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Motivation and examples

Example 1. Social networks. Understand who is influencing twitter:
based on the timestamps patterns of messages, web-data: publication
activity of websites/blogs

Example 2. High Frequency Finance.
From zoomed financial signals (�t ⇡ 1ms, upward / downward price
proves and other order book features), build a “causality map”

Example 3. Health-care. Impact of some health events to other health
events (all being timestamped, longitudinal data)
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Introduction

Setting

For each node i 2 I = {1, . . . , d} we have a set Z i of events
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[Daley et al. 2007]

Patterns can be captured by putting structure on �
t



The Multivariate Hawkes Process (MHP)

Scaling

We observe N
t

on [0,T ]. “Asymptotics” in T ! +1. d is “large”

The Hawkes process

A particular structure for �
t

: auto-regression
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2 R+ exogenous intensity

'ij non-negative integrable and causal (support R
+

) functions

'ij are called kernels. Encodes the impact of an action by node j on
the activity of node i

Captures auto-excitation and cross-excitation across nodes, a
phenomenon observed in social networks [Crane et al. 2008]



A simple parametrization of the MHP

For d = 1, K = 1 and '11(t) = e�1, intensity �✓,t looks like:



Stability condition of the MHP

Stability condition

Introduce

G ij =

Z

+1

0

'ij(t)dt

Spectral norm must satisfy kGk < 1 to ensure stability and
stationarity of the process

Sum of exponentials parametric model:
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A brief history of MHP

Brief history

Introduced in Hawkes 1971

Earthquakes and geophysics [Kagan and Knopo↵ 1981], [Zhuang et
al. 2012]

Genomics [Reynaud-Bouret and Schbath 2010]

High-frequency Finance [Bacry et al. 2013]

Terrorist activity [Mohler et al. 2011, Porter and White 2012]

Neurobiology [Hansen et al. 2012]

Social networks [Carne and Sornette 2008], [Zhou et al.2013]

And even FPGA-based implementation [Guo and Luk 2013]



A brief history of MHP



MHP in large dimension

What do we want to do?

Deal with large number of events and large dimension d (number of
nodes)

End up with a tractable and scalable optimization problem

Goodness-of-fit functionals. Two choices: minus log-likelihood
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Contribution 1. Dimension reduction for MHP

Paper. E. Bacry, S. G., J.-F. Muzy, A generalization error bound for
sparse and low-rank multivariate Hawkes processes, in revision in JMLR

Parametric setting 'ij(t) = (A)
ij

⇥ h(t)

Low-rank and sparsity inducing penalization on A
Introduces a sharp tuning of the penalizations using data-driven
weights

Leads to optimal error bounds for penalized least-squares (sharp
sparse oracle inequality)



Contribution 1. Dimension reduction for MHP

Prior assumptions

Users are basically inactive and react mostly if stimulated:

µ is sparse

Everybody does not interact with everybody:

A is sparse

Interactions have community structure, possibly overlapping, a small
number of factors explain interactions:

A is low-rank



Contribution 1. Dimension reduction for MHP

Standard convex relaxations
(Tibshirani (01), Srebro et al. (05), Bach (08), Candès & Tao (09), etc.)
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Contribution 1. Dimension reduction for MHP

We use the following penalizations

Use `
1

penalization on µ

Use `
1

penalization on A
Use trace-norm penalization on A

{A : kAk⇤  1} {A : kAk
1

 1} {A : kAk
1

+ kAk⇤  1}

Balls are on the set of 2 ⇥ 2 symmetric matrices identified with R3.



Contribution 1. Dimension reduction for MHP

Leads to

✓̂ = (µ̂, Â) 2 argmin
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1
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The features scaling problem

Features scaling is necessary for “linear approaches” in supervised
learning

No features and labels here!

We solve this by sharp data-driven tuning of the penalization terms

Required a new theory for random matrices with entries that are
continuous-time martingales



Contribution 1. Dimension reduction for MHP

Left: AUC; Middle: Estimation error; Right: Kandall rank correlation



Contribution 1. Dimension reduction for MHP

A strong theoretical guarantee
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Contribution 1. Dimension reduction for MHP

Roughly, ✓̂ achieves an optimal tradeo↵ between approximation and
complexity given by
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Complexity measured both by sparsity and rank

Convergence has shape (log d)/T , where T = length of the
observation interval

Terms are balanced by “empirical variance” terms
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Contribution 2. Random matrix theory

Paper. E. Bacry, S. G. and J-F Muzy, Concentration inequalities for
matrix martingales in continuous time, PTRF (2017)

Consider a m ⇥ n matrix-martingale given by
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Contribution 2. Random matrix theory

Strong generalization of previously known inequalities to continuous
time (Tropp 2011)

Very di↵erent approach (random matrix tools + stochastic calculus)

Also the “Poissonian” case: martingale with sub-exponential jumps
(counting process, Hawkes processes)

Interesting particular case (previously unknown!). Consider P = [P
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] a
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Contribution 3. Causality maps from MHP without parametric modeling

Paper. Achab et al. Uncovering Causality from Multivariate Hawkes
Integrated Cumulants, ICML (2017) and JMLR (2017)

Reminder.
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Introducing the (unobserved) counting process N i j = of events
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g ij = average number of events from i triggered by one event from j



Contribution 3. Causality maps from MHP without parametric modeling

Actually, if 'ij � 0 then g ij = 0 i↵ N i does not Granger-cause N j

The matrix G encodes causality

How to estimate G directly?

