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Q E Paper II Analysis

You can only submit one time ( no correction or resubmission ) . In case of mul-
tiple submissions, the earliest version would be treated as the final version, and
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Answer ALL the three questions.

Question 1 [ 35 marks ]

(i) Consider the mapping

f : IR3 → IR2

(x1 , x2 , x3 ) 7→ ( a x1 + b x2 , c x2 + d x3 ) ∈ IR2 for (x1 , x2 , x3 ) ∈ IR3 .

Here a , b , c and d are fixed numbers , with

( 1.1 ) a 6= 0 and c 6= 0 .

( i) a Compute the Jacobian matrix

J f (x1 , x2 , x3 ) for (x1 , x2 , x3 ) ∈ IR3 .

[ You may like to refer to ( 1.2 ) for a general expression of the Jacobian matrix . ] Your
answer ( in its simplest form ) should be in terms of a , b , c and d .

( i) b Show that the Jacobian matrix J f (x1 , x2 , x3 ) has rank two for all (x1 , x2 , x3 ) ∈ IR3.

( i) c Show that there exists a smooth mapping

s : IR2 → IR3

( y1 , y2 ) 7→ ( s1 ( y1 , y2 ) , s2 ( y1 , y2 ) , s3 ( y1 , y2 ) ) ∈ IR3

for ( y1 , y2 ) ∈ IR2 ,

such that

s3 ( y1 , y2 ) ≡ 1 and f ◦ s ( y1 , y2 ) = ( y1 , y2 ) for all ( y1 , y2 ) ∈ IR2 .

Find
s1 ( y1 , y2 ) and s2 ( y1 , y2 )

in terms of y1 , y2 , a , b , c and d . Your answers should be in their simplest forms.
Justify your answers.

–Question 1 continues on the next page . –
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Question 1 continues...

(ii) For integers M and n satisfying M > n ≥ 2 , consider a smooth mapping

F : IRM → IRn

x 7→ ( F 1 ( x ) , · · · , Fn ( x ) ) ∈ IRn for x = (x1 , · · · , xM ) ∈ IRM ,

with F ( 0 , · · · , 0 ) = ( 0 , · · · , 0 ) .

Here F1 , · · · , Fn are smooth functions on IRM . The Jacobian matrix is given by :



∂F 1
∂x1

(x ) · · ·· ∂F 1
∂xn

(x ) · · · ∂F 1
∂xM

(x )

∂F 2
∂x1

(x ) · · ·· ∂F 2
∂xn

(x ) · · · ∂F 2
∂xM

(x )

·

·

∂Fn
∂x1

(x ) · · ·· ∂Fn
∂xn

(x ) · · · ∂Fn
∂xM

(x )


( 1.2 ) J F( x ) = for x ∈ IRM .

Assume that



∂F 1
∂x1

(0 ) · · ·· · · · ∂F 1
∂xn

(0 )

∂F 2
∂x1

(0 ) · · ·· · · · ∂F 2
∂xn

(0 )

·

·

∂Fn
∂x1

(0 ) · · ·· · · · ∂Fn
∂xn

(0 )


Det 6= 0 .

Here
0 = ( 0 , · · · , 0 ) ∈ IRM .

–Question 1 continues on the next page . –
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Question 1 continues...

Define

F̃ : IRM → IRM

x 7→ ( F 1 ( x ) , · · · , Fn ( x ) , xn+1 , · · · , xM ) ∈ IRM

for x = (x1 , · · · , xM ) ∈ IRM .

( ii) a Show that the Jacobian matrix J F̃ ( 0 ) is non - singular .

( ii) b Using the Inverse Function Theorem ( you are not required to proof it ) , show that
there exist an open set O in IRn , which contains the origin ( of IRn ) , and a smooth mapping

S : O → IRM

( y1 , · · · , yn ) 7→ ( S1 ( y1 , · · · , yn ) , · · · , SM ( y1 , · · · , yn ) ) ∈ IRM

for ( y1 , · · · , yn ) ∈ O ⊂ IRn ,

so that

F ◦ S ( y1 , · · · , yn ) = ( y1 , · · · , yn ) for all ( y1 , · · · , yn ) ∈ O .

Note that if you use another method ( not via the Inverse Function Theorem ) , you may not
be awarded full credit for this part.

–Question 2 starts on the next page . –
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Question 2 [ 35 marks ]

Consider L2 (IR ) – the collection of Lebesque measurable functions

f : IR → [ −∞ , +∞ ]

such that

( ‖ f ‖ 2 := )
( ∫

IR
| f | 2 dλ

)1
2

< ∞ .

In the above, the integration is with respect to the Lebesque measure on the real line IR .
Let

T ⊂ L2 ( IR )

satisfy the following property ( 2.1 ) .

( 2.1 ) For any sequence
{ f i } ⊂ T ,

there exists a subsequence { f i j } ( of {f i } ) and f∞ ∈ T so that

‖ f i j − f∞ ‖ 2 → 0 as j → ∞ .

( i ) Is it true that T is bounded ? That is to say , “ Is it true that there is a ( fixed )
positive number C so that

‖ f ‖ 2 ≤ C for all f ∈ T ? ”

Justify your answer.

( ii ) Does the following property ( 2.2 ) hold for T ?

( 2.2 ) For any ( small ) number ε > 0 , there exists a ( large ) number R ε > 0 so that∫
{ |x | ≥ R ε }

| f | 2 d λ ≤ ε for all f ∈ T .

Justify your answer.

( iii ) Does the following property ( 2.3 ) hold for T ?

( 2.3 ) For any ( small ) number ε̃ > 0 , there exists a ( small ) number ρ ε̃ > 0 so that for
any ( fixed ) y ∈ IR with | y | ≤ ρ ε̃ , we have∫

IR
| f (x + y ) − f (x ) | 2 d λ x ≤ ε̃ for all f ∈ T .

Justify your answer.

You are required to justify any non - standard result that you use in answering this ques-
tion . The Monotone Convergence Theorem, Fatou’s Lemma and the Lebesque Dominated
Convergence Theorem are treated as standard results.

–Question 3 starts on the next page . –
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Question 3 [ 30 marks ]

( a) Picard’s Little Theorem ( you are not required to prove it ) states that for any non -
constant entire function

F : IC → IC ,

IC \ F ( IC ) contains at most one point. Let

f : IC → IC ,

be an non - constant entire function, satisfying

( 3.1 ) f ( 1 − z ) = 1 − f ( z ) for all z ∈ IC .

( a) i Find an example of an entire function F so that IC \ F ( IC ) contains exactly one
point.

( a) ii Find an example of a non - constant entire function f satisfying ( 3.1 ) .

( a) iii Is it always true that f ( IC ) = IC ? Justify your answer. You are allowed to apply
Picard’s Little Theorem ( without proving it ) .

(b) Let

I (x ) :=
∫ ∞
−∞

d y

( 1 + y2 ) [ 1 + ( x − y ) 2 ]
for x ∈ IR .

( b ) i Is it true that

I (x ) = I (−x ) for all x ∈ IR ?

Justify your answer.

( b ) ii Using the Cauchy Integral Formula , evaluate I (x ) for all x ∈ IR . Your answer
( in its simplest form ) should be in terms of x and other constant(s) . Justify your answer.

{Note that if you use another method [ not the Cauchy Integral Formula ] , you may not be
awarded full credit for this part. }

– END OF THE EXAMINATION PAPER. –


