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Innocuous  Equations

Number theory is traditionally 
concerned with finding integer 

solutions to equations. For example, one 
may like to find integers A, B and C so that

 A2 + B2 = C2.

We all realize that solving this equation in 
integers is looking for right-angle triangles 
with integer sides, thanks to Pythagoras’ 
theorem. One such triple of solutions is 
(3,4,5), but there are in fact infinitely many 
such  Pythagorean triples and one knows 
(since antiquity) how to write all of them 
down.  

However, Number Theory has the tendency 
of throwing up similar innocuous looking 
problems which turn out to be very difficult 
to solve. Here are two of them:

(i)	 (Fermat’s Last Theorem)  
	 Show that there are no nonzero integers 

satisfying An + Bn = Cn

(ii)	 (Congruent Number Problem) 
	 Find all positive integers N which 

are the area of a right angle triangle 
with rational sides, i.e.   such that the 
following system of simultaneous 
equations have solutions with A, B, C 
rational numbers:

         A2 + B2 = C2    and  2 N = AB.

	 An integer N for which this system 
of equations have rational solutions 
is called a congruent number. For 
example, 6 is a congruent number since 
it is the area of right angle triangle   with 
sides (3,4,5). The question is thus to 
determine if a given N is a congruent 
number.

 
 
Both these problems are easily understood 
by school children, but are notoriously hard 
to solve. Indeed, (i) was proposed by Fermat 
some 350 years ago, and was only resolved 
in 1995 by Andrew Wiles [1] (of Princeton 
University then). On the other hand, (ii) is 
still an open problem today.

It is natural to ask what significance the two 
problems above possess. As they stand, 
they are indeed mere idle curiosities, no 
more important than any other equations 
one might care to write down. However, 
in trying to resolve (i), generations of 
mathematicians were led to uncover 
many fundamental questions and subjects 
areas and to develop many sophisticated 
machineries, leading to the creation of the 
field of algebraic number theory. More 
pertinently, the eventual solution of (i) and 
the proposed approach to (ii) turns out to 
be related to an important class of objects 
known as Elliptic Curves. 

Elliptic Curves

An elliptic curve is basically a curve in the 
plane described by a cubic equation of the 
form 

Y2  = a X3  + b X + c, 
with a, b, c rational numbers

Why are such cubic equations interesting? 
Well, it turns out that if one considers 
quadratic equations (like the Pythagorean 
equation), one knows that they have 
infinitely many rational solutions. On the 
other hand, if one considers equations of 
degree higher than 4 (such as the Fermat 
equation with large n), then an amazing 
theorem of Faltings [2] (winning him the 
Fields medal in 1986) says that they will 
only have finitely many rational solutions. 
Thus, cubic equations (i.e. elliptic curves) 
are very interesting because they happen 
to sit on the boundary between heaven 
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and hell: which world do they belong to? The answer is: some 
elliptic curves will have finitely many rational points and some will 
have infinitely many. In fact, there is a very influential conjecture, 
the Birch-Swinnerton-Dyer conjecture (BSD) [3], which gives a 
criterion to decide whether a given elliptic curve E has finitely or 
infinitely many rational points. This criterion is expressed in terms of 
an analytic function, called the L-function L(s,E) of the elliptic curve, 
which is a function in a variable s.  More precisely, BSD Conjecture:  
E has infinitely many rational solutions if and only if L(1,E) = 0.

The BSD conjecture is one of the seven Millennium Prize problems 
[4] singled out by the Clay Mathematics Institute: if you resolve it, 
you will receive US$1,000,000.

Here is how elliptic curves help in the problems (i) and (ii) above?

(i)	 (Fermat Last Theorem) One argues by contradiction. If a 
nonzero solution to Fermat’s equation exists, we can use the 
nonzero integers (A,B,C) to write down an elliptic curve:

Y2  = X  (X – An) (X + Bn)

	 This elliptic curve will have some very special properties, so 	
special that one begins to suspect that such a curve cannot 
exist. What Wiles did was to confirm this nonexistence.

(ii)	 (Congruent Number Problem) It is known that N is a congruent 
number if and only if  the elliptic curve EN defined by 

Y2  = X3 – N2X 

	 has infinitely many rational solutions. By the BSD conjecture, 
this is conjecturally equivalent to L(1, EN ) = 0.

Thus, both problems (i) and (ii) are reduced to questions about elliptic 
curves. However, these questions about elliptic curves are still too 
hard to solve! It turns out that it would help a lot if one relates elliptic 
curves to another class of objects: Modular Forms. The connection 
between Elliptic Curves and Modular Forms is a very special case of a 
vast enterprise known as the Langlands Program.

The Langlands Program

The Langlands program  owes its existence to the vision of Robert 
Langlands (Institute for Advanced Studies, Princeton) some 40 
years ago (see [5]). It consists of a series of intricate conjectures 
which connects two seemingly unrelated and individually 
important areas of modern mathematics. One of these is number 
theory, which, as  we noted above, is concerned with  solving 
equations in integers; its modern study has evolved to that of a 
class of objects known as Galois representations (of which Elliptic 
Curves is an instance). The other is representation theory, of which 
a simple case is the theory of Fourier series; its modern study is 
concerned with a class of objects known as automorphic forms 
(of which Modular Forms is an instance). The deep conjectures of 
Langlands  assert:

Galois representations and automorphic forms are, in very precise 
ways, essentially the same!

The “fact” that two classes of objects are the same is useful as 
it allows one to transfer a problem about one class of objects to 
the other, where it may be more readily solvable. In his resolution 
of Fermat’s problem, what Wiles did was to build enough of this 
bridge between number theory and representation theory, so that 
he may transfer the question of nonexistence of a particular elliptic 
curve to the question of nonexistence of certain modular forms, 
and this latter question turns out to be trivial. For the congruent 
number problem, one needs to understand the L-function L(s, EN ), 
and one expects that such L-functions are more easily understood 
if one has the bridge to pass to the world of modular forms.

To conclude, much of my own research has been focused on:

(a)	 Helping to build a part of the bridge or dictionary between 
number theory and representation theory; an example is my 
work with S. Takeda [6] on the local Langlands conjecture for 
GSp(4) and related groups.

(b)	 Using this dictionary as a tool to resolve interesting problems 
on either side of the Langlands program; an example is my 
work with B. H. Gross and D. Prasad [7] on some branching 
problems in representation theory. 

The Langlands program has seen a lot of progress in the past 
decade, resulting in the proofs of many classic conjectures 
in number theory. Moreover, the underlying principle of the 
Langlands program is so universal that it has been applied in 
geometry and string theory. Some people have claimed that these 
ideas will lead to a grand unification of vastly different areas of 
mathematics. Only time will tell.
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