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Introduction

n important theme in probability theory is to identify universal phenomena on large 
space-time scales that are independent of the microscopic details. A classic example 

is the Central Limit Theorem. Take for instance the coin toss example, where a fair coin is 
tossed N times. If we plot the frequency at which k heads are observed against k, then we 
find that the frequency profile roughly follows a bell curve, where the center of the bell 
curve is at k=N/2, and the width of the curve is roughly the square root of N.  The central 
limit theorem tells us that, as N tends to infinity, after centering and rescaling, the frequency 
profile converges to an exact bell-shaped function, which is the Gaussian density function. 
The power of the central limit theorem lies in the fact that the Gaussian density function is 
ubiquitous and not just restricted to the coin toss example. In a more abstract formulation, if 
X_1, X_2, … are the outcomes of a sequence of independent and identical experiments, then 
after proper centering and normalizing, the partial sum of these outcomes S_N=X_1+…
+X_N will also asymptotically follow the Gaussian distribution. The Gaussian distribution is 
therefore universal in the sense that it governs, or more precisely, well-approximates the law 
of the fluctuation of the sum of a large collection of independent measurements, regardless 
of what one is actually measuring. 

The central limit theorem can be extended to the functional level, which is called Donsker’s 
invariance principle. Let us return to the coin toss example, and let X_1, X_2, … be the 
outcomes of the successive coin tosses, where X_i=1 if the i-th coin toss turns up head and 
X_i=-1 if it turns up tail. The partial sum S_N=X_1+…+X_N then measures the difference 
between the number of heads and tails. Instead of only observing S_N for a large N, let us 
observe the whole sequence (S_1, S_2, …, S_N) up to time N.  The central limit theorem is 
concerned with the distribution of the last entry S_N. The functional central limit theorem 
tells us that if we speed up time by a factor of N and divide S_i by the square root of N, then 
the sequence (S_1, S_2, …, S_N), regarded as a function of time, asymptotically follows the 
distribution of a random function defined on the time interval [0,1], known as the Brownian 
motion. Originally introduced by biologists and physicists on an informal level to describe 
the random jiggling motion of pollen and dust particles in fluids and air, Brownian motion 
has since been rigorously constructed mathematically, and the functional central limit 
theorem establishes it as the universal random process governing the large space-time 
scale fluctuation of the sums of a large collection of independent measurements observed 
over time.  The universality of Brownian motion makes it an ideal candidate to model many 
random motions in life and nature, ranging from the motion of molecules to stock prices. 

To model complex phenomena involving multiple particles, individuals, or agents, we 
often need to employ more than one sequence of coin tosses, whose partial sum process 
S_N=X_1+…+X_N is also called a random walk, because we can think of a drunkard moving 
on the integer lattice Z, where every step he takes just equals the random coin toss X_i. The 
partial sum S_n records the position of the random walker at time n. A random walk can thus 
model the motion of an individual moving in space, and many interesting phenomena arise 
when there is a population of individuals interacting with each other, such as the spread of 
an infectious disease among a population. Various types of interactions can be introduced 
between the moving individuals modeled by random walks. For example, when two random 
walks meet, they can annihilate each other which can model the reaction of two chemical 
agents that become inert after reaction, or they can coalesce into a single random walk which 
can model the merging of two genealogical lines, or they can give birth to new random 
walks. Such interacting particle systems have been used to model many phenomena arising 
from physics, chemistry, biology etc, although their rigorous mathematical analysis is often 
difficult.
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A special class of interacting random walks 
admits an analogue of the functional central 
limit theorem. They are the coalescing 
random walks on the integer lattice Z, where 
two walks merge into a single random 
walk whenever they meet. To construct the 
collection of coalescing random walks, for 
each point in the space-time lattice Z^2, 
we draw an arrow pointing either up-left or 
up-right with probability 1/2 each. In such 
an arrow configuration, space is plotted 
horizontally and time vertically. A random 
walk starting from a given lattice site simply 
follows the arrows upward in space-time, 
and because there is only a single arrow 
leading out of any site, two walks coalesce 

into a single walk whenever they meet.  If we 
rescale space by a factor of square root of n 
and time by a factor of n, so that the lattice 
spacing tends to zero, then the functional 
limit theorem tells us that the random walk 
path starting from the origin will converge 
to a Brownian motion. However more is 
true. In fact the collection of all coalescing 
random walk paths, with one walker starting 
from every point of the space-time lattice 
Z^2, will converge to a limiting collection of 
coalescing Brownian motions, with one or 

more Brownian motions starting from every 
point of the continuum space-time plane 
R^2. This random collection of coalescing 
Brownian motions is called the Brownian 
web. The construction and analysis of the 
Brownian web have been carried out by 
Arratia [1], Toth and Werner [5], Fontes, 
Isopi, Newman and Ravishankar [2]. Just like 
the Brownian motion, the Brownian web 
is also a universal object and arises as the 
scaling limit of general coalescing systems 
of particles in one dimension. The Brownian 
web has been used to model river networks, 
as well as the dynamics of domain walls 
of a one-dimensional ferromagnet at low 
temperature.  

With coauthors Emmanuel Schertzer and 
Jan Swart [3, 4], we have been studying 
an extension of the Brownian web by 
allowing the extra effect of branching. Such 
branching effect may arise due to selection 
bias if the random walk paths model 
genealogical lines, or due to nucleation if 
the random walk paths model evolution 
of domain walls in magnets. A natural 
starting point is to consider branching-
coalescing random walks on the space-
time integer lattice Z^2. Instead of drawing 

either an up-left or up-right arrow as in the 
construction of coalescing random walks, 
with probability one over square root of 
n, we draw both the up-left and up-right 
arrows, which represents a branching point.  
A random walk encountering one of these 
branching points splits into two random 
walks, with one following each of the two 
arrows. It turns out that if we rescale space 
by the square root of n and time by n as was 
done for coalescing random walks, then we 
obtain in the limit a random collection of 
branching-coalescing Brownian motions. 
We have named the limiting object the 
Brownian net due to the net-like structure 
appearing in it. The Brownian net is also 

expected to arise as the universal scaling 
limit of general one-dimensional branching-
coalescing particle systems.

The identification of universal large scale 
phenomena and the classification of these 
phenomena into different universality 
classes has been a central theme of 
modern probability theory, as well as 
statistical mechanics as epitomized by the 
renormalization group theory. The Brownian 
web and Brownian net are two instances 
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of such universal limits, which extends the 
classical Brownian motion by incorporating 
many interacting Brownian motions. 
The verification that a particular discrete 
system converges to a universal limit is 
often not easy due to the many interacting 
components. However the notion of 
universality is powerful and attractive. 

Once a discrete system has been verified to 
belong to a given universality class, then it 
is known to share many essential properties 
with other models in the same universality 
class, and we can replace it either by the 
continuum limit or a different model in 
the same universality class which is more 
amenable to analysis. 


