \).
 ii) \(\lim_{x \to \infty} x^2(e^{-1/x^2} - 1) \).

Review question of chapter 3.

6. Let \(\sum_{n=1}^{\infty} f_n(x) \) be a series of functions on an interval \(I \) and let \(\{g_n(x)\} \) be a sequence of functions on \(I \). Suppose that
 1) \(\sum_{n=1}^{\infty} |f_n(x)| \) converges uniformly on \(I \) and
 2) there exists a positive number \(M \) such that \(|g_n(x)| \leq M \) for all \(x \in I \) and all \(n \geq 1 \).
 Show that the series of functions \(\sum_{n=1}^{\infty} f_n(x)g_n(x) \) converges uniformly on \(I \).