NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

Ph.D. QUALIFYING EXAMINATION

ALGEBRA (SAMPLE PAPER)

Time allowed: 3 hours

Answer All Questions

- 1. [20 marks] Let $\varphi: M' \to M$ be a homomorphism of abelian groups.
 - (a) Suppose that $\alpha: L \to M'$ is a homomorphism of abelian groups such that $\varphi \circ \alpha = 0$ (an example is the inclusion $\mu: \operatorname{Ker} \varphi \hookrightarrow M'$). Prove or disprove each of the following.
 - (i) There is a unique homomorphism $\alpha_0 : \text{Ker}\varphi \to L \text{ such that } \mu = \alpha \circ \alpha_0.$
 - (ii) There is a unique homomorphism $\alpha_1: L \to \operatorname{Ker}\varphi$ such that $\alpha = \mu \circ \alpha_1$.
 - (b) Show that there is a four-term exact sequence

$$0 \longrightarrow \operatorname{Ker} \varphi \xrightarrow{\mu} M' \xrightarrow{\varphi} M \xrightarrow{\epsilon} \operatorname{Coker} \varphi \longrightarrow 0.$$

What is Coker φ ?

- (c) Dualize (a); that is, find and prove the corresponding statement about Coker φ .
- 2. [15 marks] Let

$$0 \longrightarrow M' \xrightarrow{\mu} M \xrightarrow{\epsilon} M'' \longrightarrow 0$$

be a short exact sequence of R-modules, with M' finitely generated. Show that M is finitely generated if and only if M'' is. Give an example with M finitely generated but M' not finitely generated.

3. [15 marks] Show that an A-module P is projective if and only if for any short exact sequence

$$0 \longrightarrow N' \xrightarrow{f} N \xrightarrow{g} N'' \longrightarrow 0$$

of A-module homomorphisms, the corresponding sequence

$$0 \longrightarrow \operatorname{Hom}_{A}(P, N') \xrightarrow{\operatorname{Hom}_{a}(P, f)} \operatorname{Hom}_{A}(P, N) \xrightarrow{\operatorname{Hom}_{A}(P, g)} \operatorname{Hom}_{A}(P, N'') \longrightarrow 0$$

is exact.

- 4. [15 marks] Let V be a finite dimensional k-vector space, of dimension n, and let φ : $V \to V$ be an invertible k-linear transformation from V to itself. Let $\mathcal{B} = (e_1, ..., e_n)$ be a basis of V.
 - (a) Show that

$$\varphi(\mathcal{B}) := (\varphi(e_1), ..., \varphi(e_n))$$
 is also a basis of V .

- (b) Let $A_{\varphi} \in M_n(k)$ be the matrix of φ with respect to \mathcal{B} and \mathcal{B} . In terms of A_{φ} , compute
 - (i) the matrix of φ with respect to \mathcal{B} and $\varphi(\mathcal{B})$;
 - (ii) the matrix of φ with respect to $\varphi(\mathcal{B})$ to $\varphi(\mathcal{B})$;
 - (iii) the matrix of φ with respect to $\varphi(\mathcal{B})$ to \mathcal{B} .

Justify your answers with proofs.

- 5. [15 marks] For each of the following statements about field extensions $F \subseteq K \subseteq L$, either prove or give a counterexample.
 - (i) If L is a splitting field for a polynomial over F, then L is a splitting field for a polynomial over K.
 - (ii) If L is a splitting field for a polynomial over K, and K is a splitting field for a polynomial over F, then L is a splitting field for a polynomial over F.
 - (iii) If L is a splitting field for a polynomial over F, then K is a splitting field for a polynomial over F.
- 6. [10 marks] Find Gal $(F(\zeta)/F)$ where $\zeta = \cos(2\pi/n) + i\sin(2\pi/n)$, $F = \mathbb{Q}$, \mathbb{R} or \mathbb{C} , and n = 4, 6, 12 or a prime p.
- 7. [10 marks] Let \mathfrak{S} denote the category whose objects are sets and whose morphisms are the functions from sets to sets. Let $P:\mathfrak{S}\to\mathfrak{S}$ be the functor that assigns to each set X its power set P(X) (i.e. the set of all subsets of X), and assigns to each morphism $f:A\to B$ a corresponding morphism $P(f):P(B)\to P(A)$ given by

$$P(f)(X) = f^{-1}(X)$$
 for each $X \subset B$.

Show that P is a representable contravariant functor.