We know (Jovanovic 2014) how to relate integrated cumulants of N
t
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Contribution 3. Causality maps from MHP without parametric modeling

NPHC. Cumulant matching method for estimation of G
Compute estimates bC and cK c of the third order cumulants of the
process

Find bR that matches these empirical cumulants

L(R) = (1 � )kK c(R) � cK ck2
2

+ kC (R) � bCk2
2

,

Put
bR = I �

⇣

arg min
R2⇥

L
T

(R)
⌘�1

Theorem.

It is consistent! (under some assumptions... quite technical)



Contribution 3. Causality maps from MHP without parametric modeling

Remarks.

Highly non-convex problem: polynomial or order 10 with respect to
the entries of R
Not so hard, local minima turns out to be good (deep learning
literature), we simply use AdaGrad

Using order three is important (two is not enough): integrated
covariance contains only symmetric information: unable to provide
causal information

NPHC scales better than state-of-the-art methods, is robust
towards the kernel shape and directly outputs the kernel integral

Simple tensorflow code



Contribution 3. Causality maps from MHP without parametric modeling

Experiment with MemeTracker dataset

keep the 200 most active sites

contains publication times of articles in many websites/blogs, with
hyperlinks

⇡ 8 millions events

Use hyperlinks to establish an estimated ground truth for the
matrix G

Method ODE GC ADM4 NPHC

RelErr 0.162 0.19 0.092 0.071
MRankCorr 0.07 0.053 0.081 0.095
Time (s) 2944 2780 2217 38



Contribution 3. Causality maps from MHP without parametric modeling

Experiment with MemeTracker dataset

bG



Contribution 3. Causality maps from MHP without parametric modeling

Order book dynamics.

Order book: a list of buy and sell orders for a specific financial
instrument, the list being updated in real-time throughout the day

Understand the self and cross-influencing dynamics of all event types
in an order book

Introduce

N
t

= (P(a)

t

,P(b)

t

,T (a)
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,T (b)

t

, L(a)
t

, L(b)
t
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t

,C (b)

t

)

where

P(a) (resp. P(b)): upward (resp. downward) price moves;

T (a) (resp. T (b)): market orders at the ask (resp. at the bid) that
do not move the price;

L(a) (resp. L(b)): limit orders at the ask (resp. at the bid) that do
not move the price;

C (a) (resp. C (b)): cancel orders at the ask (resp. at the bid), that
do not move the price.

Data: DAX future contracts between 01/01/2014 and 03/01/2014.



Contribution 3. Causality maps from MHP without parametric modeling



Contribution 3. Causality maps from MHP without parametric modeling

Interpretable results

Any 2 ⇥ 2 sub-matrix with same kind of inputs (i.e. Prices changes,
Trades, Limits or Cancels) is symmetric: ask and bid have symmetric
roles;

Prices are mostly cross-excited: price increase is most likely followed
by a price decrease, and conversely;

Market, limit and cancel orders are strongly self-excited: persistence
of order flows, and splitting of meta-orders into sequences of smaller
orders.
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Contribution 4. Accelerating training time of MHP

Paper. E. Bacry, S. G., J.-F. Muzy, I. Mastromatteo, Mean-field
inference of Hawkes point processes, Journal of Physics A, 2016

Dedicated optimization algorithm for the Hawkes MLE with large
number of nodes

Based on a mean-field approximation

Partially understood (proof on toy cases)

Improves state-of-the-art by orders of magnitude

Mean-Field approximation (large number of nodes d helps!)
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Contribution 4. Accelerating training time of MHP

Use the quadratic approximation
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Contribution 4. Accelerating training time of MHP

No clean proof yet (only on toy example) but works very well empirically



Contribution 4. Accelerating training time of MHP

Faster by several order of magnitude than state-of-the-art solvers
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Conclusion

Take-home message

Hawkes Process for “time-oriented” machine learning

Surprisingly relevant to fit real-word phenomena (auto-excitation,
user influence)

Very flexible: intensity can depend on features, other processes, etc.

Main contributions

Sharp theoretical guarantees for low-rank inducing penalization
for Hawkes models

New results about concentration of matrix-martingales in
continuous time

Go beyond the parametric approach: unveil causality using
integrated cumulants matching

Improved training time of the Hawkes model using a “mean-field”
approximation
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Software: tick library

Python 3 et C++11

Open-source (BSD-3 License)

pip install tick (on MacOS and Linux...)

https://x-datainitiative.github.io/tick

Statistical learning for time-dependent models

Point processes (Poisson, Hawkes), Survival analysis, GLMs
(parallelized, sparse, etc.)

A strong simulation and optimization toolbox

Partnership with Intel (use-case for new processors with 256 cores)

Contributors welcome!



Software: tick library



Thank you!


